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Abstract: Current fully probabilistic approaches to performance-based earthquake engineering
describe structures’ behavior under a wide range of seismic hazard levels. These approaches require
a detailed representation of ground motion (GM) uncertainty at all considered hazard levels, yet
different GM selection methods lead to different estimations of structural performance. This paper
presents a holistic review of the current practices in GM representation and selection for structural
demand analysis through a performance-based lens. The multidisciplinary nature of GM selection,
ranging from earth science to engineering seismology and statistics, has created a preponderance of
literature to find the best practice for probabilistic assessment of structures in terms of computational
efficiency and statistical accuracy. Many of these studies focus individually on GM selection or
structural analysis, and the relatively scarce review papers either focus on code-based GM selection
or do not specifically address risk-based evaluations by overlooking the interaction between GM
selection and structural analysis. This paper aims to aid researchers in selecting appropriate GMs
as part of a statistically valid and robust probabilistic demand analysis without performing an
exhaustive literature review. Discussion on the available computational tools and their trade-offs
for risk-based assessment of single structures is provided. While the problem-specific nature of GM
selection means that no pre-selected set of GM/IM is applicable to all cases, the comprehensive
narrative of this paper is expected to aid analysts in reaching a more informed decision.

Keywords: ground motion selection; seismic intensity; performance-based earthquake engineering;
hazard-consistent risk assessment; literature review

1. Introduction

In the last decade, performance-based earthquake engineering (PBEE) introduced a
paradigm shift from a prescriptive approach, which only accounts for implicit life safety
objectives through ductility and strength requirements, to one that directly quantifies
performance under different levels of hazard intensities [1–3]. Bertero and Bertero picture
PBEE as a framework that monitors both structural and non-structural components at the
given seismic excitation levels to ensure they are not damaged beyond pre-specified levels
with a certain reliability [4]. Hence, the wide scope of PBEE requires that all important
sources of uncertainties be included to accurately capture the structure’s reliability [5].
While PBEE is usually represented as a series of analyses linked by generic “pinch-point
variables”, the actual implementation of the approach is significantly more complex, as
shown in Figure 1.

The first two steps of PBEE, hazard analysis and structural analysis, comprise proba-
bilistic seismic demand analysis (PSDA), which constructs a probabilistic model of struc-
tural response conditioned on the seismic hazard level. Uncertainties in PSDA are attributed
to uncertainties in ground motions (GM) and structural seismic demand. Uncertainty in
GM stems from a seismic source (occurrence of an event, magnitude, distance, epicenter,
and rupture surface), path, and site. Uncertainty in demand depends on ground motion
uncertainty, but additionally accounts for structural modeling uncertainty (e.g., elements
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types that are used to represent actual structure) and structure’s dynamic characteristics
(e.g., damping, reactive mass, and force–deformation behavior) [6]. The incorporation of
uncertainties in PSDA requires performing a large number of structural analyses, com-
monly through time-domain analysis, where PSDA accuracy largely depends on the degree
to which the GMs represent the true seismic hazard.

The current PBEE literature addresses GM selection by (a) finding the most appropri-
ate proxy for GM uncertainty, frequently an Intensity Measure (IM); and (b) matching the
selected proxy to the site hazard. While it is convenient to treat these two steps indepen-
dently for cases where the IM precisely and accurately describes structure’s response (i.e.,
IM is a perfect proxy) at all considered hazard levels, recent studies demonstrate that an
IM’s ability to meet this requirement also depends on the selected GM set [7,8]. Therefore,
this paper will argue that a holistic IM/GM approach is needed.

While a large body of research addresses GM selection, there are three practical
obstacles to finding the most relevant information when performing PSDA:

1. GM treatments are developed separately for numerous applications, leading to a per-
plexing literature. For example, most building codes-based methods use the average
expected seismic loads and minimize the variability between GMs by scaling them to
a predefined design spectrum. In contrast, PBEE preserves the variability between the
selected GMs to estimate the structural response distribution parameters [9–11]. It can
be expected that applying these GM methods out of context will lead to inaccurate
performance estimates.

2. Even for the same application, the scope and trade-offs between different GM selection
methods are unclear or scattered among different references. Various GM uncertainty
proxies and matching methods are presented, and it is believed that if best practices
are followed, all appropriate choices will yield similar results. However, recent
studies [12–14] show that the analyst’s choices will lead to significantly different
estimations of performance.

