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Abstract: Bone materials are mainly composed of an inorganic constituent called hydroxyapatite
(HA). In the current study, mesoporous Zn2+/Ag+ doped hydroxyapatite nanoparticles (Zn-Ag
doped HA) with high antibacterial activity were synthesized through ultrasonic coupled sol-gel
techniques under calcination temperatures of 600 ◦C for 4 h and 1100 ◦C for 1 h. The variance in the
molar ratio of Zn2+/Ag+ in Ca9.0Zn1.0−xAgx(PO4)6(OH)2 (x = 0.0, 0.25 to 1.0) and its effects on the
chemical and physical properties of the powdered samples were investigated. The results show that
the hexagonal framework of HA incorporated both the Zn2+ and Ag+ ions and the rhombohedral
structure of β-TCP. The main functional groups of HA and Zn-Ag doped HA samples were hydroxyl
and phosphate. All samples have mesoporous characteristics with a Type IV isotherm. The agar well
diffusion process was used to examine antibacterial activity against E. coli, P. aeruginosa, S. aureus,
B. cereus and B. subtilis. Effective antibacterial activity was displayed by Zn-Ag doped HA. Excellent
antibacterial performance was shown by Ca9.0Zn0.75Ag0.25(PO4)6(OH)2 against all tested bacterial
strains, except P. aeruginosa. This material showed inhibition zones ranging from 7 to 11 mm, implying
that it is a suitable material with an antibacterial action for environmental applications, specifically
for water purification.

Keywords: antibacterial activity; hydroxyapatite; silver; ultrasonic-assisted sol-gel technique; zinc

1. Introduction

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is an outstanding bioactive material with
chemical and structural properties similar to the primary inorganic component found in
bone minerals [1,2]. Among the calcium phosphates, HA is a popular form due to its
stable crystalline phase and its hexagonal structure of the space group P63/m [3]. HA is
recognized for its attractive properties, such as its capacity to assist in bone growth and
bind to living tissues via the formation of direct chemical bonds [4,5]. Other advantages
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of HA include its excellent bioactivity, non-toxicity, good osteoconductivity and increased
biocompatibility [6,7]. Synthesized HA has a variety of applications in the field of tissue
engineering, sensors, wastewater and water purification, dental and orthopedic, and catal-
ysis [8–15]. In environmental applications, HA has numerous recognizable characteristics
as an adsorbent material, such as low solubility in aqueous solutions, simple synthesis,
non-toxicity, excellent adsorption capacity with a variety of contaminants and satisfactory
ion exchange capacity [16,17]. Hence, HA and its modified forms have been extensively
used as an adsorbent material in the removal of heavy metals, dyes and organic pollu-
tants [11,18–21]. However, there are several drawbacks in utilizing HA for environmental
applications, including poor antibacterial properties and lack of mechanical interfacial
strength, as well as decreased wear resistance [22].

Water disinfection via various technologies, such as membrane filtration, ozonation,
UV treatment and chlorination, have been utilized. However, these methods have several
disadvantages, such as high capital costs, the generation of toxic by-products and a pre-
treatment requirement [23]. Currently, metallic nanoparticles have gained attention in its
application for water disinfection due to its high surface area to volume ratio and excellent
anti-septic characteristics [24]. Current research has focused on the synthesis of HA and its
modified forms to develop a more efficient adsorbent material. The substitution of trace
metals, such as Cu2+, Ag+, Co2+, and Fe3+, into the HA structure has been investigated to
help enhance adsorption efficiency and antibacterial properties as well as to improve the
mechanical properties of these materials [14,25,26]. Most of the previous studies focused
on use of metal dopants, such as Ag+, Co2+ and Cu2+, due to their excellent antibacterial
properties, ability to impart mechanical strength and phase stability [27]. Ionic silver,
Ag+, is well known for its strong antimicrobial activity with high thermal stability [28,29].
Additionally, silver has the capacity to attach to enzymes and proteins in bacterial cells
and inhibit the major cell functions of several bacteria, including S. aureus and E. coli [30].
The incorporation of a second trace metal into the HA structure would yield a multi-
functional adsorbent material. Ionic zinc, Zn2+, is widely recognized as an antibacterial
and anti-fungal agent that inhibits inflammation [31,32]. Zn2+ exhibits higher stability
than Ag+ and is non-toxic [33]. A literature review reveals that most previous reports on
doping HA with one trace metal mainly investigated the enhancement of the adsorption
capacity of the material. Srilakshmi et al. (2016) utilized a facile precipitation process
in the production of Ag-doped HA, which showed a higher Ag content would result in
an improved adsorption capacity of 554.54 mg/g in the removal of Congo red dye [11].
Hydroxyapatite combined with copper and ferrite was utilized in the adsorption of Fe(II)
and Al(III) ions from aqueous solutions [34]. Panneerselvam et al. (2019) developed
Fe-substituted HA and Co-substituted HA using a facile precipitation technique. These
materials were applied in removal of dye from wastewater. Fe-substituted HA attained a
95.6% removal efficiency [35].

