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Abstract: Mining can be the source and target of opportunities and threats of different natures
exceeding the mine site perimeter, affecting the socio-ecological system and leading to social conflicts
and entrepreneurial risks for mining companies. Hence, a mining project is a matter of land planning
rather than a simple industrial object. Nevertheless, current mandatory risk and impact assessment
methods are often performed on one project at a time, neglecting the coexistence of different mining
activities and the socio-ecological vulnerability of the territory where mining takes place. This
paper proposes an original risk-based approach to develop and compare different territorial mining
scenarios (TMSs) to support land-planning strategies in mining territories, tested on the French
Guiana gold mining sector. Five TMSs combining different mine types (e.g., legal artisanal, medium,
large-scale mining, illegal mining) were developed for the same total amount of gold production
at the watershed level. For each TMS, both accidental and ordinary risk scenarios were assessed
through a GIS-based approach considering watershed socio-ecological vulnerability. Risks were
finally weighted according to different stakeholders’ perception, and the TMSs were compared based
on their global risk scores. Despite the multiple challenges highlighted, this paper highlights the
feasibility of a methodological framework to support mining planning at the territory level.

Keywords: gold mining; risk assessment; land planning; scenarios; sustainability; French Guiana

1. Introduction
1.1. Mining, Territories and Risks

In the current context of global changes, mining industries must respond to a growing
demand for minerals and metals while facing critical socio-environmental challenges [1–4].
On the one hand, as with other human activities, mining is a potential driver for socio-
economic development in terms, for instance, of raw materials supply, the creation of wealth
and jobs, technological development, local business development and infrastructures
expansion [5], which can be seen as positive risks. On the other hand, mining is also the
potential source of threats (i.e., negative risks) affecting ecosystem services supply over time
and space (e.g., soil, water and air degradation, fragmentation of natural habitats) [6–8]
and human well-being (e.g., poor health condition, social conflicts, insecurity) [9–11]. Such
positive and negative risks often exceed the perimeter of the mine site and may affect the
whole territory where a mine is located. Furthermore, when opportunities are outweighed,
negative outcomes of mining rebound on mining operators through social conflicts [12–14],
sanctions and delays, leading to entrepreneurial risks and financial losses [15,16].

Since socio-economic development should not compromise socio-environmental in-
tegrity, the concept of sustainability was introduced in the mining sector through the adop-
tion of practices “that result in environmental and social improvements over traditional
resource development methods” [3,17] (p. 284.). Today, traditional mining performances
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related to the internal operational sphere of the mine (e.g., financial viability, workforce re-
quirements, extraction efficiency, resource supply) are completed with socio-ecological stan-
dards largely discussed by the scientific community [18–23]. Such standards are promoted
by international initiatives, such as the Global Report Initiative [24], and recognized by
international and national policies [25] to meet Sustainable Development Goals (SDGs) [26]
and environmental, social and governance (ESG) performances [27,28] (Figure 1).
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Figure 1. Conceptual diagram presenting the interactions between the anthroposphere and the
geo-biosphere. Natural capital provides services to the anthroposphere while driving actions to
manage natural resources from their destruction, exploitation, utilization or conservation. Sustainable
performances imply that interactions between socio-ecological components satisfy specific standards,
such as the SDGs.

Therefore, mining projects are a matter of land-planning rather than simple standalone
industrial objects. The role of mining within land management relies on multiple factors,
such as land-use, which means questioning which purposes and needs a territory is in-
tended to be managed for and what potential threats and opportunities are associated
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with such uses. Figure 1 conceptualizes the mutual links between a mine and the territory
where it is located. In socio-geo-ecological systems, the functioning of the geo-ecological
sphere might satisfy the needs of human societies (e.g., drinking water, recreational ac-
tivities, air quality regulation), which are translated into different strategies of resource
management and land-planning. Depending on how these strategies adhere to recognized
international (e.g., SDGs) or local standards, they might positively and/or negatively
affect geo-ecological functioning and, hence, the corresponding human needs through
feedback loops. As type of land use, mining uses natural and geo-resources to provide
services to the anthroposphere. At the same time., mining affects the supply of ecosystem
services—defined as the benefits that people obtain from ecosystems [29]—and the satis-
faction of the corresponding human needs [7,30]. As a matter of land-planning, mining is
also a (geo)political issue, tied to governance factors and global market trends. This implies
the questioning of which development models and future scenarios decision makers and
stakeholders choose for a given territory.

Such considerations are particularly true for sparsely populated regions [31] such as
French Guiana (FG), an overseas European and French territory located in South America
between northern Brazil and Suriname (Figure 2). FG faces increasing pressures from an-
thropic activities due to global changes (e.g., demographic growth, land-use changes) [32]
and to its high socio-ecological vulnerability. FG is considered as an important biodi-
versity wilderness area [33] and a global challenge to conservation and territory man-
agement [34,35]. Human settlement is particularly clustered along coastal lowlands and
along the Oyapock and Maroni rivers (Figure 2), while more than 96% of the region is
covered by tropical rainforest [36]. Future development strategies of FG may imply the
conversion of forestlands into urban, agricultural, industrial and mining areas, encouraging
decision makers to combine territorial development with the preservation of ecosystem
services supply [37]. For such purposes, scenarios have been proposed by researchers, for
instance, through the GIS-based software GuyaSim, to analyze the impacts of potential
anthropogenic drivers (e.g., urban, agricultural, industrial) on forest-related ecosystem
services through climate change and socio-economic scenarios [38]. However, mining
activities in FG are often not considered by such approaches or, in other cases, are ana-
lyzed through secondary or coarse data not fully accounting for the variability of such
activities [32]. Indeed, gold is the main mineral commodity exploited in FG, and its ex-
traction plays a key role in the historical and current socio-environmental and governance
dynamics of the territory [39]. In addition, due to the heterogeneity of gold deposits, a
wide variety of coexisting gold mines of different sizes and techniques (e.g., legal, illegal,
artisanal, medium, large-scale) is distributed at the territory level, particularly over the
two greenstone belts where gold mineralization mainly occurs [35,40] (Figure 2). By the
end of 2021, approximatively 89 mining permits, including exploration and exploitation,
targeted FG gold commodities [41]. French local authorities declared that gold mining can
be a major driver for the development of FG and that mining planning is a key issue for FG
management [42]. Major concerns and debates focus on potential large-scale mines, such as
the Camp Caiman and the Montagne d’Or projects—suspended by the French government,
respectively, in 2008 and 2018—and on two newly proposed large-scale gold mines [43], cur-
rently under the monitoring of authorities and civil society. Scenario-based approaches to
support territorial management of FG were developed by European programs, researchers
and local authorities, for instance, through the GIS-based software GuyaSim [38] or the
ECOSEO and MOVE projects [32]. However, gold mining impacts on territorial dynamics
are often underrepresented in such approaches, and no distinctions are made between legal
and illegal, or artisanal and medium and large-scale gold mines.