3. The interaction of GM selection and structural analysis procedure is understudied
because GM suites and structural models are generally developed by two different
parties. However, high-fidelity models used in recent studies challenge the GM
selection methods that are commonly proposed based on simplified models [15,16].
The structure-specific nature of GM/IM selection suggests that a holistic approach is
needed to consider structural analysis and modeling in conjunction with IM and GM
selection methods.

The primary goal of this paper is to facilitate an informed selection of appropriate GMs
to support the PSDA of individual structures. In this regard, a comprehensive review is
presented to discuss the available computational methods, their trade-offs, and their effect
on PSDA. This review aims to tackle the identified gaps by (i) focusing on information only
pertaining to estimating PSDA based on the widely accepted terminology and approaches,
(ii) providing complementary perspectives of proposed methods, and when applicable,
and (iii) analyzing topics relevant to a structural analysis perspective, such as the bias due
to scaling and the required number of records.

The materials covered in this paper are scattered in different sources and, to the best
knowledge of the author, a single review paper does not exist that shares the same scope
and objective. Therefore, this paper can be considered as an overview of all interconnected
topics related to PSDA and is targeted at users with limited exposure to PBEE methodology.
Using this review as a first step can save readers time to re-direct effort at the GM selection
aspects that are more important for their study. In this regard, the structure of this review
paper is organized pragmatically to address the role of GM uncertainties for estimation of
structural response (in comparison to other sources of uncertainty), to select appropriate
proxies to represent GM uncertainty, and to match those proxies to site hazard through GM
selection. Section 2 provides a brief review of PBEE, focusing on the role of GM uncertainty.
Section 3 discusses GM uncertainty representation through IM selection, followed by a
more detailed discussion of two primary approaches of GM selection methods in Section 4.
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Figure 1. An overview of the PBEE framework and analysis options.

2. PBEE Framework

Although the initial idea of probabilistic treatment of structural response was es-
tablished in the 1960s [17], early efforts in “modern” PBEE are commonly traced to the
Vision 2000 report of the Structural Engineers Association of California (SEAOC) in 1995.
This pioneering report (and following guidelines, such as FEMA 273, FEMA 274, and
FEMA 356) redefines a performance objective as the expected damage level under a given
earthquake shaking level, where damage is measured in terms of local criteria imposed
at component-level deformation and strength [18–20]. The Pacific Earthquake Engineer-
ing Research (PEER) Center refined and extended the scope of the first-generation of
performance-based guidelines in their fully probabilistic framework. As shown in Figure 1,
the PEER-PBEE framework (herein referred to as PBEE) consists of four distinct stages:
hazard analysis, structural analysis, damage analysis, and loss analysis. The framework
relies on the total probability theorem to propagate uncertainties (i.e., measuring the im-
pact of input randomness on response randomness) from each stage using intermediate
random variables (i.e., pinch point variables). It implicitly assumes that the result of each
stage is solely dependent on the immediate predecessor stage, commonly referred to as
the Markovian assumption. In this manner, the mean annual frequency of performance
metrics expressed as decision variables (DV) (e.g., financial or human loss, downtime) can be
expanded using the “pinch points” of each stage, which are ground motion’s intensity mea-
sures (IM), structure’s engineering demand parameters (EDP), and component’s damage state
(DS), respectively [21]. A series of conditional distributions are convolved as follows [22]:

λ(DV) =
y

G(DV|DM)|dG(DM|EDP)||dG(EDP|IM)||dλ(IM)| (1)

where G(X|Y) is the conditional complementary cumulative distribution of X given Y,
and λ is the mean annual frequency of exceeding a threshold for a given decision variable.
PSDA performs integration on the last two right-sided terms of the integrand in Equation
(1) and estimates the mean annual frequency of exceeding a particular EDP level as follows:

λ(EDP > edp) =
∫ ∞

0
P(EDP > edp|IM)

∣∣∣∣dλ(IM)

dIM

∣∣∣∣dIM (2)
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Figure 2 compares the estimation of λ(EDP > edp) using two structural analysis meth-
ods. While λ(EDP > edp) is theoretically unique for each structure, P(EDP > edp|IM)
depends on the conditioning IM, as EDP can exceed a given level, edp, at different IM
levels (i.e., if a vertical line is positioned at IM-EDP plots in Figure 2, it crosses different
IM values) [23]. In addition, for the same GM suite consisting of n records, the two rep-
resented methods treat GMs differently, which results in different EDP-IM data. Hence,
P(EDP > edp|IM) estimations from these methods are likely to be different at certain IM
levels. These observations illustrate the IM/GM selection salience in PSDA applications.
Structural analysis methods are further discussed in Section 2.3.