The synthesis of HA has been widely investigated using several preparation methods,
such as wet precipitation, co-precipitation, a sol-gel technique, plasma spraying, and double
decomposition. Sol-gel methods are low-cost, simple methods that involve molecular
mixing of precursors at low calcination temperatures [36]. Moreover, the sol-gel method
has the capacity to dope numerous metals and elements in trace quantities [37]. HA
produced in this manner is characterized by its decreased crystallinity, homogeneity, high
purity and satisfactory bioactivity [38]. The technique offers several advantages, such
as the formation of HA particles with increased surface activity, enhanced mechanical
characteristics and improved stability [39]. Past studies have shown that nano-sized HA
can be achieved via a sonochemical technique that yields an increased interaction resulting
from intense mixing between solid and liquid precursors caused by acoustic cavitation
and ultrasonic irradiation. Additionally, nano-sized HA particles are purer, smaller and
more uniform in size with minimal aggregation [40,41]. To date, no studies have been
performed on the preparation of Ag-Zn doped HA via a sol-gel method assisted with
ultrasonic irradiation and an evaluation of its antibacterial properties for water disinfection.
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The present work aims to develop a HA material doped with Zn-Ag via an ultrasonic
assisted sol-gel technique. The molar ratio of Zn/Ag was varied and the effects on the
physicochemical properties, such as crystal phase content, surface morphology and anti-
microbial performance, were examined. The anti-microbial capacity was examined using
the agar well diffusion technique.

2. Materials and Methods
2.1. Materials

No additional purification was performed for the chemical reagents used and all were
of analytical grade. The raw materials for Zn1.0−xAgx doped HA synthesis were silver
nitrate (AgNO3, 99.9 wt.%, POCh), zinc nitrate hexahydrate (Zn(NO3)2 6H2O, 98.0 wt.%,
UNIVAR), calcium nitrate tetrahydrate (Ca(NO3)2 4H2O, 99.9 wt.%, QREC), ammonium
solution (NH3, 30 wt.%, Carlo Erba) and diammonium hydrogen phosphate ((NH4)2HPO4,
98.0 wt.%, UNIVAR). The Thailand Institute of Scientific and Technological Research
(TISTR) provided the Gram-positive bacteria B. subtilis (TISTR 008), S. aureus (TISTR 1466),
and B. cereus (TISTR 687) and the Gram-negative bacteria P. aeruginosa (TISTR 781) and
E. coli (TISTR 780). Nutrient agar slants were used to preserve the microbes. Deionized
water (DI) was used throughout the experiments.

