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Abstract: A green method for depositing a CuO layer with good adhesion and a large surface area
on a support of activated alumina (Al2O3) was evaluated. The relatively simple method consists
of adsorption of a copper salt on the surface of Al2O3, formation of Cu(OH)2, and subsequent
decomposition of the hydroxide to CuO. The XRD confirmed that the deposited photocatalyst
crystalized at low temperatures (80 ◦C). Furthermore, BET measurements show a surface area of
about 90 m2/g. The large surface area is the result of the speed of the conversion and decomposition
reactions. The photokilling properties of the prepared photocatalyst were evaluated using E. coli cells
and the leaching of copper ions was determined using ICP-MS. The photocatalytic efficiency was
also evaluated by the degradation of an organic azo dye. The prepared photocatalyst shows good
activity in the purification and disinfection of treated water. The described method is economical,
fast, and can be considered green, since the only byproducts are water and NaCl.
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1. Introduction

Pretreatment and disinfection of drinking water is a necessary and common step to
avoid health problems and ensure good water quality. Usually, this is achieved by adding
chemicals, such as chlorine, to the treated water. However, this can result in an altered taste
and odor of the water and can also cause the formation of chlorinated organic substances [1–3].
Photocatalysis provides an alternative to current pretreatment methods that does not
require the addition of chemicals and is easy to implement [4–8].

Recently, much attention has been focused on the preparation of photocatalysts that
are active under visible light illumination, where sunlight can be used to activate the photo-
catalyst [9]. Most work has been done on modifying TiO2, the most common photocatalyst,
to shift its absorption spectrum into the visible light range [10–14]. However, an alternative
is the use of other materials which have the intrinsic ability to absorb visible light photons,
such as CuO, MnO2, etc. [15–17].

Copper oxide is a p-type semiconductor with a narrow band gap (1.2–1.4 eV) that
allows it to absorb most of the light in the visible spectrum (

 
 

 

 
Sustainability 2022, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sustainability 

Article 

Green Synthesis of Immobilized CuO Photocatalyst for  
Disinfection of Water 
Lev Matoh *, Boštjan Žener and Boštjan Genorio 

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113,  
1000 Ljubljana, Slovenia; bostjan.zener@fkkt.uni-lj.si (B.Ž.); bostjan.genorio@fkkt.uni-lj.si (B.G.) 
* Correspondence: lev.matoh@fkkt.uni-lj.si 

Abstract: A green method for depositing a CuO layer with good adhesion and a large surface area 
on a support of activated alumina (Al2O3) was evaluated. The relatively simple method consists of 
adsorption of a copper salt on the surface of Al2O3, formation of Cu(OH)2, and subsequent decom-
position of the hydroxide to CuO. The XRD confirmed that the deposited photocatalyst crystalized 
at low temperatures (80 °C). Furthermore, BET measurements show a surface area of about 90 m2/g. 
The large surface area is the result of the speed of the conversion and decomposition reactions. The 
photokilling properties of the prepared photocatalyst were evaluated using E. Coli cells and the 
leaching of copper ions was determined using ICP-MS. The photocatalytic efficiency was also eval-
uated by the degradation of an organic azo dye. The prepared photocatalyst shows good activity in 
the purification and disinfection of treated water. The described method is economical, fast, and can 
be considered green, since the only byproducts are water and NaCl. 

Keywords: CuO; disinfection; visible light photocatalyst; Al2O3 
 

1. Introduction 
Pretreatment and disinfection of drinking water is a necessary and common step to 

avoid health problems and ensure good water quality. Usually, this is achieved by adding 
chemicals, such as chlorine, to the treated water. However, this can result in an altered 
taste and odor of the water and can also cause the formation of chlorinated organic sub-
stances [1–3]. Photocatalysis provides an alternative to current pretreatment methods that 
does not require the addition of chemicals and is easy to implement [4–8]. 

Recently, much attention has been focused on the preparation of photocatalysts that 
are active under visible light illumination, where sunlight can be used to activate the pho-
tocatalyst [9]. Most work has been done on modifying TiO2, the most common photocata-
lyst, to shift its absorption spectrum into the visible light range [10–14]. However, an al-
ternative is the use of other materials which have the intrinsic ability to absorb visible 
light photons, such as CuO, MnO2, etc. [15–17]. 

Copper oxide is a p-type semiconductor with a narrow band gap (1.2–1.4 eV) that 
allows it to absorb most of the light in the visible spectrum (ʎ < 1000 nm) [18–20]. It is, 
therefore, a promising photocatalyst and has received much attention in recent years. Sev-
eral studies have shown that CuO has bactericidal properties when irradiated with visible 
light when the particles are suspended in a solution [21,22]. However, these properties 
deteriorate rapidly when CuO is immobilized on a support and its active surface area 
decreases. Since charge separation occurs primarily at the electrolyte–semiconductor 
junction, a large surface area can significantly enhance the photocatalytic activity of cop-
per oxide [18,19]. 