2.1. Treatment of Uncertainty in PBEE

At the broadest level, uncertainty is induced by either lack of knowledge (i.e., epis-
temic) or inherent randomness/variability (i.e., aleatory). While this distinction is not
always apparent, the effects of these two uncertainty types on the estimated performance
are different. In practical terms, aleatory uncertainties are related to the point estimates
(e.g., mean) of performance probabilities, whereas the epistemic uncertainties determine
the confidence in the estimated probabilities (e.g., confidence intervals) [24]. The current
PBEE practice follows a parametric approach, where a probability distribution (i.e., proba-
bilistic model) is assigned to the aleatory uncertainty, and the distribution’s parameters are
estimated from the numerical models and/or available data using the method of moments
or maximum likelihood estimation. If uncertainty is dominated by a single source, a proba-
bilistic distribution for that source can be assumed and approximate measures can be used
for other sources of uncertainty [25]; this approximation is largely followed by the current
practice of the PBEE community, as will be discussed in Section 2.2. The model’s epistemic
uncertainties are addressed either using reliability methods or sampling-based approaches.
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Uncertainty can also be modeled using probabilistic methods such as Bayesian statis-
tics [26,27], which combines experts’ judgment and scarce data, or non-probabilistic meth-
ods such as the Dempster–Shafer theory [28] of evidence or fuzzy sets [29]. The choice
is mostly driven by the availability of data, hence when sufficient data are available, as
assumed to be the case in PSDA, statistical methods based on numerical models or data are
more favorable [30].

2.2. The Role of GM Uncertainty in PBEE

It is commonly assumed that GM variability governs all other sources of uncertainty
in PSDA, which has resulted in the disproportionately larger body of research of GM
uncertainty with respect to all other sources of uncertainty in PBEE. Wen argues that since
the variability (in terms of coefficient of variation) of ground motion is generally about
twice that of the capacity, their effects can be decoupled by using a mean value for capacity
and a full probabilistic model for ground motion variability [31]. Kwon and Elnashai
investigated the effect of material and ground motion variability in PSDA of an ordinary
RC frame and conclude that GM variability has the most significant role, whereas material
properties play a smaller role only at higher shaking intensity [32]. Porter et al. investigated
a high-rise non-ductile RC frame and compared the effect of uncertainties associated with
the ground motion, mass, damping, component force–deformation relationship, component
fragility, contractor cost, and profit on the repair cost, and find that uncertainties in ground
motion are one of the two main contributors [33]. Celik and Ellingwood studied three non-
ductile RC frames and concluded that since the median fragilities (considering only GM
uncertainties) were enclosed by the 95% confidence bounds of fragilities considering both
modeling and GM uncertainties, the GMs’ uncertainty governed the overall response [34].

Despite the vast body of research favoring GM uncertainty as the main contributor,
some recent studies suggest that other sources of uncertainty (such as modeling uncer-
tainties) might be significant, as they affect both the median and dispersion of estimated
response. Celarec and Dolĕk investigated the effect of concrete strength, steel strength, mass
and beams and columns yield, and ultimate rotation of three non-ductile and ductile RC
structures, and found that the important parameters vary with structures. For example, the
ductile building’s response was controlled by the ultimate rotation of beams, whereas the
non-ductile building was controlled by the ultimate rotation of columns [35]. Jalayer et al.
considered modeling uncertainties by assuming a prior distribution of design parameters
and then used a Bayesian updating approach to derive the posterior distribution of mod-
eling parameters and structural performance. The authors demonstrated that modeling
uncertainties increase both demand/capacity ratio median and standard deviation [36].
Gokkaya et al. showed that if a GM set is selected based on the site’s seismicity, the impacts
of modeling uncertainties depend on the performance metric and demand parameter of in-
terest. While modeling uncertainty could significantly increase the mean annual frequency
of collapse, it has a limited effect on median drifts below 7% [13]. A recent experimental
study by Deng et al. on nonlinear oscillators under seven GMs showed that the uncertainty
contributions of structural and GMs change with the intensity level, and that GM uncer-
tainty is not always the governing source [14]. While the limited number of GMs does
not allow to establish a general trend, it casts additional doubts on the assumption of the
higher significance of GM uncertainty. Tarbali et al. investigated the effect of epistemic
uncertainties in GM selection and concluded that while it has a negligible effect at low
demand, its contribution in regard to other sources of epistemic uncertainties (such as
hazard analysis and site response) increases for near-collapse states [37]. Bradley pointed
out that the studies emphasizing GM uncertainties are not consistent in their treatment of
the uncertainties: GM uncertainty is overestimated due to the relaxed selection of a large
number of GMs, whereas modeling uncertainties are underrepresented due to the inclusion
of only low-level uncertainties [38].