2.2. Synthesis of Zn-Ag Doped HA Samples

HA nanoparticles (Ca9.0Zn1.0−xAgx(PO4)6(OH)2), which are represented as Zn-Ag
doped HA, were synthesized using an ultrasonic procedure in combination with sol-gel
technique, similar to that of Kamonwannasit et al. (2020) [42]. Figure 1 illustrates a
schematic flowchart for the synthesis of Zn-Ag doped HA. First, a pre-determined mass
of precursors as shown in Table 1, (NH4)2HPO4, Ca(NO3)2 4H2O, AgNO3 and Zn(NO3)2
6H2O, was separately dissolved in DI water and mixed with constant stirring. Secondly, the
dropwise addition of the (NH4)2HPO4 solution in Ca(NO3)2 4H2O solution was irradiated
at 37 kHz frequency for 0.5 h in an ultrasonic bath. Next, mixed solutions of AgNO3 and
Zn(NO3)2 6H2O with varying molar ratios (0.0, 0.25 to 1.0) were placed in the mixture in a
dropwise fashion and accompanied by ultrasonic irradiation for 0.5 h. Then, adjustment of
the mixture’s pH using 1.0 M NH4OH was performed to pH 9.0 ± 0.1 and the solutions
were held for 0.5 h. On a hotplate, continuous stirring of the mixture was performed at
100 ◦C until dry. After which, calcination of the dried samples was performed at 600 ◦C for
4 h and 1100 ◦C for 1 h using a muffle furnace (SNOL 30/1100 LSF21) with a 3 ◦C/min as
the heating rate. The various compositions of the synthesized Zn-Ag doped HA powders
are described as Ca9.0Zn1.0−xAgx(PO4)6(OH)2 in which the molar ratios of Ag and Zn
precursors are referred to as x. They are denoted as Ag1.0 doped HA, Zn0.25Ag0.75 doped
HA, Zn0.50Ag0.50 doped HA, Zn0.75Ag0.25 doped HA and Zn1.0 doped HA.

Table 1. Pre-determined mass of precursors for the synthesis of Zn-Ag doped HA.

Samples Symbols
Weight (g)

Ca(NO3)2 4H2O Zn(NO3)2 6H2O (NH4)2HPO4 AgNO3

Ca10(PO4)6(OH)2 HA 35.3469 - 11.8307 -
Ca9.0Zn1.0(PO4)6(OH)2 Zn1.0 doped HA 30.9530 4.7391 11.5398 -

Ca9.0Zn0.75Ag0.25(PO4)6(OH)2 Zn0.75Ag0.25 doped HA 30.6357 2.5455 10.6462 0.6133
Ca9.0Zn0.50Ag0.50(PO4)6(OH)2 Zn0.50Ag0.50 doped HA 30.3182 1.6793 11.3066 1.2119
Ca9.0Zn0.25Ag0.75(PO4)6(OH)2 Zn0.25Ag0.75 doped HA 30.0244 0.8313 11.1935 1.7997

Ca9.0Ag1.0(PO4)6(OH)2 Ag1.0 doped HA 29.7268 - 11.0825 2.3758
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Figure 1. Schematic flowchart for the synthesis of Zn-Ag doped HA.

2.3. Characterization Analysis

Transmission electron microscopy (JEM-2100, JEOL, Tokyo, Japan) analyzed the mor-
phology and particle size distribution of HA samples operated at 200 kV. Methanol medium
was used to disperse the samples and then Ni TEM grids coated with carbon film were used
for the sample deposition. XRD (D8 Advance Series 2, Bruker, Germany) operated at CuKα

radiation (λ = 1.54184 Å), 2θ range from 20 to 60◦, 35 mA, and 40 kV for accelerating voltage
was used to identify the crystal phases of the HA and Zn-Ag doped HA samples. FT-IR
spectroscopy (Spectrum Two, Perkin Elmer, Waltham, MA, USA) coupled with KBr pellet
technique was utilized to determine the functional groups present in synthesized samples
in the 4 cm−1 spectral resolution and 4000–500 cm−1 range. N2 adsorption-desorption
isotherms of Zn-Ag doped HA samples were obtained on a BELSORP-Mini X at liquid nitro-
gen temperature. Sample preparation involves drying at 110 ◦C overnight for each sample.
Then, under vacuum for 3 h, samples were degassed at 120 ◦C. Based on the adsorption
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isotherm data, Brunauer-Emmett-Teller (BET) method was used to measure the specific
surface area of each sample under range of 0–1 for relative pressure (P/P0). Computation
of the pore size distribution using a cylindrical pore model via the Barrett-Joyner-Halenda
(BJH) desorption method was employed.