Sustainability 2022, 14, 10476 4 of 25Sustainability 2022, 14, 10476 4 of 26 
 

 

 

Figure 2. Location and main features of French Guiana. The map gives an overview of the main land 

uses, a part of the hydrographic network and protected areas. 

1.2. A Brief State of the Art of Risk and Impact Assessment Methods in the Mining Sector 

A wide range of tools and methods designed for general industrial risk assessment 

[44] are currently applied to the mining sector [1,45–49]. Nevertheless, such tools are de-

signed to use at the mine-scale, often on one project at the time, and disregard some spec-

ificities of mining. Indeed, current mandatory risk and impact assessment methods are 

often project-centered [50]. They focus only on the objectives at the project level, neglect-

ing the occurrence of multiple coexisting mining projects of different types in a given area 

and the cumulative risks generated [50,51]. Such methods are not resistant to data availa-

bility [47]. These methods are often performed on large capital stock investment projects 

and sometimes do not account for the transversal nature of risks (e.g., social, environmen-

tal, geotechnical). Part of the scientific community has highlighted the limits and poor 

implementation of widely recognized tools, such as the Environmental Impact Assess-

ment [52,53], which seems to lack homogeneous methodologies of application and has not 

been “fully integrated into determinative institutional patterns of decision-making” [54]. 

However, the introduction of sustainable development into mining has encouraged exist-

ing studies to focus on the integration of climate change and sustainability challenges 

within risk assessment methods in the mining sector. Some authors have proposed fuzzy 

logic to assess mining risks and performances to meet sustainable goals [55,56]. In other 

cases, fuzzy logic was used to assess mining risks of different natures (e.g., financial, so-

cial, health and safety, environmental) throughout the whole mineral supply chain [57]. 

Indeed, other authors have suggested the improvement of life-cycle assessment (LCA) 

thinking among mining professionals [58]. Few studies have also focused on the develop-

ment of LCA at the territory level [59]. Nevertheless, despite their advantages, LCA stud-

ies may have neglected the technical variability and the specific features of mining, relying 

on inadequate datasets [60,61]. Since information related to mining is often limited to cor-

porate reports, the mining system is often considered a “black box” not fully integrated in 

the assessment [58]. Some specific methods assess risks of multiple projects at the same 

time [62] for project portfolio risk management [63,64]. However, such methods focus on 

the industrial dimension of the project. Risks are identified and assessed based on the 

internal objectives of the project, focusing on project customers [62] rather than territory 

stakeholders (e.g., local communities, public administration). To the best of our 

Figure 2. Location and main features of French Guiana. The map gives an overview of the main land
uses, a part of the hydrographic network and protected areas.

1.2. A Brief State of the Art of Risk and Impact Assessment Methods in the Mining Sector

A wide range of tools and methods designed for general industrial risk assessment [44]
are currently applied to the mining sector [1,45–49]. Nevertheless, such tools are designed
to use at the mine-scale, often on one project at the time, and disregard some specificities
of mining. Indeed, current mandatory risk and impact assessment methods are often
project-centered [50]. They focus only on the objectives at the project level, neglecting the
occurrence of multiple coexisting mining projects of different types in a given area and
the cumulative risks generated [50,51]. Such methods are not resistant to data availabil-
ity [47]. These methods are often performed on large capital stock investment projects
and sometimes do not account for the transversal nature of risks (e.g., social, environmen-
tal, geotechnical). Part of the scientific community has highlighted the limits and poor
implementation of widely recognized tools, such as the Environmental Impact Assess-
ment [52,53], which seems to lack homogeneous methodologies of application and has not
been “fully integrated into determinative institutional patterns of decision-making” [54].
However, the introduction of sustainable development into mining has encouraged existing
studies to focus on the integration of climate change and sustainability challenges within
risk assessment methods in the mining sector. Some authors have proposed fuzzy logic
to assess mining risks and performances to meet sustainable goals [55,56]. In other cases,
fuzzy logic was used to assess mining risks of different natures (e.g., financial, social, health
and safety, environmental) throughout the whole mineral supply chain [57]. Indeed, other
authors have suggested the improvement of life-cycle assessment (LCA) thinking among
mining professionals [58]. Few studies have also focused on the development of LCA at
the territory level [59]. Nevertheless, despite their advantages, LCA studies may have
neglected the technical variability and the specific features of mining, relying on inadequate
datasets [60,61]. Since information related to mining is often limited to corporate reports,
the mining system is often considered a “black box” not fully integrated in the assess-
ment [58]. Some specific methods assess risks of multiple projects at the same time [62] for
project portfolio risk management [63,64]. However, such methods focus on the industrial
dimension of the project. Risks are identified and assessed based on the internal objectives
of the project, focusing on project customers [62] rather than territory stakeholders (e.g.,



Sustainability 2022, 14, 10476 5 of 25

local communities, public administration). To the best of our knowledge, the application of
such methods to the mining sector has not been described in the scientific literature.