Sustainability 2022, 14, 12994 6 of 26

To summarize, while there is a consensus on the role of GM uncertainty, other sources
of uncertainty, such as modeling uncertainty, can be substantial, particularly at near-collapse
limit states.

2.3. Structural Analysis Procedures

Three popular procedures are available to estimate P(EDP > edp|IM) using non-
linear dynamic analysis: cloud analysis [39], multiple stripe analysis (MSA) [40], and
incremental dynamic analysis (IDA) [41]. IDA successively scales the selected GMs to
increasing amplitude using the same GM suite [42,43], whereas MSA uses different GMs
at different hazard levels. In cloud analysis, structures are subjected to a large number of
records, and the relationship between IM and EDP (i.e., a cloud of IM-EDP data points) is
modeled using a regression model [44]. Here, GMs are considered more as loading proto-
cols to assess a structure’s behavior under a wide range of shaking levels. Although cloud
analysis is inherently simple and reduces the number of required analyses significantly as
opposed to IDA or MSA, it is constrained by the limitations of its underlying regression
assumptions (e.g., homoscedasticity of residuals) and high sensitivity to GM selection [45].
It should be noted that some recent studies aim to improve the current analyses methods
to use fewer ground motions, for example, through constraining the number of stripes in
MSA [46].

Comparison of different analysis procedures has not received wide attention, and
only a few studies assessed the results obtained from different procedures using realistic
structural models. Bai et al. compared IDA and cloud analysis for 2- and 5-story RC office
buildings and showed that the methods provide a consistent prediction of elastic slope and
yield onset [47]. It should be noted that their IDA is constructed using a single record with
scaling factors from 1 to 10, whereas the GM suite for cloud analysis consists of 160 unscaled
records. Therefore, care should be given not to extend their conclusion to the consistency of
the results from the two methods, as the IDA procedure was extremely limited. Nassirpour
et al. compared cloud and IDA for 2- and 4-story steel frames and showed that while the
results are mostly consistent for lower damage levels, they show significantly different
values at larger damage states related to higher shaking intensities [48]. It should be noted
this study uses 150 unscaled for cloud and scaled FEMA P695 records from 0.05 g to 2.6 g
for IDA. Banerjee et al. showed that for a 3-story RC frame, P(EDP > edp|IM) obtained
from MSA and IDA are very different [49]. Two different GM suites were used, which
comprised 11 and 43 records for IDA and MSA, respectively.

The reviewed studies used different GMs for each method, preventing the impact
of GM analysis to be isolated from GM selection. In this regard, Mackie and Stojadi-
nović compared a more consistent IDA and cloud analysis (GMs were selected based on
magnitude-distance bins and soil type for cloud analysis with a subset from the same GMS
used for IDA) for a highway overpass bridge and concluded they yield interchangeable
PSDA results [50]. However, more studies with consistent GM selection are needed to
assess the role of different GM analysis methods.

As a final remark, the method to estimate P(EDP > edp|IM) varies with the analysis
procedure due to differing IM-EDP data collection [51]. For example, while most IDA
studies use the method of moments [42] to estimate the mean and standard deviation of
response conditional distribution, MSA uses maximum likelihood estimation due to the
discontinuity of data (i.e., some GMs might not show collapse and a strictly increasing rela-
tionship between IM and collapse is not observed) [51]. This non-uniformity of estimated
P(EDP > edp|IM) is the main argument in support of interaction between structural
analysis and GM selection method and should be kept in mind in PSDA applications.

3. Representing GM Uncertainties

GM uncertainty is commonly described using either stochastic GM models or intensity
measures (IM) [40]. A stochastic GM model modifies a white noise sequence based on
expected spectral and temporal ground motion features. The modification is made either by
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using the fault physics to describe the GM radiation spectrum through the product of source,
path, and site functions (source-based models), or by fitting a pre-selected mathematical
model to a suite of recorded GMs (i.e., site-based models) [52]. As stochastic GMs are
uncommon in conventional PBEE (except for sites with infrequent seismic activities), this
review only focuses on IM selection. Following a primer on IM definition and limitation,
the remaining sections discuss IM selection criteria, different types (single and vector) of
IMs, and proposed optimal IMs.