2.4. Antibacterial and Antimicrobial Activity of HA and ZnAg Doped HA

An agar well diffusion technique was used in determining the antimicrobial capacity
of the synthesized Zn-Ag doped samples against the Gram-positive bacteria, S. aureus,
B. cereus and B. subtilis and the Gram-negative bacteria, E. coli and P. aeruginosa [42]. Under
0.5 turbidity (McFarland standard) and 37 ◦C, Mueller-Hinton broth (MHB) was used to
culture the bacterial strains for 18 h. In individual Mueller-Hinton agar plates, uniform
spreading of each bacterial suspension (100 µL aliquot) with 1 × 108 colony forming units
per ml (CFU mL−1) was performed. A sterile cork borer was employed to cut wells with
diameter of 5 mm into the agar medium. Subsequently HA aliquots (50 µL) were placed
in each well. Lastly, incubation for 24 h at 37 ◦C of the inoculated plates was performed.
All samples were tested and applied dimethyl sulfoxide (DMSO) (10, 30 mg/mL) as the
negative control while positive control used 30 µg of tetracycline. Finally, the analysis of
the diameters of bacterial inhibition zones (mm) was performed. Experiments were carried
out in triplicate.

2.5. Examination of Minium Bactericidal Concentration (MBC) and Minimum Inhibitory
Concentration (MIC)

The repetition of the serial broth dilution method was employed to evaluate the mini-
mum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) of
the Zn-Ag doped samples. The lowest sample concentration that can disinfect about 99.9%
bacteria after incubation is referred to as the MBC. The minimum sample concentration that
could prevent apparent bacterial growth is referred to as the MIC. This employs the turbid-
ity method at 37 ◦C after 24 h incubation [43]. With bacterial concentration of 107 CFU/mL
in MHB, the concentration of the Zn-Ag doped HA (2.5, 5.0, 10.0, 20.0 and 40.0 mg/mL)
was varied and MIC was determined. Inoculated tubes were incubated for 24 h at 37 ◦C. In
pristine Mueller-Hinton agar plates, subculture of 100 µL from each tube was performed.
The analysis of MBC was performed after incubation for 24 h at 37 ◦C with no apparent
microbial growth. Experiments were carried out in triplicate.

3. Results and Discussion
3.1. XRD Analysis

Figure 2 shows the lattice parameters and phase composition of Zn-Ag doped HA
samples calcined at for 4 h at 600 ◦C and for 1 h at 1100 ◦C. The presence of the 2θ peaks at
2θ = 25.87 (002), 31.77 (211), 32.90 (300), 39.81 (310), 49.49 (213), 52.10 (402) and 53.14◦ (004)
(JCPDS No. 09–0432) indicates a typical HA hexagonal crystal structure (P63/m space
group) in all calcined samples. This indicates that all samples are predominantly HA rather
than other calcium phosphates. The presence of secondary phases was also observed. The
main peaks at 2θ = 13.63 (104), 21.87 (024), 27.76 (214), 32.44 (128) and 34.37◦ (220) (JCPDS
No. 09-0169) imply the presence of beta-tricalcium phosphate (β-TCP, Ca3(PO4)2), while
the peak at 39.20◦ (200) implies the formation of calcium oxide (CaO). This was attributed to
elevated temperatures or HA decomposition due to chemical impurities [44–46]. Biphasic
calcium phosphate (BCP) comprises both HA and β-TCP that can enhance the formation of
new bone and bone remodeling due to phosphate and calcium ions being released, caused
by BCP’s partial dissolution. Moreover, the incorporation of zinc and/or silver ions in HA
caused a decrease in the crystallinity of the HA crystals. This is observed by a broadening
of XRD diffraction peaks.
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The Rietveld method was used to compute for the lattice parameters shown in Table 2.
The presence of zinc and/or silver ions was observed to cause an increase in both lattice
parameters (a and c). In comparison to Ca2+ (0.100 nm), Ag+ (0.115 nm) has a lower ionic
radii while Zn2+ (0.074 nm) has a higher ionic radii, which causes the distortion.