Finally, SWOT analysis (i.e., Strengths, Weaknesses, Opportunities and Threats) has
been widely applied to the mining sector [65,66], allowing project managers to develop
business goals while understanding the viability of a project. Although SWOT analyses are
an effective preliminary tool to summarize information, they do not prioritize issues or pro-
vide solutions or alternative decisions and cannot fully assess the strategic decision-making
process [67]. For such reasons, SWOT analyses are often combined with other tools to
support decision-making, such as the Analytical Network Process (ANP) or TOPSIS [68,69],
Analytical Hierarchical Process (AHP) or MARCOS (Measurement of Alternatives and
Ranking According to Compromise) [67,69]. As shown by the authors of [69], the combina-
tion of SWOT with such tools allows more quantitative and prospecting studies, enabling
the comparison of sustainable planning strategies in the mining sector.

1.3. Objectives of the Study

Whether one or more mines should be developed on a territory is a political matter.
Through the case study of gold mining in FG, we suggest a new way to look at this
question through the development of a risk-based approach to compare multiple potential
territorial mining scenarios to support decision-making for sustainable land-planning. A
methodological framework (Figure 3) was developed, and its feasibility was tested the first
time on the case of gold mining in French Guiana to: (i) provide a terminological structure
based on international guidelines [70] at wider spatial extents, (ii) operationalize and test
within a scenario-based approach the typology developed by the authors of [40] to consider
the potential coexistence of various types of gold mines in the same territory, (iii) integrate
the socio-ecological vulnerability of the territory where mining is performed, (iv) consider
both positive and negative risks (e.g., technical, environmental, financial, social), (v) adapt
to available data and (vi) involve stakeholders’ participation and risk perception.

2. Methodological Framework and Initial Data
2.1. Methodological Framework

Figure 3 shows the methodological framework developed to operationalize the ap-
proach proposed in this study through different main steps.

Once the main initial data were gathered through literature review, interviews and
field surveys, the boundaries of the study were defined through the characterization of
a “territory system,” i.e., the socio-ecological system where mining is performed, and a
“mining system,” which considers the different natures of mining projects in a given terri-
tory. This preliminary step allows the development of Territorial Mining Scenarios (TMSs).
Each TMS represents a territorial strategy designed to meet specific predefined territorial
objectives according to stakeholders (e.g., increase in employment or royalties related to
mining, increase in mining production, reduction of land consumption or deforestation).

Risks were then identified, and two different risk scenarios were developed. A risk
scenario under ordinary conditions (RSo) addressed a wide range of events related to the
“normal” functioning conditions reasonably expected for a mine to fulfil its production
goals. Such risks might have less important negative consequences but a higher probability
of occurrence. The second risk scenario was an accidental one (RSa), which focused on the
accidental events that may happen in a mine. These events have a lower probability of
occurrence, but their negative consequences can be considerably higher for both the mine
and for the territory.

Finally, the risk scenarios were assessed, combining the estimation of the probability
of occurrence of a given risk event, as well as the assessment of the impacted areas and of
the socio-ecological vulnerability of the studied territory. During this step, stakeholders’
perception were introduced through risk weighting coefficients. The risk scores were finally
normalized and aggregated to compare each TMS.
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assessment of mining project types and their characteristics, (ii) the development of Territorial Mining
Scenarios according to predefined territorial objectives and (iii) the risk-based comparison of the
proposed TMSs.
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2.2. Initial Data Used

Data concerning mining risks and the associated stakeholders’ perceptions, mining
project types and socio-ecological features of French Guiana were collected between the
beginning of 2018 and 2020 through a bibliographic review, multiple field surveys, min-
ing site visits and free interviews with local stakeholders. The involved stakeholders
were members of public administration, mining operators and civil society). Collected
data were semantic and/or spatialized, and their detailed descriptions are available in
Supplementary Material File S1. Further data were gathered through the participation to
the public debate for the Montagne d’Or project in April 2018 and used for risk identifi-
cation. A significant amount of spatialized data was gathered from local authorities and
mining operators to assess risks and the vulnerability of the area of interest. Data were
used to identify characterize gold mining systems and the socio-ecological vulnerability of
the study area, as well as to assess and weight mining risks.

3. Risk-Based Comparison of Territorial Gold Mining Scenarios in French Guiana
3.1. “Risk” Definition

To apply the approach proposed in this study, a methodological framework was de-
veloped (Figure 3). Its application involves six main steps, starting with the preliminary
definition of a clear-cut vocabulary (Supplementary Material File S2). Hereafter, we refer to
“risk” as to the positive and/or negative “effects of uncertainties on the objectives” of a sys-
tem or a project [70]. Risk is a regime shift [71], a deviation from what is initially expected,
and it depends on its probability of occurrence and the intensity of its consequences. The
scale of the assessment depends on the scale at which such “objectives” are predefined.
In the present study, the concept of risk is strictly related to the performances of both the
mining project and the territory where it is located, since the nature and types of risks
depend on whether and how the mine(s) contributes to the territorial objectives or may
have an impact on them.

3.2. System Definition: The Territorial Mining Scenarios (TMSs)
3.2.1. The Territory System at the Watershed Level

Located just above the equator and covered by tropical rainforest, FG presents a
high hydrographic density, making water management plans a priority in land planning.
Therefore, this study focused on the watershed level, more precisely, at the scale of Mana
River Basin (Figure 4a), which is sufficiently representative of the socio-ecological features
of the whole territory. The Mana River Basin covers a surface of approximately 12,000 km2

with six main urban clusters. Its basin intersects the municipalities of Saint-Laurent du
Maroni, Awala-Yalimapo, Mana and Saul. Among them, Mana and Saul are the only ones
almost entirely located within the study area. Mana, with 11,300 inhabitants, is the fourth
most important municipality in FG by surface (approximatively, 6300 km2), while Saul
(less than 200 inhabitants) is an important ecological hotspot located in the middle of FG
rainforest. Multiple areas of ecological importance (i.e., ZNIEFF), a RAMSAR zone, the
biological reserve of Portal and a part of the Guiana Amazonian Park (GAP) are located
in the area (Figure 4d). At the same time, one of the most important parts (more than
4000 km2) of the gold-enriched greenstone belt formation is located within the basin, which
also explains the presence of more than 2000 illegal gold miners.

