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Abstract: Daylight is an important factor that significantly contributes to patients’ healing, with a
reduction in the length of stay in the hospital. It can strongly affect energy consumption negatively
or positively through lighting control strategies. Therefore, the case of healthcare buildings is very
particular and sensitive, especially under extreme climate conditions as in hot and arid regions. The
present study aims to determine a balance between daylight use and energy consumption through a
parametric-based optimization of the external shading system in a typical hospital room in Biskra.
This paper demonstrates how the implementation of parametric design with evolutionary algorithms
is considered a reliable strategy to reach optimum solutions in building performance problems. The
daylight performance is investigated based on multi-objective optimization to minimize the Energy
Use Intensity “EUI”, while maximizing Spatial Daylight Autonomy “sDA” and Useful Daylight
Illuminance “UDI”. A simulation model was developed via Grasshopper, which was employed with
the use of Ladybug, Honeybee, and Octopus plug-ins. The results revealed that the adaptive facade
system can improve indoor daylight levels and energy performance simultaneously compared to the
conventional shading system. The presented framework may be used as a reference model, which
can enhance opportunities to solve complex design problems in the early design stages and suggest
recommendations for sustainable building design.

Keywords: parametric analysis; multi-objective optimization; daylight; energy consumption; hospital
building; hot and arid climate

1. Introduction

Hospital rooms are sensitive areas for research in buildings’ environmental design,
whether it be through patient observation and treatment or from the perspective of building
studies. Daylight and an outside view allow the patients to heal significantly, decreasing
both pain and the length of stay in hospitals. Few studies deal with the performance of
daylight related to the thought behind architectural components in healthcare facilities.
Indoor environments in healthcare buildings are particularly critical for patients’ well-being.
Generally, the windows of patient rooms in hospitals have the same size and volume of
space regardless of the orientation and daylighting conditions [1]. Daylight performance
in buildings attempts to optimize the indoor environment, which provides comfortable
and attractive conditions with greater productivity, exploring whether the external facade
devices are designed correctly for optimal daylighting performance, especially in this
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typical study corpus “patient rooms” [2,3]. Numerous research studies have correlated
the relationship between medical errors and adequate light levels. Appropriate daylight is
important not only for the health of patients, but also for the staff in healthcare settings [4–6].

Building energy consumption around the world has increased dramatically in recent
decades, and it is continually increasing according to researchers’ expectations [7,8]. Given
the world’s energy crisis and climate change, the development of high-performance build-
ings and sustainable design has become a hot research topic. The principal goal is to reduce
energy consumption while maintaining occupant satisfaction and well-being in indoor
environments [8,9]. To assess the energy performance of buildings, the measured building
metrics must be compared to certain reference values. The Energy Use Intensity (EUI) is
one of these normalized metrics; it is the energy per square foot per year and is calculated
by dividing the building’s total energy consumption in the year by its total floor area [7–10].
A reduced EUI indicates that the building is performing better, and several internal and
external factors affect the energy consumption of buildings such as weather data, schedules,
and several types of buildings, which often have a higher EUI than others [8].

In building problems, designers are confronted with multiple conflicting objectives,
such as minimizing energy demand while maximizing daylight availability or thermal
comfort in buildings. Genetic algorithms have often been used for architectural targets
to solve this problem. Moreover, it is possible to simulate many possible outcomes more
effectively and thus makes using parametric design in architecture easier than before [11].
GAs are computational models based on the theory of evolution, which starts with a
population of possible solutions often based on a random selection of the chosen parameters.
To pass to the next generation of solutions, each individual solution needs to succeed and
determines how likely it is to be used to create offspring of the current generation [8–12].

Recent studies have focused on the parametric optimization approach of daylight and
energy performance in different building types [13–18]. These studies suggest the use of this
approach through optimization algorithms and simulation for seeking the optimum build-
ing schemes to change design parameters. Briefly, the findings from these studies showed
that the effect of daylight, besides reducing artificial lighting consumption, is influenced
by outdoor and indoor design parameters. Compared to other building types, there are
few studies on the optimization approach of healthcare facilities. Ahmed Sherif et al. [19]
conducted a study on the potential of using parametric workflows in the patient room case
study. It focuses on optimizing the geometry of the external facade of the patient room
to control solar penetration, thus improving the daylight performance of the angle and
position of the window. Wagdy and Shalaby [20] conducted another study based on a
parametric study, which tested the external and internal reflectors, as well as the ceiling
geometry. This framework combined daylight simulation with a genetic algorithm to deter-
mine the best reflector configurations for suitable daylight performance in Cairo. Hinkle
et al. [21] and Esteghamati et al. [22] carried out a study on the design exploration of build-
ing façades to optimize the energy demand use. These studies suggest solving complex
design challenges by considering a large number of alternatives in the early design stage.

Southern Algeria is a region characterized by a hot and dry climate, where the circum-
stances are difficult with a special type of weather, which is sunny and clear sky most of the
year, with rare rainfalls, desert winds, and extremely low humidity. The high temperature
presented a challenge to the designers due to the high levels of solar radiation. In the
summertime period, the highest temperature exceeds 40 ◦C in this region. Due to the
overall cooling energy demands, this leads to significant energy use in buildings. Heat
gain through openings constitutes a substantial factor of the cooling load, contributing
significantly to energy demand [23]. In this context, hospital buildings have the largest EUI
compared to other building types. In Algeria, there is a lack of studies related to architec-
tural attempts to control indoor daylighting and energy performance in healthcare facilities.
Hence, it is necessary to resolve problems of dissatisfaction with indoor environments in
these crucial buildings, and this study proposes more sustainable patient room designs that
suit the special conditions of such hot and dry locations.
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The ultimate aim of this study is to develop a parametric workflow based on a multi-
objective algorithm approach for an evaluation of building daylight and energy. Research
on health buildings’ performance optimization early in the design process is still insufficient,
and there is an important lack of recommendations and climate design guidelines for health
buildings. Daylight is a crucial element because of its variations during the day and
year, which is often neglected in health building designs. However, this concept is more
complex and requires exceptional research. This study in particular is conducted at a
hospital in patient rooms, as this is a critical case that needs specific research. Secondly,
this case study takes place in a hot and arid region where solar radiation causes excessive
overheating, glare, and discomfort. Lastly, the aim of this study is to reach optimal solutions
by integrating genetic algorithms and parametric workflow to find a healthier daylight
level in patient rooms, with optimum facade devices to avoid excessive heat gain and glare,
while also minimizing energy demand and maximizing daylight availability. The study will
attempt to clarify the approach of simulation-based optimization algorithms to evaluate
daylight performance in patient rooms with Grasshopper and Rhino software, which is
used to facilitate energy optimization of similar existing projects, as well as improve the
adequacy of the parametric approach in the early design stage.