Table 2. Lattice parameters and crystallite size of Zn-Ag doped HA1100 samples obtained from XRD
analysis.

Samples
Lattice Parameters (nm)

Crystallite Size (nm)
a c

HA1100 0.9302 ± 0.0181 0.6865 ± 0.0008 71.24
Zn1.0 doped HA1100 0.9323 ± 0.0146 0.6880 ± 0.0007 57.56

Zn0.75Ag0.25 doped HA1100 0.9332 ± 0.0141 0.6886 ± 0.0001 67.62
Zn0.50Ag0.50 doped HA1100 0.9316 ± 0.0139 0.6876 ± 0.0008 62.96
Zn0.25Ag0.75 doped HA1100 0.9341 ± 0.0103 0.6876 ± 0.0007 70.78

Ag1.0 doped HA1100 0.9279 ± 0.0114 0.6888 ± 0.0009 83.20

From the (211), (300), (310), (213) and (402) planes, the Debye-Scherrer formula was
applied to compute for the normal crystallite size of the material [42]:

D =
kλ

β2θcos θ
(1)

where β2θ is the angular width (radians) at an intensity equal to the full width at half
the maximum, λ refers to wavelength of X-ray radiation used, θ represents the angle of
diffraction, k is a constant shape factor, and D is the average crystallite size (nm). From
Table 2, the crystallite size was determined to be 71 nm for HA, while that of HA in Zn-Ag
doped HA samples ranged from 55 to 85 nm. The size of HA tended to increase with the
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silver ion amount due to the different sizes of ionic radii for Ca2+, Zn2+ and Ag+ ions. The
successful syntheses of both HA and Zn-Ag doped HA are validated by the XRD results.

3.2. FT-IR Analysis and N2 Adsorption-Desorption

Figure 3 presents the FT-IR spectra of calcined samples. All of the characteristic vibra-
tion bands of hydroxyapatite were identified. These include the stretching (~3561 cm−1)
in the HA lattice by the OH (O-H bond) and the ν4 bending (~560–600 cm−1), ν3 stretch-
ing (1039, 1089 and 1126 cm−1) and ν1 stretching (954 cm−1) modes of orthophosphate
groups [47].
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Figure 4 displays the N2 adsorption-desorption isotherms of Zn-Ag doped HA and HA
in which the insets are pore size distribution curves. In all samples, the presence of H1-type
hysteresis loops is observed, which is a characteristic of a Type IV isotherm. This implies
the occurrence of a mesoporous structure [48]. A parallel pattern of the adsorption branch
to the desorption curve was observed, including a narrow area of the hysteresis loop. These
phenomena suggest the formed HA have a microporous structure [48]. As shown in Table 3,
the specific surface area of pristine HA is 2.675 m2/g. The surface area of Zn-Ag doped
HA tends to gradually increase with the silver loading. The BJH nitrogen desorption was
applied in the plot of the pore diameters’ distribution. The pore diameters and total pore
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volumes of the samples were in the range of 20–30 nm and 0.010–0.020 cm3/g, respectively.
This implies that the synthesized Zn-Ag doped HA is a mesoporous material.
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Table 3. Surface properties of HA and ZnAg doped samples estimated from nitrogen adsorp-
tion/desorption isotherms.

Samples SBET
(m2/g) a

VTotal
(cm3/g) b

DAV
(nm) c

HA1100 2.675 0.030 45.027
Zn1.0 doped HA1100 1.820 0.014 28.041

Zn0.75Ag0.25 doped HA1100 2.117 0.012 23.252
Zn0.50Ag0.50 doped HA1100 2.255 0.016 27.579
Zn0.25Ag0.75 doped HA1100 3.139 0.018 23.354

Ag1.0 doped HA1100 3.351 0.017 20.640

Where a is BET surface area, b is BJH pore volume, and c is BJH pore diameter.