This territorial unit was characterized through the collection and production of multi-
ple spatial data concerning its socio-ecological features (e.g., DEM, rainfall data, land-use,
cadastral plans, water catchment points, population density, mining permits) (Figure 4b–d).
These data were used to assess the socio-ecological vulnerability of the area through rule-
and expert-based methods.
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Figure 4. Location of the study area at the Mana River Basin scale (a). This specific basin was selected
with the participation of local stakeholders and was described by its biophysical (e.g., geology, relief,
hydrology (b,c)) and human (d) dimensions, in terms of land use (legal and illegal) and protection of
natural heritage.

3.2.2. The Mine System: A “Mine-Type” Approach

Since a wide range of gold mining projects coexists in FG, the mining system is
characterized through the utilization of gold “mine-types,” developed based on a multi-
criteria classification already proposed by the authors of [40,72]. Four main categories of
gold mines have been distinguished: (i) illegal artisanal and small-scale mining, which
can involve the exploitation of both primary (hereafter called i-ASMp) or secondary (i-
ASMs) gold deposits; (ii) legal artisanal and small-scale mining (ASM); (iii) legal medium-
scale mining, in which gold can be recovered through gravimetry (MSMg) or cyanidation
(MSMc); (iv) legal large-scale mining (LSM). The peculiar features of such types were
detailed by the authors of [40].

3.2.3. Development of the TMSs

The characterization of both the territory and mine systems was performed to develop
Territorial Mining Scenarios (TMS). As mentioned, TMSs represent territorial strategies
designed to meet specific predefined territorial objectives defined among stakeholders.
The TMSs were composed of a set of one or multiple mining projects in different numbers
and/or types (i.e., the mine system), distributed across the area (i.e., the territory system,
such as the Mana River Basin). The territory was characterized by its socio-ecological
vulnerability according to existing available data, while FG gold mining activities were
defined by their technical and operational specificities. For each gold mine type (presented
in Section 3.2.2), a set of characteristics was defined (Table 1), derived from the list of
specificities presented in the Supplementary Materials of [40].
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Table 1. Main features considered in this study per each gold mine type, derived from the
Supplementary Materials of [40].

Considered Characteristics Gold Mining Project Types [40]

Features Unit i-ASMp i-ASMs ASM MSMg MSMc LSM

Annual gold production kg Au 6.6 a 150 300 800 5
Direct jobs n 10 a 15 75 200 500

Soil footprint ha 20 a 100 300 300 550
TSF b height m n/a n/a 4 15 20 54

TSF storage capacity Mm3 n/a n/a 0.5 1.5 2 100
Total royalties c € 0 0 125,611.5 251,223 669,928 4,187,050

a Due to the inexistence of more specific data, some information are assessed by [40] for both the whole illegal
gold mining sector, without distinction between primary and secondary mining. b Tailings Storage Facility. c

Royalties were calculated based on the amount of annually produced gold per project. They represent the sum of
municipal (EUR 1379 /kg Au), departmental (EUR 27,5 /kg Au) and regional (EUR 67,201 /kg Au) taxes [73].

In this study, a demonstrative example was presented by considering only one objec-
tive: a total gold production of approximately 5000 kg per year at the scale of the Mana
watershed (Table 2), defined based on FG average production. Five TMSs were proposed,
each being a combination of various gold mines of each type, with overall gold produc-
tion meeting the mentioned objective (Table 2). For instance, 5000 kg Au/year can be
produced alternatively by 1 LSM (TMS-A), 6 MSMc (TMS-B), 33 ASM (TMS-C) or, finally,
in a mixed scenario, 20 ASM, 4 MSMg and 1 MSMc (TMS-D). An “illegal scenario” was
designed as well, in which legal gold mining was assumed to be entirely absent. In this
case, the achievement of the objective implies the presence of 758 i-ASM (TMS-illegal).
These TMSs were compared based on the final scores of their respective accidental and
ordinary risk scenarios.

Table 2. The territorial objective considered as example for the current study (on the left column) and
the corresponding TMSs developed.

Territorial Objective Required Number of Each Project Type for Each Territorial Mining Scenario (TMS)

Annual Gold Production
(kg/Year) Scenario Code i-ASMp i-ASMs ASM MSMg MSMc LSM

5000 → TMS-A 0 0 0 0 0 1
5000 TMS-B 0 0 0 0 6 0
5000 TMS-C 0 0 33 0 0 0
5000 TMS-D 0 0 20 4 1 0

5000 TMS-illegal 758 0 0 0 0

The geographical expression of the TMSs implies that each mine in each TMS is
spatially distributed through a GIS-based location, coupling geological (i.e., gold deposit
map), juridical (i.e., authorized and forbidden areas for mining) and geotechnical suitability
(i.e., slope inferior to 15%). Mine siting is fictional, which means that it is arbitrary and
does not reflect the location of real mines. Fictional siting aims to highlight the prospective
nature of the proposed approach, which proposes, ex ante, potential strategies for mining
planning. The results of the localization of the gold mines for each TMS are presented
in Figure 5.
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3.3. Risk Identification and Development of the Risk Scenarios

The TMSs were compared based on the assessment of risk scenarios associated with
different operating conditions of the mine. The risk scenarios were developed after a
thorough process where risks were identified for each gold mine-type based on various
sources (e.g., bibliographic review, stakeholders’ interviews, participation to public debates,
mine field visits). The identified risks were grouped in two databases: a first database,
related to the worldwide historical accidents in the mining sector. and a second database,
specifically related to gold mining in FG and synthetized by the authors of [40].