2. Methodology

The study is divided into three principal parts: The experimental design (in situ
measurements), building performance simulation and validation (comparison with the
base case model), and parametric based-optimization. The first step of the study involved a
detailed field of measurements that were taken in the case study hospital rooms (described
in Section 2.1). These relevant data were then used to validate the simulation model and
were compared with the base case model (detailed in Section 2.3). Finally, the genetic
algorithms optimization step was performed via Ladybug and Honeybee Grasshopper
plugins, which constitute commonly accepted building simulation software [24]. Octopus
was another plugin used in Grasshopper to apply evolutionary algorithm problem-solving
in parametric design, which allows designers to reach many solutions and produce a variety
of optimal trade-off solutions for each goal. According to A.M.Y. Toutou [15], a Pareto front
is a tool that represents all alternatives in one single diagram, and the best solutions will be
produced through an objective function. The optimization process details are described
below in Section 2.4, with the results and discussion presented in Section 3.

In this paper, the Climate-Based Daylight Modelling (CBDM) metrics used were
Spatial Daylight Autonomy (sDA), Useful Daylight Illuminance (UDI), and Energy Use
Intensity (EUI), which were defined as three objectives necessary to improve the energy
and daylighting performance of a hospital room model. To incorporate these building
performance metrics into the validation and optimization steps, the time-varying illumi-
nance distribution was evaluated through a field of measurements after the definition of
the geometrical characteristics of the hospital room case study [25].

2.1. Case Study Description and the Experimental Campaign
2.1.1. Case Study Description

The case study is a patient room in the pediatric ward at Hakim Saadan Hospital
located in the city of Biskra. This city is situated in the southeast of Algeria. Its coordinates
are 34◦51′ N 5◦44′ E/34.850◦ N 5.733◦ E. It is defined by hot and dry weather with significant
temperature variations between day and night and between summer and winter. According
to the International Köppen climate classification, geographically, Biskra is part of the BWh
zone. In this location, where clear-sky and arid conditions with intense sunshine dominate
over the year, there is very low humidity due to rare precipitation [26].

The weather dataset file of Biskra city was extracted from the Climate One Building
website (epw) [27]. As seen in Figure 1, the average summer temperature in Biskra city
reaches over 40 ◦C in July, making it the hottest month, with nighttime temperatures falling
to approximately 20 ◦C [23,28]. The average temperature in winter is between 8 ◦C and
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15 ◦C in January (the coldest month). There is unified daylight dispersion and extreme heat
gain in hot climates, where buildings are directly exposed to solar radiation (Figure 2). This
may cause visual discomfort and excessive heat gain, as is the case of Biskra city.
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2.1.2. Building Case Study Description

Hakim Saadane hospital is located in the Northeast part of Biskra city, as seen in
Figure 3. It is a Public Hospital Establishment (EPH), which consists of six wards. The
hospital is an old building, characterized by 0.50 m thick walls and built with alveolar
terracotta bricks as detailed below in Tables 1 and 2 (which describe the building con-
struction materials of the hospital). The selected patient rooms for the study are located
in the Pediatric Ward, which has a rectangular plan with two floors: The ground floor is
distributed on the East/West axis and the first floor is spread over the North/South axis.
The first selected room is situated on the ground floor, which has a single opening side with
one window in the south, covering 10% of the room facade area, without solar protection.
The other two rooms selected for measurements are located on the first floor; however, their
orientation varies from the first patient room, with East and West opening orientations.



Sustainability 2022, 14, 12652 5 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 20 
 

terracotta bricks as detailed below in Tables 1 and 2 (which describe the building con- 169 
struction materials of the hospital). The selected patient rooms for the study are located in 170 
the Pediatric Ward, which has a rectangular plan with two floors: The ground floor is 171 
distributed on the East/West axis and the first floor is spread over the North/South axis. 172 
The first selected room is situated on the ground floor, which has a single opening side 173 
with one window in the south, covering 10% of the room facade area, without solar pro- 174 
tection. The other two rooms selected for measurements are located on the first floor; how- 175 
ever, their orientation varies from the first patient room, with East and West opening ori- 176 
entations. 177 

 178 
Figure 3. Illustration of Hakim Saadan Hospital. (a) The location of the hospital; (b) a daytime photo 179 
of the hospital (Pediatric ward); (c) floorplans of the pediatric ward; (d) photos of patient rooms, 180 
interior and exterior. 181 

Table 1. Building construction materials of the hospital Hakim Sadaan—external and internal wall 182 
(Source: DTR. Regulation Technical Document booklet Ministry of Housing, Algeria). 183 

 Parameters Unit Exterior plaster coating Brick25-alveolar Interior plaster coating 

 T m 0.01 0.50 0.01 
 λ W/(m·K) 1.1533 0.31083 0.35111 

External wall D kg/m3 1700 720 1500 
 C J/(kg·K) 1000 794 1000 
 U-value (W/m2-K) 5.597 0.491 5.038 
 T m 0.01 0.18 0.01 
 λ W/(m·K) 1.35111 0.31083 0.35111 

Internal wall D kg/m3 1500 720 1500 
 C J/(kg·K) 1000 794 1000 
 U-value (W/m2-K) 5.038 1.335 5.038 

Table 2. Building construction materials of the hospital Hakim Sadaan—floor and roof (Source: 184 
DTR. Regulation Technical Document booklet Ministry of Housing, Algeria). 185 

Parameters Unit 
Floor Materials  

Flooring  Floating CALC1_T_N2 
slab 

Roof Materials 
Sealing Compression Steel Air Interior 

Slab cavity Plaster 
coating 

T m 0.20 0.10 0.30 0.1 0.05 0.03 0.30 0.02 
λ W/(m·K) 1.714 1.755 1.230 1.75 1.755 44.4 6.027e-2 0.351 
D kg/m3 2300 2300 1500 2300 2300 7800 1 1500 
C J/(kg·K) 700 920 800 920 920 510 1227 1000 

Figure 3. Illustration of Hakim Saadan Hospital. (a) The location of the hospital; (b) a daytime photo
of the hospital (Pediatric ward); (c) floorplans of the pediatric ward; (d) photos of patient rooms,
interior and exterior.

Table 1. Building construction materials of the hospital Hakim Sadaan—external and internal wall
(Source: DTR. Regulation Technical Document booklet Ministry of Housing, Algeria).