3.1. Intensity Measures (IMs)

Intensity measures explicitly describe the salient features of GMs. The term “explicit”
is used to distinguish IMs from other measures that are not directly related to the severity of
GM records; these non-explicit measures are commonly referred to as causal parameters [53].
The reason behind the IM approach’s ubiquity in PBEE is that it facilitates an uncoupled
framework, where structural and seismic hazard analyses are treated separately [54]. An
earthquake has different features (such as magnitude, energy content, and duration), and
it is the analyst’s responsibility to determine which features are important for a given
structure, and hence should be captured using an IM. However, such expertise often is not
available to the structural engineer performing PSDA.

The task of choosing the right IM is seldom straightforward, and the literature is fre-
quently conflicting. A prominent example of literature confliction is the GM duration. Early
studies measured the correlation between duration and peak displacement demands and
suggested that duration is not important [55], whereas successor studies found a significant
association between duration and cumulative response measures [56]. Raghunandan and
Liel performed multivariate regression on the collapse of a 4-story RC building and noted
that when GMs with the same inelastic spectral displacement intensities are compared, the
ones with the longer duration caused collapse at lower IM levels. However, the extent of the
duration effect depends on the other considered IMs and the structure’s ductility [57]. Chan-
dramohan et al. suggested that duration is more important for near-collapse limit states
at sites where large magnitude interface earthquakes have the largest contribution [58].
These examples emphasize that the selected IMs are largely problem-specific and structural
and seismological issues affect the choice of IM, hence the scope and limitations of each
IM should be carefully understood. In this regard, after an extensive investigation of IM
selection criteria and types in the following sections, the scope of several different proposed
IMs is summarized as a first step for IM selection in future studies.

3.2. IM Selection Criteria

As IMs are the medium by which structural response is related to a site’s seismic
hazard, the accuracy of PBEE’s convolution relies on the appropriateness of the adopted IM.
As shown in Table 1, the appropriateness of an IM can be assessed through different criteria
such as “efficiency” [59], “sufficiency” [59], “practicality” [59], “hazard computability” [60],
“scaling robustness” [61], and “proficiency” [62]. An efficient (precise) IM reduces the
dispersion of the estimated seismic response conditioned on the IM (i.e., EDP|IM), which
subsequently reduces the number of required analyses. On the other hand, sufficiency
(accuracy) determines whether the structural response is independent of all other site
hazard characteristics that are not captured by the adopted IM, that is, seismological
parameters such as magnitude and distance [59]. Hazard computability examines the effort
required to calculate the IM hazard curve, and frequently encapsulates whether or not
the IM is a direct output of conventional hazard analysis [60]. Scaling robustness requires
scaled records to yield an unbiased response estimation, and is assessed by regressing
responses subjected to the GMs with the same IM values to scale factors [61]. Practicality
refers to the dependence of the response to the IM, and is measured by the slope of EDP-IM
regression [62] where a weak slope shows lower practicality. Finally, proficiency represents
the combined effect of practicality and efficiency [62]. Khosravikia and Clayton argued
that using practicality to compare different IMs with different ranges is not fair due to their
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impact on regression slope. In addition, they discussed that efficiency cannot capture the
correlation of PSDA and time-history analysis and, while adequate for a single EDP, are
not suitable to compare different types of structures or structural responses. Instead, they
suggested modifications to the original definitions to extend their scope [63].

Compared to other criteria, efficiency and sufficiency have gained more attention,
as they are deemed necessary conditions for a valid combination of the results of hazard
and structural analyses [64]. Some authors even argue that a sufficient IM might render a
careful GM selection unnecessary [60]. Interestingly, the structural engineering literature
favors the IM’s association with the parameters of EDP distribution over considering
them as direct estimators of site seismic hazard. In this regard, the notion of estimator’s
efficiency is borrowed from statistical inference, and efficiency is measured by comparing
the variance of EDPs’ residuals regressed on IM (i.e., εEDP|IM). However, establishing
a mathematical notion for sufficiency is shown not to be as straightforward. Luco and
Cornell [59] used the p-value test to examine whether the εEDP|IM is dependent on any
other seismological parameter, namely magnitude and distance. A p-value larger than
a significant level of interest (commonly taken as 0.05) shows that residuals cannot be
described by the considered seismological parameters, hence the IM is sufficient in regard
to that parameter. While this procedure is straightforward, it cannot measure the extent of
the sufficiency of different IMs. For a given EDP and ground motion suite, several IMs can
have p-values that are higher than the significance level and are identified as sufficient (as
shown by [65], among others). In addition, while a small p-value can be used to argue that
a statistically significant relationship between seismological parameters and εEDP|IM exists,
it is questionable to use a large p-value to support that such a relationship does not exist.