For each TMS, two risk scenarios were considered (Table 3). A risk scenario under
ordinary conditions (RSo) addressed a wide range of events related to the “normal” func-
tioning conditions of a mine. In this study, we considered both positive and negative risks,
such as gold supply, direct jobs opportunities, the expansion of social infrastructures, the
support to local education, research and skill development and landscape degradation.
The second risk scenario was an accidental one (RSa). The main central event chosen in
this paper for the RSa was a tailings dam failure, one of the major concerns related to
mining [74]. It is among the most reported accidents that has historically occurred in the
mining sector, and it can have a wide range of consequences (e.g., social-, environmental-,
health-related) [74–78]. Overtopping is the chosen failure mechanism, as it is one of the
most common triggering events increasingly reported [79]. We considered approximatively
one dozen negative consequences generated by the dam failure, such as the flood impact
on local population, health risks, destruction of public infrastructures and water and soil
degradation (Table 3).
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Table 3. Main positive and/or negative consequences selected within each type of risk scenario,
which can be ordinary (RSo) or accidental (RSa), and the indicator used for their assessment.

Risk
Scenario

Type of Con-
sequences

Consequences at the
Territorial Scale Consequence Indicator

RSo Positive

Raw material supply Annual gold production
(kg/yr)

Direct jobs opportunities
Number of miners or Total
direct jobs/Annual gold
production ratio

Expansion of social
infrastructures (e.g., roads,
energy, services)

Total royalties (k€)

Support of local education,
research and skill development Total royalties (k€)

Negative Landscape degradation
and deforestation

Topographic footprint of the
mine site (ha)

RSa Negative

Destruction of the dam Dam cost
Direct death and injuries
of workforce

Maximal n◦ of workers at
mine site

Destruction of mining
infrastructures Total CAPEX

Direct impact on
local population

Population density per
land-use type

Degradation of public
infrastructures
(buildings, roads)

N◦ and type of buildings
and roads

Reduction of surface water
ecosystem services

Expert-based ecological and
chemical status of
surface water

Run-off and soil degradation Soil permeability
Reduction of public drinking
water provisioning service

N◦ of people dependent from
the public water points

Reduction of drinking water
provisioning service (other
than public)

Number of households
without available public
drinking water [80]

Reduction of
biodiversity-related
ecosystem services

Biodiversity potential [81]

Reduction of forest-related
ecosystem services (wood
production)

Wood quality [81]

Reduction of esthetic
ecosystem services (landscape
degradation)

Landscape quality [81]

Reduction of crop
production service Soil agronomic potential

Health Impacts Typhoid vulnerability [80,82]

Social struggle
Avg. worker salary (= potential
loss of incomes for local
families)

Social opposition N◦ of participants in
opposition groups

Public sanctions Maximal sanctions stated
by law

Financial loss for the operator n/a

3.4. Risk Assessment and Final TMS Scoring

The quantification of the level of risk in the RSa and RSo aims to obtain final risk
scores that will be combined for each TMS. Successively, The assessment process (Figure 6)
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involves: (i) the estimation of the probability of occurrence of the risk events; (ii) the identifi-
cation of the total areas affected by the event in each TMS, according to the specific features
of each corresponding mine-type; (iii) the assessment of socio-ecological vulnerability of
the territory system through consequence-indicators (see Supplementary Material File S2)
provided in Table 3; (iv) the combination of all these elements to obtain risk maps and risk
scores. The RSa and RSo risk scores were then combined to obtain a final global score for
each TMS, expressed on a range from 1 (high negative risk strategy) to 5 (low negative risk
strategy). The following sub-sections focus particularly on the RSa assessment.
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3.4.1. Probability Estimation

Probability assessment of tailings dam failures can be performed through multiple
tools and methods requiring important amounts of data and processing time [78]. Because
it was not the main focus of this study, the probability estimation was based on a simple
four-class scale where 0.25 indicates “moderate probability of failure,” 0.5 indicates “even
chance,” 0.75 indicates “expected failure” and 1 indicates “certain failure.” In this study,
probability was assumed only according to the size of each gold mine type: the larger the
gold mine type in size, productivity and financial resources, the better the safety measures
potentially implemented to prevent the failure. In the RSo, the occurrence was assumed to
be always equal to 1, which means that the event is unavoidable (Table 4).

Table 4. Probability scores estimated in this study for the two types of risk scenarios considered. The
probability was scored on a range between 0 and 1, where 0 indicates a very low probability and
1 indicates certainty of the event to occur.

Probability Scores

RS Assumptions i-ASM ASM MSMg MSMc LSM

RSo Certain occurrence of all
the events 1 1 1 1 1

RSa
Overall higher probability of
occurrence of the event
(worst scenario)

1 0.75 0.5 0.5 0.5
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3.4.2. Identification of the Impacted Area(s)

The methods to assess and map tailings dam failure-induced flooded areas are widely
diversified [83,84]. The total areas affected by a tailings dam failure in each TMS were here
identified according to the combination of two simple methods. The first method [79,85]
estimates the maximal extent of a mining dam failure-induced flood using only terrain
data, the height of the mining dam and the capacity of the storing pond. The method
uses an algorithm updated from the empirical equations proposed by the authors of [76],
based on historical dam failure accident data. To our knowledge, it is the only method
specifically developed for tailings dam failures found in the literature to date and which
allows for the estimation of flooded areas for multiple coexistent mines at broad spatial
extents. Because of its coarse outputs, this method was combined with a second method
based on existing GIS-based modules (e.g., Maximum Flow Path Length from SAGA GIS)
that aims at identifying direction and flow accumulation areas of the flood according to
terrain data (Figure 7). A score between 1 and 5 was attributed to each TMS according to
the surface of the affected areas (Table 5).
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The highly impacted areas were attributed to the large-scale mining scenario (TMS-
A) followed by the illegal and the medium-scale scenarios (Table 5). Nevertheless, such
surfaces should be weighted with the probability at which the area is actually impacted,
which may be less important for the TMSs A and B. In any case, further assessments should
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be performed with specific models to precisely estimate the potential flooded area and its
probability of occurrence.

Table 5. On the left columns, the thresholds used to score each TMS according to the impacted surface
in the case of the considered accidental risk scenario (i.e., tailings dam failure). The right columns
represent the application of such thresholds to the TMSs in the study.