Parameters Unit Exterior Plaster
Coating Brick25-Alveolar Interior Plaster

Coating

T m 0.01 0.50 0.01
λ W/(m·K) 1.1533 0.31083 0.35111

External wall D kg/m3 1700 720 1500
C J/(kg·K) 1000 794 1000

U-value (W/m2-K) 5.597 0.491 5.038

T m 0.01 0.18 0.01
λ W/(m·K) 1.35111 0.31083 0.35111

Internal wall D kg/m3 1500 720 1500
C J/(kg·K) 1000 794 1000

U-value (W/m2-K) 5.038 1.335 5.038

Table 2. Building construction materials of the hospital Hakim Sadaan—floor and roof (Source: DTR.
Regulation Technical Document booklet Ministry of Housing, Algeria).

Parameters Unit
Floor Materials

Flooring Floating CALC1_T_N2
Slab

Roof Materials
Sealing Compression Steel Air Interior

Slab Cavity Plaster
Coating

T m 0.20 0.10 0.30 0.1 0.05 0.03 0.30 0.02
λ W/(m·K) 1.714 1.755 1.230 1.75 1.755 44.4 6.027e−2 0.351
D kg/m3 2300 2300 1500 2300 2300 7800 1 1500
C J/(kg·K) 700 920 800 920 920 510 1227 1000

U-value (W/m2-K) 3.480 4.406 2.062 4.40 5.038 5.85 0.194 4.406

2.2. In Situ Measurement Protocol

In the measurements, samples of the hospital rooms of each orientation were taken in
the Pediatric Ward. The measurements were defined depending on their configuration and
location in order to collect data for validation to verify and compare the daylight simulation
performance of the base case model and the simulated values. As shown in Figure 4, the
internal illuminance levels in the patient rooms were measured in a grid (1.0 m by 1.0 m) of
nine reference points, with each point located in the center of each square in the room at a
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height of 0.85 m. The illumination levels were assessed in the center of each square in the
selected room. The instrument used to measure the indoor illuminance was the Testo 480
Probe Lux (accuracy: ±5% ±10 d) (Figure 5). The on-site measurements occurred on one
day in December and one day in June (winter and summer period in 2020) between 08:00
and 16:00. According to the CIE standards, the sky conditions on these selected days of
measurement were clear and sunny [29,30].
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2.3. Model Validation

The parametric modeling of the geometry shape design was conducted using tools for
this part, which were Rhino and Grasshopper software, via integration with some plugins,
namely Ladybug and Honeybee, with a set of integrated software, such as OpenStudio,
EnergyPlus, Radiance, Daysim, used for daylighting and energy simulation. As shown in
Figure 6, the first case study block presents the whole mass of the Pediatric Ward geometry
in the hospital. Due to the simulation time and difficulties, a single-zone room sample
with dimensions of 3.0 m × 3.0 m × 3.20 m (length × depth × height) was chosen for the
simulation. The 3D model was developed in Rhinoceros according to the existing material
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characteristics of a building. Then, the EnergyPlus materials of the existing base case were
defined to adjust the basic parameters in Grasshopper. The exterior wall was composed
of alveolar bricks and windows with single glazing without shading devices, and Table 3
summarizes the physic-optical properties of the materials in the patient room; these values
are used as the input for the simulations.
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Table 3. Physic-optical properties of building materials used for the simulation model.

Rad Material Type
(Layers)

Reflectance/
Transmissivity *

White plaster 0.80
Interior plaster 0.80

Floor 0.40
Ceiling 0.80

Window wood 0.25
Glass material (Single glazing) * 0.90

* Transmissivity is only for Glass material.

The validation part is a fundamental step to determine the precision of the simulation
results, especially when dealing with daylighting performance simulation, due to the
difficulties of prediction accuracy. For daylight validation, there are a few documents in
the procedure to follow, which makes it difficult to determine the accuracy of errors, and
there is not a specific standard established by researchers. However, it is necessary to refer
to the recommendations of recent studies recognized worldwide that followed the same
approach in validation-related work [25]. The graph in Figure 7 describes the comparison
of illuminance measured and simulated values across the work plane. Firstly, to compare
the measurement data and the simulation results, it is necessary to calculate the relative
error (RE), which is used to evaluate the error accuracy and was calculated as:

RE =
(Mi− Si)

Mi
× 100% (1)

As shown in Table 4, the Mi is the measured illuminance value and Si is the corre-
sponding simulated illuminance value for each measurement point [25,29]. A percentage
of error less than 5% is necessary for energy and thermal validation [31,32]; however, for
daylight validation, previous studies have shown that 20–30% relative error in daylight
simulation results has been considered acceptable [33]. Table 4 describes the relative er-
ror values for most of the measurement and simulated illuminance values, which were
less than 20% in this study. The errors were thus considered acceptable according to the
recommendations of recent studies.
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Figure 7. Comparison of measured and simulated illuminance levels in the patient room cases.

Table 4. Measured and simulated illuminances calibration and Relative Error (RE) in December at
9:00 h, 12:00 h, and 16:00 h.

Time Room Measured Average
Illuminance

Simulated Average
Illuminance

Relative Error
(RE)

Room 1 475.33 493.77 −0.89
9:00 h Room 2 314.33 277.88 11.59

Room 3 428.22 477.44 −11.49

Room 1 730 820.22 −12.36
12:00 h Room 2 536.33 546.55 −1.91

Room 3 505,44 651.22 −28.84

Room 1 143.22 152.33 −6.36
16:00 h Room 2 134.44 135.66 −0.91

Room 3 132.66 128.33 3.26

For further comparison between the measured and simulated results, one more error
calculation was carried out, namely, the statistical mean bias error (MBE) (1) and the coeffi-
cient of variation root mean squared error CV (RMSE) (2) as mentioned in the ASHRAE
14-2014 guideline [34–36]. The MBE and CV (RMSE) are two statistical indices that de-
fine the similarity or difference between two values, which were used in this study for
illuminance comparisons of the measured and simulated data [33].

MBE =
∑n

i=1(Mi− Si)
∑n

i=1 Mi
× 100% (2)

where Mi is the measured value and Si is the simulated value at time interval I. n is the
total number of values used for the calculation and ȳ is the mean value of measured data.