3.3. TEM Analysis

TEM images are displayed in Figure 5 for selected Zn-Ag doped HA and HA calcined
at 1100 ◦C for 1 h and 600 ◦C for 4 h. The results show the presence of oval-shaped
particles with diameters of 62.6 ± 3.41 nm for the morphology of HA1100 (Figure 5a).
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Numerous dark spots with diameters less than 5 nm were present in fine HA nanoparticles
for Zn0.75Ag0.25 doped HA1100 (Figure 5b), which could imply the presence of Zn2+ and
Ag+ species. The substitution of Ag+ and Zn2+ for Ca2+ in HA resulted in the agglomeration
of HA, Ag+ and Zn2+ particles, which can be validated by the dense distribution on the HA
surfaces by the nanoparticles.
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HA1100.

In Figure 5c, HA nanoparticles of Zn0.50Ag0.50 doped HA1100 were observed to
have spherical shapes with diameters of 61.72 ± 3.89 nm. Both the XRD results and the
TEM results are in agreement with each other, which implies the incorporation in the HA
structure by Zn2+ and Ag+. The antibacterial and mechanical characteristics of Zn-Ag
doped HA samples are dependent on the distribution of Zn2+ and Ag+ nanoparticles and
the formation of nano-sized HA.

3.4. Antibacterial Activity

The agar well diffusion method was applied to all five bacterial strains and the
antimicrobial activity of calcined Zn-Ag doped HA samples at concentrations of 10 and
30 mg/mL was examined, as seen in Figure 6. Table 4 shows an inhibition zone with a
larger diameter implies that the antimicrobial agents are more effective against the bacterial
strains. The inhibition zones for tetracycline control were observed to range from 17 to
26 mm, which indicates its efficacy against all bacterial strains. The presence of bacterial
growth for HA1100 powder suggests that it has no antibacterial activity for all studied
strains. The results show that the 30 mg/mL of Zn1.0 doped HA sample caused an
inhibition zone with a 7.60 mm diameter for B. subtilis only. Gram-positive bacteria, such
as B. subtilis, B. cereus, and S. aureus, were found to be susceptible towards Ag1.0 doped
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HA nanoparticles with inhibition zones ranging from 10 to 14 mm. Similar antibacterial
activities were observed for both single Ag doped HA and dual doped Zn-Ag doped HA
nanoparticles. Most of the synthesized samples inhibited the growth of the microorganisms
tested. None of the synthesized samples were active against P. aeruginosa. This indicated
that Gram-negative strains (E. coli and P. aeruginosa) are less susceptible than Gram-positive
bacteria. Gram-negative bacteria are characterized by their thick cell wall located between
the inner and outer lipid membranes, which is composed of several layers of structural
lipopolysaccharides in a periplasmic space. Hence, the impermeability of the cell wall to
lipophilic solutes is attributed to its complexity, which would result in enhanced stability
against some chemical agents [49]. Moreover, Gram-negative bacteria have several efflux
pumps that inhibit the buildup in the cell membrane of anti-microbial substances [50].
Alternatively, the simple cell wall of Gram-positive bacteria is composed of one layer of
peptidoglycan and lipoteichoic acids [49,50].

Table 4. Diameter of inhibition zones of calcined samples against five different types of bacterial
strains (ND = no detection).

Types of Bacteria Inhibition Diameter (mm)
(10 mg/mL)

Inhibition Diameter (mm)
(30 mg/mL)

Inhibition Diameter (mm)
for Tetracycline

(30 µg)

HA1100
S. aureus ND ND -
B. cereus ND ND -
B. subtilis ND ND -

P. aeruginosa ND ND -
E. coli ND ND -

Zn1.0 doped HA1100
S. aureus ND ND -
B. cereus ND ND -
B. subtilis ND 7.60 ± 0.01 -

P. aeruginosa ND ND -
E. coli ND ND -

Zn0.75Ag0.25 doped HA1100
S. aureus 8.68 ± 0.47 9.60 ± 0.30 -
B. cereus 9.60 ± 0.60 10.02 ± 0.00 -
B. subtilis 10.33 ± 0.47 10.90 ± 0.16 -