Classification Thresholds
Scenarios

Flooded Area
(km2) ClassClass Flooded Area Range

(km2)
1 <1.00 TMS-A 227.76 5
2 1.00–5.00 TMS-B 32.89 3
3 5.01–50.00 TMS-C 4.35 2
4 50.01–100.00 TMS-D 22.71 3
5 >100.00 TMS-illegal 35.76 3

3.4.3. Socio-Ecological Vulnerability Assessment

Socio-ecological vulnerability is given by the intrinsic properties of the socio-ecological
system that create its susceptibility to be positively or negatively affected by uncertain
events. The vulnerability of the Mana River Basin was assessed through consequence
indicators, which were selected through a bibliographic review and are presented in
Table 3. Some of the indicators listed in Table 3 may be expressed in terms of the ecosystem
services supply, particularly concerning provisioning (e.g., drinking water supply, crop
and wood production), regulating (e.g., run-off and erosion, water quality) and cultural
(e.g., landscape degradation) services. Each consequence indicator was assessed according
to existing methods or, whenever necessary, according to methods specifically designed
upon available data for the studied area. For instance, the vulnerability of the watershed
in terms of drinking water provisioning (other than public) was assessed reclassifying the
scores given by a report from the Regional Health Agency [82]. For each consequence, a
range of thresholds and vulnerability scores from 1 to 5 was defined (Figure 7).

In some cases, expert-based frameworks were specifically developed to quantita-
tively or qualitatively assess the selected consequences depending on both semantic and
spatially explicit available data. For instance, population vulnerability was estimated
based on reclassified land-use types and population density (Supplementary Material
File S3). Soil fertility and erodibility were assessed based on simplified soil maps at the
1,000,000 scale [86] and semantic field-data related to FG soils available in various re-
ports [87,88] and [Supplementary Material File S3]. The final scores obtained were then
rescaled and converted to a range from 1 (low vulnerability, and thus, lower potential
negative consequences) to 5 (higher vulnerability and thus, higher potential negative
consequences) (Figure 7).

3.4.4. Risk Weighting according to Stakeholders’ Perception

The integration of stakeholders within the assessment of the TMSs might provide
insights into further experience, local knowledge and model acceptance [89]. For such rea-
sons, weighting coefficients based on stakeholders’ risk perception were integrated within
the assessment before the final global score. A semi-structured questionnaire composed of
13 questions was developed and distributed in early 2020 among local stakeholders (i.e.,
mining operators, public administrators, civil society). Of the 39 questionnaires returned
at this stage, only 34 were completed and acceptable to calculate the weighting scores.
Although the number of answers is statistically irrelevant, we decided to integrate this step
into the study to present the full application of the proposed approach.

Respondents noted their perceived relevance of various socio-ecological assets potentially
positively and negatively impacted by gold mining (e.g., drinking water, public infrastructures,
population safety and health, biodiversity) on a scale between 0 and 4. The results were
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provided under the form of scores, rescaled between 0 and 1 (Supplementary Material File S4)
according to Equation (1).

W =
v−min

max−min
(1)

where W is the normalized weighting coefficient between 0 and 1, v is the actual score
given by each respondent on a scale from 0 to 4 in the original survey, min is the minimum
value of the non-normalized score (i.e., in this case, 0), and max is the maximal value of
the non-normalized score (i.e., in this case, 4). The socio-ecological vulnerability map was
hence the result of the assessments performed in Section 3.4.4 and the application of the
weighting coefficients here developed.

3.4.5. Estimation of Risk Scores and Final TMS Global Scores

Figure 8 highlights the main data aggregation steps and methods used to obtain (1)
the scores of each risk scenario and (2) the TMS global scores. The scores were combined
mainly using the geometric mean, which is often preferred when synthesizing judgment
for decision-making purposes [90].
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The last step of the framework involved the combination of the two risk scenario
scores to obtain the final global TMS score. The TMS scores were assessed on a range from
1 to 5, where the higher the score, the lesser the final negative risk level of the TMS. As
shown in Table 6, TMS-B and TMS A presented the higher scores, followed by TMSsC, D
and finally, the illegal scenario, with the worst global risk score.
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Table 6. Final scores of each TMS according to their risk scenarios scores. The columns on the left
describe the TMS according to the number and types of projects considered in each scenario.

Number of Each Project Type for Each Territorial Mining Scenario (TMS) Risk Scenario Scores (1 to 5) TMS

TMS Code I-ASM ASM MSMg MSMc LSM RSo RSa Final Scores
(1 to 5) a

A 0 0 0 0 1 2.2 3.8 2.9
B 0 0 0 6 0 1.8 4.5 2.9
C 0 33 0 0 0 1.7 4.4 2.7
D 0 20 4 1 0 1.8 4.1 2.7
Illegal 758 0 0 0 0 1 3.8 1.9

a Final scoring is based on a 1 to 5 range where 1 is the least convenient TMS and 5 is the optimal TMS.

4. Discussion and Operational Implications
4.1. The Application of Standardized “Mine-Types” within Territorial Scenarios