Various methods of forming CuO have been reported previously using a hot NaOH 
solution [23], which exhibits photocatalytic and antimicrobial activity, but the surface area 
is too small to fully realize its potential [24–26]. Other methods for preparing CuO, such 
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< 1000 nm) [18–20]. It
is, therefore, a promising photocatalyst and has received much attention in recent years.
Several studies have shown that CuO has bactericidal properties when irradiated with
visible light when the particles are suspended in a solution [21,22]. However, these prop-
erties deteriorate rapidly when CuO is immobilized on a support and its active surface
area decreases. Since charge separation occurs primarily at the electrolyte–semiconductor
junction, a large surface area can significantly enhance the photocatalytic activity of copper
oxide [18,19].

Various methods of forming CuO have been reported previously using a hot NaOH
solution [23], which exhibits photocatalytic and antimicrobial activity, but the surface area
is too small to fully realize its potential [24–26]. Other methods for preparing CuO, such as
sol-gel, usually require calcination at high temperatures, while the preparation of coating
solutions can be complex and time-consuming [18,27–32].
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In this paper, a simple and green method for the preparation of CuO on activated
alumina (Al2O3) using a hot water-based NaOH solution is explored by utilizing the
decomposition of Cu(OH)2 to CuO in a heated solution. The prepared samples were used
to study the bactericidal activity against the bacterium E. coli in the dark and under visible
light. The photocatalytic properties were also studied by the decomposition of an azo dye,
Plasmocorinth B.

2. Materials and Methods
2.1. Materials

The materials in this study were as follows: tripton plus (Fluka Analytical); yeast
extract (Fluka Analytical); microbiology agar-agar (Merck); LB agar miller (Novagen);
NaOH (Merck); CuCl2 (Aldrich); Al2O3, granular, 6-8 mesh (Aldrich); Plasmocorinth B,
60% (Sigma Aldrich, St. Louis, MO, USA). All the materials were used as received without
any further treatment or purification.

2.2. Synthesis

In a typical procedure, the highly porous activated alumina granules (6-8 mesh) were
immersed in a saturated CuCl2 solution for 5 min to allow the copper salt to adsorb onto
Al2O3. The granules were then wiped to remove excess solution from the surface and
immersed in a heated solution (80 ◦C) of 1 M NaOH for 3 min. In the final step, the granules
were thoroughly washed with deionized water to remove excess NaOH and residual copper
salts. They were then dried at 110 ◦C and then at 150 ◦C to remove adsorbed water from the
surface of CuO as well as the porous Al2O3 support, and finally stored in a dry container.

For XRD and BET measurements, CuO powder was prepared by adding 5 mL of
CuCl2 solution (0.05 g/mL) dropwise to 100 mL of 1 M NaOH heated to 80 ◦C. The powder
was then washed thoroughly with deionized water and dried in air at 110 ◦C.

2.3. Characterization

The surface morphology of the prepared samples before and after photocatalytic
testing were examined using field-emission scanning electron microscopy (FE-SEM, FEI
InspectTM F50 and Ultra Plus Zeiss) operated at 2 kV.

The XRD pattern of the powder was obtained using a PANalytical X’Pert PRO MPD
instrument in the 2θ range of 5–80◦ with a step size of 0.034◦. The average diameter of
crystallites was calculated using the Scherrer equation.

Here, X-ray photoelectron spectroscopy (XPS) measurements were performed using a
PHI VersaProbe III (Version AD) (PHI, Chanhassen, MI, USA) equipped with a hemispher-
ical analyzer and a monochromatic Al Kα X-ray source. Survey spectra were measured
using a pass energy of 224 eV and step of 0.8 eV, while Cu 2p core level spectra were
measured at a pass energy of 27 eV and step of 0.1 eV. The data were acquired using the
ESCApe 1.4 software. Fitting of the Cu 2p core level spectra was performed using the
CasaXPS 2.3.25 software.

Sync 200 surface area and pore analyzer from 3P Instruments was used to measure
the specific surface area (BET). Samples were pre-prepared using a degas procedure with
setpoint vacuum (50 mmHg), heated up to 120 ◦C and held at final conditions for one hour.
Samples were analyzed under a nitrogen atmosphere (adsorption desorption isotherms at
77 K) in a volumetric working device. Specific surface areas were calculated using six point
values for relative pressures between 0.05 and 0.3.

Then, ICP-MS (Agilent 7500ce ICP-MS) was used to determine the total concentration
of copper ions in the bacterial suspension before and after the photo-inactivation tests.