According to Reinhart and Breton [35], if MBE is less than 15% and RMSE is less
than 35%, the results obtained are considered accurate. However, A. McNeil and E.S.
Lee [36] reported absolute values of MBE below 13% and RMSE below 23%. Reinhart and
Anderson [33] found that MBE ranged between 8 and 17%, while RSME ranged from 24 to
40%. In another study, Reinhart and Walkenhorst [37] found the MBE and the CV (RMSE)
were 20% and 32%, respectively. As shown in Figure 8, the obtained values for MBE and
CV (RMSE) in this study were −34.90% and 17.84%, respectively, in the first patient room,



Sustainability 2022, 14, 12652 9 of 20

−15.18% and 21.08% in the second patient room, and −25.48% and 20.81% in the third
patient room. Therefore, in all cases, absolute MBE and RMSE were in the range of previous
studies’ values. These results show that the simulation method can accurately generate a
realistic model and is thus valid. Finally, without further calibration, the validation step for
the December period produced acceptable results for this model. This allows the use of
optimized indoor daylight performance strategies in terms of illuminance, which reaches
the recommended values.
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2.4. Multi-Objective Optimization
2.4.1. Design Process Based on Optimization Algorithm

The optimization objectives in this study were to minimize the Energy Use Intensity
(EUI) and achieve maximum spatial daylight autonomy (sDA) and Useful Daylight lumi-
nance (UDI). Figure 9 describes the algorithmic design process of software and plug-ins
coupled in the workflow; it was developed in Rhino/Grasshopper with the integration
of plugins to fulfill the objectives of this study. Rhino was used as modeling tool and
Grasshopper as a parametric design tool for daylight analysis and energy performance
applications. Furthermore, Honeybee and Ladybug were utilized as the main environmen-
tal plug-ins to obtain energy and daylight simulation feedback. Moreover, optimization
was carried out using a multi-objective tool to find the best design schemes, namely the
Octopus plugin. In Figure 10, the workflow described above illustrates the overall process
of the simulation framework. The Energy and Daylight Simulation module was performed
and is detailed below with the inputs coupled in this design. The EUI, sDA, and UDI
objectives of the samples were obtained in the module with the Octopus plugin using the
Pareto optimality theory with an evolutionary algorithm, which was used to acquire the
optimal schemes and parameters and output from the workflow design module.
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2.4.2. The Parametric Optimized Configuration

Focusing on the characteristics of the existing patient room in the Pediatric Ward, a Ki-
netic configuration (a generative performing facade design) was modeled with Rhinoceros
3D modeling software. To solve the visual discomfort problems, this was implemented in
the South orientation where light values higher than the values recommended by the three
room cases of field measurements exist. This means that the patients in the south-facing
rooms are more exposed to excessive light and glare. Thus, consideration must be given
to the impact of facade design features, including sun-shading devices, which should be
required in patients’ rooms to prevent glare and provide patients with adequate visual
comfort. Figure 11 describes the development of the facade geometry to reproduce various
kinetic configuration states between the unresponsive and adaptive states on three reacting
steps. It shows the responsive modules rotating from angles of 0◦ to 90◦. The modules
have an adaptive behavior, which allows all of the hexagonal cells on each symmetrical
axis to rotate regarding the sun’s position with a parametric algorithm. The aim of this
configuration is to acquire a strategy for a responsive shading device for patient rooms,
which was applied to a completely glazed southern facing room (WWR: 90%) and can be
applied in different building orientations. The kinetic facade design solution can ensure
sufficient indoor daylight without glare and discomfort. This “smart” facade automates
the modules to rotate with the sun’s position and create shade.

2.4.3. Parameters Adjusted during the Optimization Process

After the configuration load and schedule variables were assigned, the optional combi-
nation of parameters was adjusted during the optimization process. As seen in Table 5, the
parameters used in the optimization process were chosen for their potential to develop a
building performance simulation. Consequently, as there were manual adjustments of these
parameters detailed below, a multi-objective optimization process was performed using
the Octopus plug-in integrating these variables, which were divided into two categories:

• The fixed adjusting parameters: The glazing ratio, glass-type material, wall construc-
tion materials, and external kinetic module material.

• The adaptive adjusting parameters: The module’s rotating angle and width, the
module’s distance to glass, and the sun’s position angle axis depending on day, month,
and hour inputs.
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Figure 11. Parametric modelling facade development, kinetic configuration render in Rhino-
grasshopper software.

Table 5. Parameters integrated during the optimization process of the configuration model.

Decision Variables Settings Range

Glazing ratio Double glazed low-E (vacuum) 90◦

Glass type material Double glazed low-E (vacuum) [0, 2] a

Wall’s materials Double red brick with Isolation 1

Module Radiance Material [0, 1] b

The adaptive parameters Modules rotating angle [0–90◦]
Module distance to glass [1–50 cm]

Sun’s position angle [0–180◦]
a 0: Double pane-low emissivity with 64%; 1: Double pane-clear with 80%; 2: Single pane clear with 86%.; b 0:
Metal; 1: Plastic.

3. Results and Discussion
3.1. Base Case Building Simulation

Regarding the analysis of DF, the results show that most of the Daylight Factor values
in the patient room with the south-facing orientation are above 1% (the minimum recom-
mended level in a patient room) [6,38]. These values occur particularly in the points located
in front of the window (see Figure 12) due to the visual discomfort caused by the absence
of shading devices, therefore the excessive daylight and solar irradiation can be controlled
to lower than 1% with a shading devices system [39,40].

After the determination of the optimization objectives (sDA, UDI, EUI), and once
the simulation model had been validated, a base case analysis was carried out. The
results illustrate that the average value of sDA, which defines how much daylight of
300 lux is received by the indoor environment during more than half of its occupied hours
(300 lux/50%), is 44.3% [41,42]. This value was likely attained because there are no shading
devices located in the southern elevation. According to Ahmed Sherif et al. [19], the
sDA percentage should occur in approximately 75% of the total room area. Therefore,
the component used in sDA calculations is the window resource, which lets the majority
of direct and reflected sunlight pass into the room. With regard to UDI, which aims to
determine the percentage of the annual number of hours when illuminance is at a precise
point, it is reached by daylight within an acceptable range, as well as the total number of
occupied hours [43,44]. For patient rooms, the recommended UDI metric is between 100
and 300 lux; according to the recommendations, the maximum lighting level is 300 lux;
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for this case, the average UDI is 35.2% [45]. There is unequal distribution, and 70% of the
surface of the plane surface in the room acquires less than 30% UDI, whereas the areas
closest to the windows acquire UDI at levels of over 100%. Finally, regarding the EUI metric,
the results show that 158.1 Kwh/m2/year is the annual average of Energy Use Intensity
consumption for heating and cooling of the base case model. Compared to the other metrics,
the energy simulation achieved reasonable results due to the medium WWR ratio in the
southern elevation and the fact that a lower EUI indicates better energy efficiency. Thus,
the next step of the optimized model will be to minimize the EUI values.
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3.2. Optimized Model Simulation
3.2.1. The Objective Function