The proposed approach represents a prospective analysis that, through creating a
scenario, focuses on the diagnostic phase prior to decision-making in land planning. The
development of the Territorial Mining Scenarios (TMSs), and their risk-based comparison
confirm and strengthen its prospective dimension. Indeed, creating a scenario aims to rep-
resent future strategies through the proposition of a range of potential land-use choices [91].
The scenario-based approach proposed by this study implies alternative options resulting
from the combination of both technical operational characteristics related to the mining
sphere, testing the classification proposed by the authors of [40]. In addition, the proposed
approach tests the features of the socio-ecological systems where mining is performed, as
shown in Figure 7. Concerning the first alternative options, the use of mine-types was
proven to be a key tool in creating a scenario. The mine-type classification is therefore
a prior baseline step to apprehend and detail the “mining system” and its technical and
operational features. Despite the classification focuses on the features of each mine-type, the
assessment itself is performed through a systemic sector-based approach, which overcomes
the consideration of the mine—within land planning—as a standalone object, consider-
ing its vertical variability, unlike common land-use approaches. For instance, a similar
approach was proposed by the authors of [92], who assessed the level of different risk
scenarios applied to various existing gold mine sites in Ecuador. However, the use of
“mine-types” would integrate a higher level of technical and operational detail and, at
the same time, support prospective assessments over broader spatial extents involving
multiple strategies for both interventions from a land planning and industrial management
perspectives. Finally, the development of mine-types should give also peculiar attention to
the technical and organizational measures implemented by mining operators to improve
project performances, limiting risk events from occurring (i.e., proactive safety measures)
and/or reducing their consequences once they occur (i.e., reactive safety measures) [93].
For instance, technical and organizational measures in tailings dam management can
be proactive (e.g., overflow devices and spillway systems, dry disposal of the tailings,
vegetation covers, freeboard control; monitoring and visual inspections, crisis simulation
trainings) and reactive (e.g., emergency water ponds, alarm systems, containment barriers;
insurances and evacuation measures). For the risk assessment to be reliable, the capability
of each mining project to implement safety and remediation measures must be identified
and quantitively accounted for. These measures are only quantitatively accounted during
probability estimation based on expert-based scores. However, they may completely alter
the final scores of each TMS. Approaches such as the Bow-Tie analysis [94] could facilitate
their integration in the assessment when designing the risk scenarios for each TMS.

Finally, feedback loops should be more pertinently accounted for in order to consider
the risks affecting the mining operators themselves. This would be an interesting driver
to help project managers to enhance socio-ecological performances and, finally, to avoid
social and business costs for the enterprise.
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4.2. Data Availability: A Specific Focus on Illegal Gold Mining

The main challenge of creating a scenario is data availability. Data availability and
uncertainty represent basic but fundamental issues, especially in data-limited environments
and sparsely populated areas [31,95,96], and when the assessment process switches across
multiple spatial scales, implying the need of spatial precision requirements [97].

This is the case in FG, where the difficulty of access on the whole territory limits
available data or drives extrapolation processes that provide coarse data at the territory
level. For instance, dense soil surveys are often limited to the littoral area, which is the
easiest to access, while soil resources of the inner regions are predicted based on punctual
and coarser information. Socio-economic and anthropological data may also be harder to
obtain as they imply surveys among a wide range of populations, sometimes confined in
inner forest regions and with different values and social codes.

Concerning gold mining, particular attention should be given to illegal and informal
gold mining, which is regarded as a worldwide challenge [98] for mining and socio-
environmental regulatory frameworks [99]. Focusing on the analysis of illegal gold mining
related data, the authors of [96] suggested that the central problem in FG is the information
marginalization and the qualification of the data, which is never raw and is accentuated by
the difficulties in accessing to the field.

Indeed, the great variability, volatility and rapid changes of illegal gold mining in
terms of techniques and extraction methods, but also in terms of social structures and
productivity, could pose a significant challenge for the definition of mining policies [98,100].
Nevertheless, authors have suggested that sustainable performances could be applied
to this sector for the creation of better living conditions in communities facing social,
environmental and economic disruptions [100,101]. For instance, the authors of [102]
proposed a neat distinction between illegal “invasive” mining from “community-based”
informal mining, with considerable diverse implications from a regulatory point of view.

Annual production rates of illegal gold mining vary significantly from one country
to another and from site to site [98]. Furthermore, the very notion of mine site cannot be
applied to such activities, and it is difficult to determine where a mine site ends and another
begins. Therefore, the application of “mine-types,” developed by the authors of [40] and
applied here, should be reviewed and/or adapted to such peculiar activities. The first
step would be the collection of the main characteristics of these operations and extensive
field surveys, for instance, through related works focusing on the neighboring illegal gold
mining system in the Amazon [103–105].

4.3. Temporal Variability of the TMSs

The temporal dynamics related both to the mining and territory systems have a sig-
nificant influence on risk level and on the current choice and adaptability of pertinent
land-planning strategies in the long term. Changes and variations in values and vulnerabil-
ity of both the mining and territory systems [106] should be accounted for through a double
temporal dimension. The first temporal dimension should be related to the mining system,
and it might concern mining phasing or the evolution of mining techniques and technolo-
gies [107,108]. Temporal variability related to mining phasing concerns the risks related to
prospecting, planning, operation and closure activities in order to support the management
of landscapes particularly affected by past mining activities, using, for instance, 2D or 3D
modeling techniques as suggested by the authors of [109]. Furthermore, the evolution
of mining activities in time implies, for instance, the development of new extraction or
recovery techniques that might impose the definition of new “mine-types” and updating
existing classifications [40]. For instance, artisanal and industrial underground gold mining
is currently gaining prominent interest among FG mining operators and local authorities,
who are analyzing the feasibility of such techniques in terms of financial viability and
socio-environmental risks. The second temporal dimension concerns the variability in time
of the characteristics of the territory in which mining is performed. Therefore, creating
a scenario should also involve alternatives where the socio-ecological parameters vary
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(e.g., demographic growth and urban intensification, land use changes, new environmental
protection measures, climate change effects), driving, for instance, changes in the ecosystem
services supply [8]. As mentioned, this is particularly important in FG where gold mining
techniques are evolving, the population is expected to double in the next decades [110] and
climate change impacts may exacerbate gold mining-related risks [111].

4.4. Stakeholder Involvement: From the Territorial Objectives to the Comparison of the Scenarios

The scenarization process here proposed depends on the prior definition of objectives
fixed at the territory level that should orientate future land-planning strategies to meet
sustainable development performances. Despite the consideration of only one objective
(gold production) in the feasibility test presented in this article, the territorial objectives
leading to the proposition of TMSs must be decided through the involvement of all stake-
holders to converge divergent narratives on how to develop a territory and the use of its
resources. This implies actions and processes which pertain to the sociopolitical sphere
rather than the scientific one but that play a pivotal role in the decision-making process,
(i.e., how, by and for whom the decision is taken). Several authors have focused on the
participative dimension in system modeling and decision-making [89,112–114], and an
optimal definition of territorial objectives could be possible through the implementation
of multiple collaborative tools with local stakeholders (e.g., discussion panels, round ta-
bles, surveys, workshops) or existing decision-making tools (e.g., Analytical Hierarchy
Process, ELECTRIII, TOPSIS) [65–69,115–117] and participative and automated GIS-based
processes [118,119]. For instance, stakeholders should also be involved in the selection and
ranking of risk indicators and weighting criteria. This would be a prior measure to tackle
the shortcomings within the mining sector to meet SDGs [120].