The photokilling activity of the prepared CuO was evaluated as follows. E. coli cells
(DH5α strain) were precultured in a 5 mL nutrient broth (LB) for 18 h at 36 ◦C. The nutrient
broth was removed by centrifuging and re-suspending the cells in a 0.9% NaCl solution and
diluting it so the final concentration was approximately 105 CFU/mL. The suspension was
then split into sealed 30 mL transparent plastic containers and one, three, or five granules



Sustainability 2022, 14, 10581 3 of 10

with CuO were added to test their effectiveness at inactivating the bacteria. The containers
were then stored in the dark or under visible light irradiation (70 W light bulb). After
being illuminated for a certain time, samples were aseptically collected, and an appropriate
dilution was incubated on an LB agar medium for 24 h at 36 ◦C to determine the number
of viable cells in terms of CFU.

The ability to degrade organic pollutants was evaluated by observing the degrada-
tion of Plasmocorinth B (dye concentration = 12 mg/L). The experimental setup was as
follows: 10 granules with deposited CuO were dropped into 100 mL of the dye solution
and illuminated with a 70 W light bulb. During the reaction the solution was bubbled
with oxygen (100 mL/min) to increase the reaction rate and promote the stirring of the
solution. Samples were taken every 30 min and the remaining dye concentration was
determined by measuring the absorption spectra of the dye in the 400–700 nm range using
a Carry 60 UV–Vis spectrophotometer and comparing the absorption values at 550 nm for
different samples.

3. Results and Discussion

High surface area CuO with good adhesion formed on the Al2O3 support in a two-step
solution-based process (Figure 1). In a typical procedure, the first step was the adsorption
of the CuCl2 salt on the surface of Al2O3 granules by submerging them in a saturated
solution of the copper salt for 5 min. The second step was the formation of Cu(OH)2 and
its decomposition to CuO by dropping the granules with the adsorbed copper salt into a
solution of 1 M NaOH, heated to 80 ◦C, for 3 min. This resulted in the granules turning
black, a clear indication that CuO has formed on the surface (Figure 2). The results show
that the speed of the reaction was a key factor in obtaining a catalyst with a high surface
area and prevented significant degradation of the support, which could slowly dissolve in
a high pH solution.
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The standard method of CuO formation would be to expose the granules with the
adsorbed copper salt to temperatures higher than 300 ◦C. However, the resulting layers
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obtained with this method are more compact and, therefore, have a much lower surface
area. It is also more energy consuming and requires the additional step of calcination.

Another advantage of our method is the ability to uniformly deposit CuO on spherical
particles of various sizes or uneven surfaces, which is problematic for most deposition
methods like dip-coating, spin-coating, etc. The spherical particles could also be used to
produce a photocatalytic reactor similar in design to chromatographic columns.

The method described also has the advantage of being environmentally friendly. No
organic solvents are used, the required temperature is low, the solutions can be reused, and
the only byproducts are water and NaCl.

3.1. Material Characterization

Scanning electron microscopy was used to study the surface of the deposited CuO,
which showed the formation of a nanostructured layer with a high specific surface area
(Figure 3). The layer consists of randomly distributed flat plates of about 10 nm thickness.
The space between the plates is large enough to allow easy access for the solvent and
organic molecules.

When CuO is deposited on Al2O3, a uniform layer is formed that completely covers
the underlying support (Figure 3). No difference in sample morphology was observed after
the granules were used in antibacterial or photocatalytic degradation tests.
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Figure 3. SEM images of CuO on the surface of Al2O3 (top) and CuO powder (bottom).

The thickness of the CuO layer covering the outside of Al2O3 granules is 0.5–1 µm,
but the deposition of the photocatalyst also permeates into the pores a few hundred µm
inside the granules (Figure 4). Since there is no clear distinction between layers and the
CuO deposits inside the pores are only visible at high magnifications, it is hard to judge the
depth using SEM analysis. However, a visual inspection shows an approximately 0.2 mm
thick black layer of CuO inside the Al2O3 granule (Figure 4).
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Because most of the photocatalyst is inside the Al2O3 granules, while only a thin layer
is present on the surface, its adhesion is excellent and even mechanical forces, such as the
ones present during mixing in a solution, do not damage the deposition or cause removal
of the photocatalyst. This is also confirmed by ICP-MS (Section 3.3).

Specific area measurements (BET) of the powders show a surface area of approximately
90 m2/g (Figure 5).
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Figure 5. BET surface area plot.