A multi-objective optimization framework was conducted to analytically assess differ-
ent building design parameters, using Spatial Daylight Autonomy (sDA), Useful Daylight
Illuminance (UDI) and Energy Intensity Use (EUI) as the main objectives of daylight and
energy performance. The objective function is used to represent any optimization problem,
which was calculated from the Pareto Front diagram performed using Octopus. According
to Konis et al. [38], the following fitness function, shown in Equation (3), was used to
precisely reach the optimum solutions in the Pareto front scheme, while in this case, the
SDA, UDI, and EUI are the objectives of this research. The two first objectives should be
maximized and the second one should be minimized.

y = (sDAi− sDAmin)C1− 1(EUIi− EUImin)C2 + (UDIi−UDImin)C3 (3)

where I is the result of iteration, min is the minimum value of the optimization set, and
max is the maximum value of the optimization set.
C1 = 100 ÷ (sDAmax − sDAmin); C2 = 100 ÷ (EUImax − EUImin); C3 = 100 ÷ (UDImax −
UDImin)

In this study, the values of the objective function were calculated for some solutions in
the Pareto front diagram, as shown in Table 6 (Section 3.2.2), which represent the optimum
solutions for the performance of daylighting and energy performance. The results of C1,
C2, and C3 are C1 = 2.60, C2 = 30.10, and C3 = 7.27, respectively.
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Table 6. Fitness function values and their characteristics of Pareto Front optimum Solutions.

Y sDA% UDI%
EUI

KWH/m2/Year Wall Construction Glass Material
Shading Device

Distance Angle

90.8 94.3 64.9 144.3 Double brick with air cavity Double glazed low-E (vacuum) 0.20 −45◦

87.8 94.3 64.9 144.4 Double brick with air cavity Double glazed low-E (vacuum) 0.20 −45◦

94.2 91.0 68.2 144.7 Double brick with air cavity Double glazed low-E (vacuum) 0.19 −45◦

94.5 91.1 68.2 144.7 Double brick with air cavity Double glazed low-E (vacuum) 0.19 −45◦

92.6 90.0 68.3 144.6 Double brick with air cavity Double glazed low-E (vacuum) 0.19 −30◦

99.5 84.7 69.6 144.0 Double brick with air cavity Double glazed low-E (vacuum) 0.16 −30◦

99.6 83.7 69.9 144.0 Double brick with air cavity Double glazed low-E (vacuum) 0.15 −30◦

97.6 90.6 70.5 145.1 Double brick with air cavity Double glazed low-E (vacuum) 0.18 −30◦

69.4 81.4 69.9 145.1 Double brick with air cavity Double glazed low-E (vacuum) 0.16 −30◦

62.8 76.3 70.8 145.1 Double brick with air cavity Double glazed low-E (vacuum) 0.14 −25◦

50.6 69.3 72.9 145.4 Double brick with air cavity Double glazed low-E (vacuum) 0.12 −15◦

51.5 68.0 73.5 145.4 Double brick with air cavity Double glazed low-E (vacuum) 0.10 −15◦

3.2.2. Pareto Front Scheme and Optimal Solutions

Pareto optimization is defined according to Yuan Fang [8] and is a solution to deter-
mine the trade-off front among each objective, also known as the Pareto front diagram [39].
In the Pareto optimization approach, to seek the best-qualified Pareto for analysis, there
are many generations of genomes (Solutions) that should be generated. In this study, as
shown in Figure 13, there are 15 generations produced; every generation contained 50 fitter
genomes than the previous ones. As seen in Figure 13, it can be noted that there is an
improvement in each generation compared to the previous one. The improvement occurs
for the values of sDA, UDI, and EUI, therefore, the objective function will also be increased.
The objective fitness function values (Y value) for the optimum solutions for the 15 genera-
tions in descending order are 99.6, 99.5, 97.6, 94.5, 94.2, 92.6, 90.8, 87.8, 69.4, 62.8, 51.5, and
50.6, respectively. Regarding the maximum value of sDA and UDI, in the first generation,
it was 73.38 and 70.11, respectively, and it increased significantly to 94.58 and 78.30 in the
last generation. However, for the minimum value of EUI, in the first generation, it was
158.2 Kwh/m2/year, while it reached up to 144.05 Kwh/m2/year in the last generation as
the optimum value of energy consumption.

After the optimization search of 15 generations, the Pareto front chart (see Figure 14)
showed a tendency of convergence among the 50 non-dominated solutions in the last
generation of Pareto. The figure shows 3D scatter, with sDA on the x-axis, UDI on the
y-axis, and EUI on the z-axis. Transparency squares in the Pareto diagram represent older
generations, and when the squares become darker, the number of iterations increases. The
solutions shown in red squares are non-dominated and indicate the optimal solutions,
while squares in green are dominated solutions [15,17]. The best solutions can be found in
squares nearest to the center. The genetic algorithm optimization process shows significant
benefits in multi-objective problem solving. Thus, the non-dominated solutions with higher
sDA and UDI values indicate a tendency to increase and a tendency to decrease EUI results.
This illustrates that the objective of this Pareto chart is to seek well-balanced design options
that maximize daylight performance and minimize energy cost. As shown in Table 6, a
number of solutions have been selected from the closest non-dominated solutions that
represent various optimized cases. All of these solutions of the Pareto optimal front and
their objective fitness function are calculated and listed below with all parameters and
simulation results.
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3.3. The Comparative Analysis Findings

To further understand the comparison between the objective value distribution of the
base case model and that of the non-dominated solutions (Table 6), a box plot is displayed
in Figure 15. The sDA and UDI values (unit: %) of the base case model remained stable
at the corresponding values of 44.3 and 35.2, respectively. However, for the sDA and UDI
results of non-dominated solutions, they were distributed across the range of 68.0 to 94.3%,
with a median value of 84.7% for sDA values, and 64.9 to 73.2% with a median of 69.9%
for UDI values. The EUI values (unit: Kwh/m2/year) of the base case model remained
static at 158.1. The EUI values of non-dominated solutions were evenly distributed across a
range of 144.0 to 145.4 Kwh/m2/year, with a median of 144.7 Kwh/m2/year. The results
revealed that the achievement of non-dominated solutions was better compared to the
original design, which confirms that the proposed approach was highly effective and
reliable. Through the evaluation of a typical patient room that was modeled based on the
original model characteristics, the results showed low levels of daylight throughout the day,
making the room highly reliant on artificial lighting and preventing hospitalized patients
from benefiting from daylight. However, the results from the optimization model showed
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an improvement in the performance of the dynamic facade compared to the existing case
study with an increase in sDA and UDI and lower energy consumption. These findings
illustrate how this dynamic shading system, when combined with other parameters such
as efficient glazing and wall construction materials, can enhance the daylight availability of
indoor environments in such a hot and dry region.
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3.4. The Absolute Optimum Solution