4.5. Geospatial Issues and the Transboundary Dimension of Risks

The spatial dimension of the TMS brings forth a series of challenges in risk assessment
processes, mainly concerning scale effects and uncertainty of input data and results, partic-
ularly when dealing with multiple scales [121,122]. Input data must have a spatial precision
that fits the chosen operational and jurisdictional level of action (i.e., the territory vs. the
mining project) in terms of scale and/or resolution (i.e., the “grain”) [122,123]. Furthermore,
risks do not submit to administrative boundaries, and their consequences or triggering
factors might go beyond the limits of a given territory. Because of its specific location and
features, FG is a highly permeable territory separated from Suriname and Brazil by the
Maroni and Oyapock rivers (Figure 2). Moreover, the socio-ecological processes of FG
may overcome administrative boundaries. For instance, the Maroni River Basin is split in
half between FG and Suriname (Figure 4a). Here, industrial gold mines, as well as illegal
mines, are closer to FG than to Surinamese villages, leading to a various range of exogenous
impacts (e.g., water pollution, silting) on FG communities [32]. New mining techniques
not currently allowed in FG, such as gold dredging, are sometimes performed outside of
FG [124,125]. This technique involves dredges that extract gold from sand, gravel and
dirt, representing a supplementary mine-type with specific risks. Finally, this geographic
permeability drives a widespread presence of illegal gold miners that move across Brazil,
FG and Suriname, inserting FG in transnational dynamics that cover the whole Amazonian
basin and the Guiana Shield [126]. Neglecting such dynamics would be regrettable for
governance perspectives, and limitations in transboundary risk management may have
important consequences on global and local sustainability strategies [127,128].

4.6. Sustainability and Georesources: Toward Cross-Disciplinary Frameworks to Support
Decision-Making

Geoscience is at the very foundation of sustainability, and it can enable economic
growth, human development and environmental protection [129]. Nevertheless, sustain-
able thinking within the mining sector could be further improved through the integration
of existing cross-disciplinary frameworks. This is especially urgent in the informal and
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illegal sectors, which are at the crossroad between subsistence and where sustainability
performances do not depend on “corporation requirements” [99]. Such frameworks should
consider both the diversity and functionality of geo-resources, as well as the different range
of needs they might fulfill and the socio-ecological vulnerability of their location. This is
particularly true for territories such as FG where: (i) conservation and protection interests
of natural forested areas face rapid and significant land use changes due to population
growth with the consequent development of related infrastructures and various activi-
ties transforming natural landscapes, and (ii) ecosystems support local economies and
livelihoods but also have global impacts. Therefore, mining activities should be integrated
within interdisciplinary approaches to analyze their footprint on the territory and guide
policy responses in terms of land planning [130,131]. As a part of territorial management,
mining is a transversal object.

5. Conclusions

Productivity goals related to immediate human needs such as the supply of raw ma-
terials and mineral commodities, significantly affect socio-environmental sustainability.
Nevertheless, the integration of sustainable development performances within the mining
sector led to the enhancement and discussion of the role of mining activities for the achieve-
ment of socio-environmental standards such as the SDGs. Because of its territorial footprint,
characterized by a wide range of positive and negative risks that exceed the mine site
itself, a mine represents a matter of land-planning. Based on such paradigm, the approach
proposed in this study was developed and tested on the case of gold mining in FG. The
proposed approach shows that mining activities can be integrated in a cross-disciplinary
scenario-based analysis at the territory level through the development of a “Territorial
Mining Scenario,” as alternative strategies to support sustainable governance of mining
regions. The very notion of a “mining project” and its characterization find its place within
a given socio-ecological system with specific features and vulnerabilities.

Although no decisions could be based upon this framework at this stage, the pro-
posed approach proved to be feasible, allowing a territorial analysis on mining and the
comparison of potential planning strategies. Multiple challenges still need to be accom-
plished. In addition, it is necessary to apply such approaches to other case studies—in
terms of commodities and territories—to assure better reliability, adaptability, and stake-
holder involvement and operationalization for decision-making support. Nevertheless,
this first study shows what can be performed when different aspects related to mining are
transversally tied altogether within a holistic approach where geosciences and human and
social sciences converge to support sustainable public policies and management strategies
of mining regions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su141710476/s1. Supplementary Materials File S1. Table S1. Main
Dataset used in this study. The table involve mostly the spatial data obtained during the research.
The detailed sources can be found in [84]. Supplementary Materials File S2. Table S2. List and
definitions of the terms involved in the proposed framework. The list of the references supporting
the definition are detailed in [84]. Supplementary Materials File S3: Simplified flowsheets of the
methodologies developed for the assessment of socio-ecological vulnerability at the Mana river
basin scale, based on the available data. Figure S3.1. Flowsheet of the methodology developed
for the assessment of population vulnerability based on land-use and demographic data. Figure
S3.2. Flowsheet of the methodology developed for the assessment of building vulnerability based
on builinds-related data concerning their concentration per polygon and their destination of use
(e.g., residential, monuments, public offices). Figure S3.3. Flowsheet of the methodology developed
for the assessment of soil ecosystem services vulnerability based on semantic and spatialized data.
Supplementary Materials File S4: Socio-ecological assets evaluated in the questionnaire survey and
the corresponding consequences associated. On the last two columns on the right, the weighting
coefficients derived from all the complete answers (Wgen), or from the respondents belonging to the
“civil society” (Wcs) and “public administration” (Wpa) categories.
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