The XRD pattern of the prepared photocatalyst in powder form is shown in Figure 6.
All peaks correspond to CuO, and the relative intensity indicates that the sample is in
crystalline form. Crystallization was achieved during synthesis at low temperatures (80 ◦C)
without additional thermal treatment. The average diameter of the crystallites was calcu-
lated using the Scherrer equation and is around 11 nm, which agrees with the results of the
SEM analysis.
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To confirm the presence of Cu2+ species, a XPS survey spectrum and a Cu 2p core level
spectrum were recorded for the CuO sample (Figure 7). Survey spectra (Figure 7a) showed
the presence of the expected elements, namely Cu, O, and C. Here, Cu and O are part of the
CuO sample while C is adventitious carbon. The Cu 2 p3/2 core level spectrum (Figure 7b)
showed Cu2+ 2 p1/2 and Cu2+ 2 p3/2 at 953.04 eV and 933.14 eV, respectively. In addition,
two shake-up satellites of Cu2+ 2 p1/2 and Cu2+ 2 p3/2 were found in the Cu 2p spectrum.
The spectrum on Figure 7b is consistent with the Cu 2p core level spectrum of standard
CuO material published previously [33]. The position of the Cu 2p core level peaks and the
presence of shake-up satellites is a qualitative indication of the presence of Cu2+ species
used in several publications [33]. However, the Cu 2 p3/2 peak was also fitted using the
method described by M. C. Biesinger [33], and the concentration of Cu2+ species on the
surface of the prepared CuO samples was estimated (Figure S1). Based on the proposed
equation, the concentration of Cu2+ on the surface of the CuO sample was 88.81 at%. The
reason for the presence of low concentrations of Cu+ and Cu0 on the surface of the sample
is the electron beam induced reduction in CuO described previously [34]. The XPS result
are consistent with XRD results and show that Cu2+ is prevalent in the CuO sample.
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3.2. Disinfection Properties

Figure 8 shows the survival percentage of E. coli cells in a suspension with CuO-
covered Al2O3 as a function of time. No changes in survival rate were observed when the
sample was stored in the dark or when only Al2O3 granules without CuO were used. On the
other hand, a sharp decrease in the number of viable cells was observed when the samples
containing CuO were illuminated with visible light. This confirms the photocatalytic
activity of the prepared samples. Since the samples did not inactivate the bacterial cells in
the dark, we can also assume that the leaching of copper ions into the solution did not affect
the bacteria or that inactivation occurred by physical damage to the cells upon contact
with the sample surface. Cell killing was complete in 90 min regardless of the number
of granules used when the initial cell concentration was approximately 105 CFU/mL.
Although the nano-CuO is attached to a substrate, its surface area appears to be large
enough to exhibit photocatalytic ability when illuminated with visible light. The kinetics of
bacterial photoinactivation appear to be fairly linear, and no defined stages or lag phases
were observed.
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The photokilling ability of the samples did not deteriorate even after repeated use
(three times), which is consistent with the results of ICP-MS, which showed almost no
leaching of copper ions into solution, and SEM, which showed no change in the surface
morphology of the samples. However, it is worth noting that, in a more acidic solution, the
copper oxide could dissolve almost completely after a short time.

3.3. ICP-MS Measurement

After the antibacterial tests, the total concentration of copper ions in the suspension
was determined using ICP-MS. An autoclaved bacterial suspension in 0.9% NaCl served
as a blank, the value of which was subtracted from the test results. The resulting copper
ion concentration in the solution was less than 0.2 mg/L, indicating that the leaching
of copper ions into the solution is minimal and well below the limit for drinking water
(1.3–2.0 mg/L) [35,36]. When the CuO samples were stored in an acidic medium, the
values determined with ICP-MS for the Cu concentration in the solution were several
hundred mg/L.
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3.4. Photocatalytic Degradation

To evaluate the photocatalytic ability to degrade organic pollutants, the samples were
used to degrade Plasmocorinth B, an organic dye. In Figure 9, the results are divided
into two parts. In the first part, adsorption on the surface of the photocatalyst and the
underlying alumina support was determined. After 120 min, the light was turned on
and photocatalytic degradation began. Because the surface was not yet saturated with
the dye, an additional experiment was performed where only adsorption was followed.
Comparing the difference in the rate of removal from the solution shows the effect of
photocatalytic degradation.
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4. Conclusions

The prepared nanostructured CuO layer adheres excellently to the Al2O3 support and
can be effectively used for the disinfection of water or degradation of persistent organic
pollutants. The large surface area enables photocatalytic activity under mild environmental
conditions, and the alumina support allows quick and easy removal of CuO photocatalyst
from the treated water.

Another advantage of the method is that CuO can be easily deposited on spherical
granules, and the size of the granules has no effect on the synthesis process. This is
in contrast to other deposition methods, such as sol-gel, where uniform deposition on
spherical supports is difficult to achieve.

The low leaching of copper ions into the solution and activity under visible light
mean that the photocatalyst produced could be used for drinking water disinfection using
sunlight, for example in plastic bottles. Furthermore, if smaller granules (<1 mm diameter)
are used, a densely packed photocatalytic reactor could be developed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su141710581/s1, Figure S1: Cu 2p2/3 XPS core level spectra with
spectral deconvolution for CuO (red), Cu2O (blue), and Cu (magenta) species on the surface of the
CuO sample.
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