The relative optimal solution (the best fit) was selected from the non-dominated
solution set, which achieved high performance and tradeoffs among the three objectives
and achieved the highest fitness function score [15]. As shown in Table 6, the highest
fitness function reached was 99.6 (solution 7). During the last generation, it produced great
improvements for sDA, UDI, and EUI. sDA and UDI achieved values of 83.7 and 69.9%,
respectively, which is lower than the optimum daylighting solution values. Meanwhile,
the energy use intensity has a lower value with 144.0 Kwh/m2/year in the optimum
values of EUI. As seen in Figure 16, daylighting is analyzed in three different parametric
modules from unresponsive and responsive positions, which depend on the solar angle
and orientation parameters. The results indicate that the attached kinetic configuration
can reduce direct sunlight more than a non-shaded facade during occupied hours, while
maintaining the required level of indoor daylight above 50% across the work plane. This
means that the daylighting performance for patients is very suitable, especially because this
mechanism can be controlled automatically depending on the sun’s angle and orientations.
This means the parametric configuration can be used to generate patient room designs that
are effective and provide sufficient and comfortable daylighting.

3.4.1. Daylighting Optimum Solution

Figure 17 describes the distribution of the spatial daylight autonomy and useful
daylight illuminance in the patient room after the optimization process, with a considerable
improvement of sDA (300 Lux/50%) and UDI (100–300 lux) in the room. The optimum
solution in daylighting performance reached the highest value in the selected number of
optimum solutions; it achieved 94.5% for sDA average and 78.3% for UDI. In comparison to
the base case, these high values of SDA and UDI were achieved because of the integration of
the double-glazing low-E and the shading device configuration with a uniform distribution
of values. The results showed an increased daylight distribution in the case study, and
approximately 80% of the patient room surface achieved between 80% and 100% values of
UDI, which indicates an important improvement in daylight levels in the room.
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3.4.2. Energy Optimum Solution

As shown in Figure 18, the distribution of EUI over the year illustrates that the
highest energy consumption during the year occurs in June, July, and August, because
of the high temperatures in this hot and arid climate, which requires the use of cooling
systems. However, compared to the base case model, EUI decreased successfully with the
optimization model, from 158.1 Kwh/m2/year to 144.0 Kwh/m2/year, which shows a
14.1% improvement in the EUI value.



Sustainability 2022, 14, 12652 17 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 20 
 

 471 
Figure 17. Daylight optimum solution simulation of Kinetic configuration spatial daylight auton- 472 
omy and Useful daylight illuminance (sDA, UDI). 473 

3.4.2. Energy Optimum Solution 474 
As shown in Figure 18, the distribution of EUI over the year illustrates that the high- 475 

est energy consumption during the year occurs in June, July, and August, because of the 476 
high temperatures in this hot and arid climate, which requires the use of cooling systems. 477 
However, compared to the base case model, EUI decreased successfully with the optimi- 478 
zation model, from 158.1 Kwh/m2/year to 144.0 Kwh/m2/year, which shows a 14.1% im- 479 
provement in the EUI value. 480 

 481 

 482 
Figure 18. Annual EUI Energy Use Intensity consumption for cooling and heating of the optimum 483 
solution (Source: Author using Ladybug tool). 484 

4. Conclusions 485 
From the analysis results, this paper has demonstrated that parametric workflow and 486 

genetic algorithm optimization can be used effectively to generate an innovative facade 487 
design of patient rooms that shows enhanced daylight performance in the early scheme 488 
design stage. 489 

First, this study assessed the quality of indoor daylight in a typical case study of a 490 
patient room in the Pediatrics Ward of Hakim Saadan Hospital in Algeria. The results 491 

Figure 18. Annual EUI Energy Use Intensity consumption for cooling and heating of the optimum
solution (Source: Author using Ladybug tool).

4. Conclusions

From the analysis results, this paper has demonstrated that parametric workflow and
genetic algorithm optimization can be used effectively to generate an innovative facade
design of patient rooms that shows enhanced daylight performance in the early scheme
design stage.

First, this study assessed the quality of indoor daylight in a typical case study of a pa-
tient room in the Pediatrics Ward of Hakim Saadan Hospital in Algeria. The results showed
that the interior daylight performances in south-, east-, and west-facing patient rooms are
superior to the recommended values during the morning, particularly in the areas nearest
to windows. However, in the afternoon, the average illuminance levels are under the recom-
mended values in the depth of the room during summer (June measurements) compared to
winter, when there are higher levels due to the hot and arid climate. Meanwhile, the results
of the winter season (December measurements) illustrate low levels of daylight during
occupied hours, which cause the patient rooms to consume high amounts of artificial light
and prevent the patients from benefitting from daylight. This means that the south- and
west-facing patient rooms in the Pediatric Ward have an excessive illuminance level due to
the exposure to visual discomfort and glare, which can negatively affect patient health and
cause exhausting conditions.

Second, to improve daylight performance while reducing energy consumption, this
study conducted a multi-objective optimization model using Grasshopper and Rhinoceros
software to identify a great number of unique designs of shading devices that lead to the
maximization of daylighting performance and minimization of energy cost. The major
findings from this optimization process compared to the base case model revealed that the
performance of a dynamic facade system improved the conditions compared to options
without shading systems. It showed an increase in sDA and UDI, whilst minimizing EUI
and maintaining satisfaction in a glare-free, indoor daylight environment for patients.
The genetic algorithm approach used in this workflow gradually improved daylighting
performance during the optimization process through 15 generations. By the end of
the optimization process, 50 non-dominated solutions were defined, which included the
selected optimum solutions that all met the targeted criteria.

The study revealed how the integration and implementation of parametric analysis
with evolutionary algorithms can be considered a reliable strategy to reach optimum
solutions in building environmental performance problems for designers.
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Finally, the limitations include that this study only optimized a single patient room for
a specific case study. The optimization application prospect in buildings still needs to be
further improved. Future studies can examine a diverse range of optimization criteria by
combining thermal and energy indicators with visual comfort ones. Despite limitations, this
approach showed the potential to respond to changes with design alternatives and include
facade design solutions, leading to a substantial daylight performance improvement. This is
particularly important when dealing with this crucial case study in the patient room sample
where the physical environment has a great impact on patients’ health and productivity.
Therefore, improving patient health should be involved in all features of building design.

Author Contributions: Conceptualization, S.B.; methodology, S.B., M.A.K., N.Z. and F.N.; software,
S.B., M.A.K. and A.B.; validation, S.B., A.B., M.A.K. and F.N.; formal analysis, S.B.; investigation, S.B.
and M.A.K.; resources, S.B., M.A.K., N.Z. and F.N.; data curation, S.B. and M.A.K.; writing—original
draft preparation, S.B.; writing—review and editing, S.B., M.A.K., N.Z. and F.N.; visualization, S.B.
and A.B; supervision, M.A.K., N.Z. and F.N.; project administration, S.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this article can be obtained from the correspond-
ing author upon request.