Following the literature on information theory, Jalayer et al. defined sufficiency as
reducing and preserving the information in the GM records to estimate EDP as follows [66]:(

EDP
∣∣ ..
ug
)
= f (EDP

∣∣IM) (3)

where
..
ug is the acceleration history of a given record. Since sufficiency, in an absolute sense,

requires that all the different levels of the IM be independent of any given seismological
features, a relative measure can alleviate the computational expense [66]. Jalayer et al.
proposed a relative sufficiency measure based on average information gain that one IM can
provide over another one, as follows [66]:

I(EDP|IM2|IM1) =
∫

log2
f
(
EDP

( ..
ug
)∣∣IM2

( ..
ug
))

f
(
EDP

( ..
ug
)∣∣IM1

( ..
ug
)) f

( ..
ug
)
d

..
ug (4)

To obtain I(EDP|IM2|IM1), one must calculate f
( ..
ug
)
, which represents all possible

earthquakes at the site. The exact approach then extends the above integration to seismo-
logical parameters of interest (e.g., M and R) and uses hazard deaggregation to compute
the joint probability of those seismological parameters (e.g., p(M,R)) in combination with a
stochastic ground motion model to obtain f (

..
ug
∣∣M, R) . To avoid the need for hazard deag-

gregration and joint treatment of causal parameter variability, Jalayer et al. approximated
Equation (4) for a selected suite of GMs as follows:

I(EDP|IM2|IM1) =
1
n ∑n

k=1 log2
f (EDP|IM2)

f (EDP|IM1)
(5)
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Table 1. Proposed criteria to assess IMs suitability.

IM Criteria Definition Calculation

Efficiency Smaller variability of EDP|IM The variance of residuals of EDP regression on IM

Sufficiency Independency of EDP|IM of any other
seismological variable (e.g., M, R)

the p-value of regressing residuals of EDP|IM on M and R,
Information gain

Practicality Dependency of EDP on IM Regression slope of EDP versus IM

Hazard computability Efforts to calculate the IM hazard curve Qualitative measure

Scaling robustness Lack of bias in the estimated EDP from
scaled IMs Regressing residuals of EDP|IM on scale factors

Proficiency Proficiency + Efficiency The ratio of the variance of EDP|IM residuals to the
regression slope

It should be noted that the selected suite might not represent the site characteristics
accurately, and different conclusions might be drawn from the application of Equation (4)
and Equation (5) [66]. Nevertheless, some studies have used the approximate approach for
preliminary ranking of sufficiency of different IMs for medium-rise RC [67] or high-rise
core-tube buildings [68].

Recently, Dhulipala et al. have shown that I(EDP|IM2|IM1) is a measure of efficiency
(and not sufficiency), if the logarithms of EDP and IM are used in Equation (5) and sub-
sequently, the sum of squares of errors is minimized [7]. Instead, the authors quantified
sufficiency by measuring the deviation of the conditional distribution of IMi on EDP with
and without considering the jth seismological parameters. The information gain due to the
inclusion of jth parameter is summed to calculate the total information gain for IMi, TIGi,
as follows:

TIG =
Nφ

∑
j=1

∫
Pj(IMi|EDP > y)log2

Pj(IMi|EDP > y)
P(IMi|EDP > y)

dIMi (6)

where P(IMi|EDP > y) and Pj(IMi|EDP > y) represent the conditional distribution of the
ith IM given EDP with and without considering the jth seismological parameter, respectively.
The authors studied a 4-story steel frame and showed that sufficiency (using Equation (6))
and efficiency have a bivariate normal distribution with a low correlation value of 0.3, and
therefore a strong efficiency does not enforce a similar sufficiency. In addition, they found
sufficiency to depend on ground motion selection.

To conclude, since it is practically infeasible to obtain an IM that is sufficient for
different levels of site’s hazard and structure’s response, a practical approach is to combine
relatively efficient IMs with carefully selected (e.g., hazard-consistent) GMs to introduce
the least bias in risk estimation.