P. aeruginosa ND ND -
E. coli 7.81 ± 0.03 7.86 ± 0.09 -

Zn0.5Ag0.5 doped HA1100
S. aureus 8.55 ± 0.40 8.88 ± 0.24 -
B. cereus 9.63 ± 0.00 9.76 ± 0.01 -
B. subtilis 9.98 ± 0.65 10.27 ± 0.08 -

P. aeruginosa ND ND -
E. coli 7.97 ± 0.07 8.05 ± 0.04 -

Zn0.25Ag0.75 doped HA1100
S. aureus 8.25 ± 0.99 9.00 ± 0.22 -
B. cereus 7.71 ± 0.32 9.13 ± 0.03 -
B. subtilis ND 5.46 ± 0.06 -

P. aeruginosa ND ND -
E. coli ND ND -

Ag1.0 doped HA1100
S. aureus 13.31 ± 0.21 13.58 ± 0.40 -
B. cereus 11.68 ± 0.00 12.65 ± 0.24 -
B. subtilis 8.44 ± 0.26 10.35 ± 0.08 -

P. aeruginosa ND ND -
E. coli ND ND -
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Table 4. Cont.

Types of Bacteria Inhibition Diameter (mm)
(10 mg/mL)

Inhibition Diameter (mm)
(30 mg/mL)

Inhibition Diameter (mm)
for Tetracycline

(30 µg)

Tetracycline
S. aureus - - 25.60 ± 0.15
B. cereus - - 22.32 ± 1.93
B. subtilis - - 17.49 ± 1.01

P. aeruginosa - - 18.27 ± 0.55
E. coli - - 21.32 ± 2.31Sustainability 2022, 14, x FOR PEER REVIEW 12 of 16 
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Figure 6. Images of the antibacterial activity of calcined samples against five strains of bacteria at
doses of 10 and 30 mg/mL: (a) negative control, (b) positive control, (c) HA1100, (d) Zn1.0 doped
HA1100, (e) Zn0.75Ag0.25 doped HA1100, (f) Zn0.5Ag0.5 doped HA1100, (g) Zn0.25Ag0.75 doped
HA1100 and (h) Ag1.0 doped HA1100.
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The results show that the Zn0.75Ag0.25 doped HA1100 sample provided the best
performance for antibacterial activity. Thus, the MIC and MBC values of this sample were
further investigated against B. Subtilis, since it was shown to be the most susceptible to the
Zn0.75Ag0.25 doped HA1100 sample. Zn0.75Ag0.25 doped HA1100 provided 20 mg/mL
for its MIC value. This condition is well within the limits of cytotoxicity [51,52]. The
bactericidal activity of Zn0.75Ag0.25 doped HA1100 was measured to be >40 mg/mL for
its MBC values for B. Subtilis. Furthermore, a decreased silver content can imply lower
costs in applying these nanoparticles.

4. Conclusions

The sol-gel technique combined with ultrasonic irradiation was successful in the syn-
thesis of mesoporous zinc-silver doped HA with exceptional antimicrobial characteristics.
The formation of numerous crystalline phases, such as β-TCP, CaO and HA, were observed
after calcination at 600 ◦C for 4 h and 1100 ◦C for 1 h. However, the XRD patterns indicate
the absence of oxides and phosphates of silver and zinc. The crystallite sizes of HA in
Zn-Ag doped HA ranged from 55 to 85 nm. The main functional groups, OH- and PO4

3–,
were fully supported by the XRD analysis. All samples had mesoporous characteristics
with Type IV isotherms. The HA lattice displayed a homogeneous distribution of zinc and
silver particles, as validated by the TEM analysis. The results of the agar well diffusion
method illustrated the exceptional antimicrobial activity against both Gram negative and
Gram-positive bacteria of the Zn0.75Ag0.25 doped HA1100 sample. Hence, Zn0.75Ag0.25
doped HA1100 displayed excellent antibacterial properties, which makes it a promising
material in water purification.
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