Acknowledgments: The authors gratefully acknowledge the support of both the Laboratory of
design and modeling of architectural forms and ambiances (LACOMOFA) and Mohamed Khider
University (for instruments of measurements and software). They would also like to acknowledge
the staff of Hakim Sadaan Hospital for being very cooperative during the on-site measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Joon, H.C. Study of the Relationship between Indoor Daylight Environments and Patients Average Length of Stay (ALOS) in

Healthcare Facilities. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2005.
2. Alzoubi, H.; Al-Rqaibat, S.; Bataineh, R.F. Pre-versus post-occupancy evaluation of daylight quality in hospitals. Build. Environ.

2010, 45, 2652–2665. [CrossRef]
3. Sherif, A.; Sabry, H.; Wagdy, A.; Arafa, R. Daylighting in hospital patient rooms: Parametric workflow and genetic algorithms for

an optimum façade design. In Proceedings of the 14th Conference of International Building Performance Simulation Association,
Hyderabad, India, 7–9 December 2015.

4. Dickerman, K.; Barach, P. Designing the Built Environment for a Culture and System of Patient Safety—A Conceptual, New Design
Process, 2nd ed.; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008; pp. 1–11. Available online: https:
//pubmed.ncbi.nlm.nih.gov/21249898/ (accessed on 4 February 2022).

5. Joseph, A. The impact of light on outcomes in healthcare settings. Cent. Health Des. 2006, 2, 1–12. Available online: http:
//www.healthdesign.org/sites/default/files/CHDIssuePaper2.pdf (accessed on 15 January 2022).

6. Alzoubi, H.; Al-Rqaibat, S. The effect of hospital design on indoor daylight quality in children section in King Abdullah University
Hospital, Jordan. Sustain. Cities Soc. 2015, 14, 449–455. [CrossRef]

7. Energy Star. Available online: https://www.energystar.gov/buildings/benchmark/understand_metrics/what_eui (accessed on
13 January 2022).

8. Yang, F. Optimization of Daylighting and Energy Performance Using Parametric Design, Simulation Modeling, and Genetic
Algorithms. Ph.D. Dissertation, Faculty of North Carolina State University, Raleigh, NC, USA, 2017.

9. Nocera, F.; Gagliano, A.; Detommaso, M. Energy performance of cross-laminated timber panel (X-Lam) buildings: A case study.
Math. Model. Eng. Problems. 2018, 5, 175–182. [CrossRef]

10. Borgstein, E.; Lamberts, R.; Hensen, J. Evaluating energy performance in non-domestic buildings. Energy Build. 2016, 128, 734–755.
[CrossRef]

11. Niclas, N.R. Using genetic algorithms in parametric building facade design to create different atmospheres. Ph.D. Dissertation,
Aalborg University, Aalborg, Denmark, 28 May 2019.

12. MathWorks. Available online: https://www.mathworks.com/discovery/genetic-algorithm.html (accessed on 9 January 2022).
13. Zhang, J.; Liu, N.; Wang, S. A parametric approach for performance optimization of residential building design in Beijing. Build.

Simul. 2019, 13, 223–235. [CrossRef]

http://doi.org/10.1016/j.buildenv.2010.05.027
https://pubmed.ncbi.nlm.nih.gov/21249898/
https://pubmed.ncbi.nlm.nih.gov/21249898/
http://www.healthdesign.org/sites/default/files/CHDIssuePaper2.pdf
http://www.healthdesign.org/sites/default/files/CHDIssuePaper2.pdf
http://doi.org/10.1016/j.scs.2014.08.008
https://www.energystar.gov/buildings/benchmark/understand_metrics/what_eui
http://doi.org/10.18280/mmep.050307
http://doi.org/10.1016/j.enbuild.2016.07.018
https://www.mathworks.com/discovery/genetic-algorithm.html
http://doi.org/10.1007/s12273-019-0571-z


Sustainability 2022, 14, 12652 19 of 20

14. Hong, X.; Shi, F.; Wang, S.; Yang, X.; Yang, Y. Multi-objective optimization of thermochromic glazing based on daylight and
energy performance evaluation. Build. Simul. 2021, 14, 1685–1695. [CrossRef]

15. Toutou, A.M.Y. Parametric approach for multi-objective optimization for daylighting and energy consumption in early stage
design of office tower in new administrative capital city of Egypt. In The Academic Research Community Publication; IEREK: London,
UK, 2019; Volume 3, pp. 1–13. [CrossRef]

16. Toutou, A.M.Y.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy performance in
residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608. [CrossRef]

17. Sun, C.; Liu, Q.; Han, Y. Many-Objective Optimization Design of a Public Building for Energy, Daylighting and Cost Performance
Improvement. Appl. Sci. 2020, 10, 2435. [CrossRef]

18. Zhang, A.; Bokel, R.; Dobbelsteen, A.V.D.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance
of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384.
[CrossRef]

19. Sherif, A.; Sabry, A.; Wagdy, I.; Mashaly, I.; Arafa, R. Shaping the slats of hospital patient room window blinds for daylighting
and external view under desert clear skies. Sol. Energy 2016, 133, 1–13. [CrossRef]

20. Wagdy, A.; Shalaby, M. Optimizing the external and internal reflectors and ceiling geometry for a deep side-lit space: Using
validated daylight simulation with genetic optimization algorithm in Cairo. In Proceedings of the Sustainable Building Conference
SB13, Cairo, Egypt, 6 November 2013.

21. Hinkle, L.E.; Wang, J.; Brown, N.C. Quantifying potential dynamic façade energy savings in early design using constrained
optimization, Building, and Environment. Build. Environ. 2022, 221, 109265. [CrossRef]

22. Esteghamati, N.Z.; Sharifnia, H.; Ton, D.; Asiatico, P.; Reichard, G.; Flint, M.M. Sustainable early design exploration of mid-rise
office buildings with different subsystems using comparative life cycle assessment. J. Build. Eng. 2022, 48, 104004. [CrossRef]

23. Gut, P.; Ackerknecht, D. Climate Responsive Buildings: Appropriate Building Construction in Tropical and Subtropical Regions, 1st ed.;
SKAT, Université de Californie: Berkeley, CA, USA, 1993; pp. 193–216.

24. Roudsari, M.S.; Sarith, S. Automating radiance workflows with Python. In Proceedings of the 15th of the Radiance Workshop,
Padua, Italy, 29–31 August 2016.