3.3. Scalar and Vector IMs

IMs can be classified as scalar and vector IMs, where the former uses single quantities
and the latter comprises several scalar IMs.

3.3.1. Scalar IMs

Scalar IMs are single quantities linking structural response to ground motion char-
acteristics. Currently, the most widely used scalar IM is the spectral acceleration at the
fundamental period of the structure with a damping ratio of 5%, Sa(T1). In one of the
earliest studies on Sa(T1), Shome showed that Sa(T1) is more closely related to inelastic
demand than PGA for structures with fundamental periods close to 1 s [69,70]. A similar
observation was made by Giovenale et al. for SDOF systems with varying ductility and
hysteretic behavior [60]. However, it has been demonstrated that Sa(T1) is not a good IM
when several modes of response dominate the total dynamic behavior of a structure [15].
Grigoriu argued that since spectral accelerations and maximum demands are derived from
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different processes with different frequency bands, they are weakly correlated for linear
multiple-degree-of-freedom (MDOF) systems with more than one contributing mode [71].

In response to the limited scope of common scalar IMs, some authors combined the
different important features of GM as a single quantity (sometimes referred to as “combina-
tional IMs”). The earliest examples were proposed by Shome and Cornell in 1999, who used
the weighted average of spectral acceleration at the first three periods using modal participa-

tion factors [72]. Cordova et al. show that S*, defined as Sa(T1)×
√

Sa

(
Tf

)
/ Sa(T1) where

Tf is the elongated period, is more efficient IM for composite and space steel frames [73].
Lin et al. suggested the geometric mean of Sa(T1) and Sa(1.5T1), denoted as SN1, for short
period structures, and a multiplicative IM in terms of Sa(T1)0.25×Sa(T2)0.75, denoted as SN2,
for long-period structures [74]. Zhang et al. proposed Sa-based [75] and Sv-based [68]
combinational IMs to predict the displacement of high-rise RC core-tube buildings, where
they used the arithmetic and geometric average of the optimum number of spectral or-
dinates to minimize the error, respectively. Although these IMs offer clear improvement
in their domains of application, the degree to which findings from these studies can be
extrapolated to other structure types or geometries is unclear. More importantly, in most
cases the ground motion model (GMM) of the proposed IM is not available, limiting their
application to derive seismic risk.

Recently, the geometric average of spectral acceleration over a period range of interest,
denoted as Saavg, has gained considerable attention to replace common scalar spectral IMs.
Eads et al. suggested that Saavg is more efficient than Sa(T1) in predicting collapse risk of
700 RC frames and shear wall structures; Saavg was also sufficient for more cases compared
to Sa(T1), particularly for long-period (more than 1.5 s) structures [76]. Kohrangi et al.
showed that Saavg reduces the uncertainty of loss estimation for a spatially distributed
building portfolio [77], and can also increase sufficiency (and efficiency) when predicting
several EDPs using a single ground motion suite [78]. Considering the issues of combina-
tional IMs, Saavg is more promising, since its GMM can be calculated using available GMMs
of spectral ordinates as follows [79]:[

lnSaavg(T1, T2, · · · , Tn)
]
= 1

n ∑n
i=1 µlnSa(Ti)

(M, R, θ, Ti)

Var
[
lnSaavg(T1, T2, · · · , Tn)

]
= 1

n2 ∑n
i=1 ∑n

j=1 ρlnSa(Ti),lnSa(Tj)
σlnSa(Ti)

σlnSa(Tj)
(7)

where µlnSa(Ti)
and σlnSa(Ti)

are the mean and standard deviation of a spectral ordinate
from the corresponding GMM and ρlnSa(Ti),lnSa(Tj)

is the correlation between two spectral
ordinates computed from correlation models. It should be noted that this is an indirect
method, as the GMM is not directly derived from a GM database using a mixed-effect
regression, but has shown to be robust for real applications [80]. Furthermore, Saavg
aims to capture the contributing spectral ordinates by considering all the possible values
in a range of periods. This is a favorable approach, since it is not always feasible to
determine the important periods a priori [81]. Although including the spectral ordinates
that are not correlated might slightly inflate the variance of parameters of seismic demand
models, it generalizes the application of Saavg to a wider range of structures. For example,
Kazantzi and Vamvatiskos showed that Saavg can reduce bias in vulnerability assessment
of building classes, particularly if calculated for class-average second and elongated first
modes [82]. Similarly, Ruggieri et al. showed that Saavg can be used for fragility analysis
of an RC building stock with different topological parameters or plan-irregular low-rise
frames [83,84].