25. Nocera, F.; Lo Faro, A.; Costanzo, V.; Raciti, C. Daylight Performance of Classrooms in a Mediterranean School Heritage Building.
Sustainability 2018, 10, 3705. [CrossRef]

26. Khadraoui, M.A.; Sriti, L. The effect of cool paints and surface properties of the facade on the thermal and energy efficiency of
buildings in a hot and arid climate. J. Mater. Eng. Struct. 2019, 6, 127–140. Available online: https://revue.ummto.dz//index.
php/JMES/article/view/1828 (accessed on 22 October 2021).

27. Meteonorm, V.8. Available online: https://meteonorm.com/en/meteonorm-version-8 (accessed on 2 March 2021).
28. Chen, Y.; Liu, J.; Pei, J.; Cao, X.; Chen, Q.; Jiang, Y. Experimental and simulation study on the performance of daylighting in an

industrial building and its energy saving potential. Energy Build. 2014, 73, 184–191. [CrossRef]
29. Costanzo, V.; Nocera, F.; Evola, G.; Buratti, C.; Lo Faro, A.; Marletta, L.; Domenighini, P. Optical characterization of historical

colored stained glasses in winter gardens and their modeling in daylight availability simulations. Sol. Energy 2022, 243, 22–34.
[CrossRef]

30. Lo Verso, V.R.M.; Giuliani, F.; Caffaro, F.; Basile, F.; Peron, F.; Dalla Mora, T.; Bellia, L.; Fragliasso, F.; Beccali, M.; Bonomolo, M.;
et al. Questionnaires and simulations to assess daylighting in Italian university classrooms for IEQ and energy issues. Energy
Build. 2021, 252, 111433. [CrossRef]

31. Maile, T.; Bazjanac, V.; Fischer, M. A method to compare simulated and measured data to assess building energy performance.
Build. Environ. 2012, 56, 241–251. [CrossRef]

32. Reinhart, C.F.; Andersen, M. Development and validation of a Radiance model for a translucent panel. Energy Build. 2006, 38,
890–904. [CrossRef]

33. Ruiz, G.; Bandera, C. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [CrossRef]
34. Reinhart, C.F.; Breton, P.F. Experimental Validation of Autodesk 3ds Max Design 2009 and Daysim 3.0. J. Illum. Eng. Soc. 2009, 6,

7–35. [CrossRef]
35. Tregenza, P.R. Uncertainty in daylight calculations. Light. Res. Technol. 2016, 49, 829–844. [CrossRef]
36. McNeil, A.; Lee, E.S. A validation of the Radiance three-phase simulation method for modeling annual daylight performance of

optically complex fenestration. J. Build. Perform. Simul. 2012, 6, 24–37. [CrossRef]
37. Reinhart, C.F.; Walkenhorst, O. Validation of dynamic RADIANCE-based daylight simulations for a test office with external

blinds. Energy Build. 2001, 33, 683–697. [CrossRef]
38. Konis, K.; Games, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design

support. Sol. Energy 2016, 125, 161–179. [CrossRef]
39. Thomas, R. Environmental Design an Introduction for Architects and Engineers, 3rd ed.; Routledge: London, UK, 2005; pp. 96–113.
40. Andersen, P.A.; Duer, L.; Goldberg, P.; Roy, N. Daylight, Energy and Indoor Climate—Basic Book, 3rd ed.; VELUX: Horsholm,

Denmark, 2014; pp. 14–23.
41. Pellegrino, A.; Cammarano, S.; Lo Verso, V.R.M.; Corrado, V. Impact of daylighting on total energy use in offices of varying

architectural features in Italy: Results from a parametric study. Build. Environ. 2017, 113, 151–162. [CrossRef]

http://doi.org/10.1007/s12273-021-0778-7
http://doi.org/10.21625/archive.v3i1.426
http://doi.org/10.1016/j.aej.2018.04.006
http://doi.org/10.3390/app10072435
http://doi.org/10.1016/j.enbuild.2017.01.048
http://doi.org/10.1016/j.solener.2016.03.053
http://doi.org/10.1016/j.buildenv.2022.109265
http://doi.org/10.1016/j.jobe.2022.104004
http://doi.org/10.3390/su10103705
https://revue.ummto.dz//index.php/JMES/article/view/1828
https://revue.ummto.dz//index.php/JMES/article/view/1828
https://meteonorm.com/en/meteonorm-version-8
http://doi.org/10.1016/j.enbuild.2014.01.030
http://doi.org/10.1016/j.solener.2022.07.043
http://doi.org/10.1016/j.enbuild.2021.111433
http://doi.org/10.1016/j.buildenv.2012.03.012
http://doi.org/10.1016/j.enbuild.2006.03.006
http://doi.org/10.3390/en10101587
http://doi.org/10.1582/LEUKOS.2009.06.01001
http://doi.org/10.1177/1477153516653786
http://doi.org/10.1080/19401493.2012.671852
http://doi.org/10.1016/S0378-7788(01)00058-5
http://doi.org/10.1016/j.solener.2015.12.020
http://doi.org/10.1016/j.buildenv.2016.09.012


Sustainability 2022, 14, 12652 20 of 20

42. Tabadkani, A.; Banihashemi, S.; Hosseini, M.R. Daylighting and visual comfort of oriental sun responsive skins: A parametric
analysis. Build. Simul. 2018, 11, 663–676. [CrossRef]

43. Nabil, A.; Mardaljevic, J. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol.
2005, 37, 41–57. [CrossRef]

44. Mardaljevic, J.; School of Civil and Building Engineering, Loughborough University, Loughborough, UK. Personal communication,
2015.

45. Mardaljevic, J. Daylight, Indoor Illumination, and Human Behavior. In Encyclopedia of Sustainability Science and Technology; Meyers,
R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 2804–2846.

http://doi.org/10.1007/s12273-018-0433-0
http://doi.org/10.1191/1365782805li128oa

	Introduction 
	Methodology 
	Case Study Description and the Experimental Campaign 
	Case Study Description 
	Building Case Study Description 

	In Situ Measurement Protocol 
	Model Validation 
	Multi-Objective Optimization 
	Design Process Based on Optimization Algorithm 
	The Parametric Optimized Configuration 
	Parameters Adjusted during the Optimization Process 


	Results and Discussion 
	Base Case Building Simulation 
	Optimized Model Simulation 
	The Objective Function 
	Pareto Front Scheme and Optimal Solutions 

	The Comparative Analysis Findings 
	The Absolute Optimum Solution 
	Daylighting Optimum Solution 
	Energy Optimum Solution 


	Conclusions 
	References