3.3.2. Vector IMs

Vector IMs consider several aspects of GM records simultaneously, however, they
require IMs’ joint probability distribution to be included in the hazard analysis [74], in-
creasing the computational expense of using vector IMs and limiting their application. This
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increased effort may be justified by a reduced computational burden or increased accuracy
in the structural analysis phase of PSDA.

Baker and Cornell showed a vector IM of {Sa, ε} estimated a lower mean annual
frequency of collapse and the drift associated with the hazard level of 10% probability
in 50 years than Sa for fifteen generic RC frames [75]. ε is defined as the number of the
standard deviation by which an observed spectral acceleration differs from the mean
logarithmic spectral acceleration of a GMM, or, more simply, the GMM’s model error. The
authors showed that ε is correlated with the structural response of a 7-story concrete frame
at all hazard levels, providing a mechanism by which ε affects structural response. Since
an MDOF system has multiple vibrational modes, the authors examined the relationship
between ε and spectral shape, concluding that the improvement is due to ε’s ability to
account for the spectral shape. Therefore, theoretically, any IM that captures Sa at other
periods, i.e., spectral shape, will improve the response’s prediction.

Baker and Cornell investigated whether other candidate IMs that represent spectral
shape have the same effect as ε. They compared {Sa(T1), ε, RT1,T2} to {Sa(T1), ε}, {Sa(T1),
RT1,T2} and Sa(T1), where RT1,T2 is the ratio of Sa at a given period to the Sa at the first-mode
period [85]. To evaluate the importance of RT1,T2, they performed an extra sum-of-squared
F-test with {ε, RT1,T2} and RT1,T2 as full and reduced models, respectively, under different
values of T2 values. Since the results depend on the choice of T2 and nonlinear characteristic
of the structure, they argued that ε and RT1,T2 represent different aspects of spectral shape,
and averagely speaking, ε shows a better prediction for spectral shape. Therefore, it is
necessary to consider ε at ground motion selection, particularly at larger response values.
This finding motivated the inclusion of similar full-spectrum or multi-point Sa IMs in new
vector IMs/combination IMs.

The majority of studies on vector IMs support their application for high-fidelity
structural models. Kohrangi et al. evaluated several scalar and vector IMs and concluded
that while vector IMs are necessary for accurate analysis of 3D asymmetric RC buildings
with well-separated periods, averaging scalar IMs (e.g., Saavg) is preferred in other cases.
Additionally, contrary to scalar IMs, the higher efficiency of vector IMs does not necessarily
reduce the number of the required analysis, as more data are needed to fit a regression
model to more than one IM [64]. Kohrangi et al. have also shown that, unlike common scalar
IMs, vector IMs lead to more stable loss analysis results for three-dimensional buildings [15].
Gehl et al. showed that vector IMs consisting of two IMs generally outperformed single IMs
to predict damage states of a masonry structure. Inefficient IMs can be used in combination
with vector IMs to increase their efficiency, indicating that vector IMs might compensate
for the cases where the analyst fails to choose the right IM [86]. Málaga-Chuquitaype and
Bougatsas examined perimeter and space steel frames building under bi-directional GMs
and suggested that the inclusion of a spectral shape parameter (NP) in combination with
Sa improves the efficiency at large drift values, whereas at lower drift values a secondary
IM in terms of the ratio of Sa(T3)/Sa(T1) improves fragility estimation. In addition, they
showed that this improvement is larger for far-field records, and depends on the framing
type and structure’s height [87]. Among the studies that challenge vector IMs, Rajeev et al.
investigated an IM vector of Sa at two different periods, and argued that although the
vector-valued IM reduced the dispersion of demand estimation, the reduction was not
significant [88].

An important additional consideration is that vector–PSDA uses multiple regression
to relate EDP to IM, introducing additional error sources. Therefore, vector IM efficiency
depends on the selected IMs, their correlation to each other, and their correlation to the
EDP. For example, redundant (i.e., highly correlated) IMs cause multicollinearity problems
in the demand model. Severe multicollinearity inflates the variance of the demand model’s
parameters, making it difficult to capture independent variables’ effect on response.
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3.4. Optimal IM

As previously discussed, different criteria and IMs exist in the literature, and the
existence of a single “omni-optimal” IM would bring immense joy to PSDA practitioners.
Therefore, a vast body of research is directed at comparing common IMs or developing new
refined IMs. Table 2 summarizes the literature on optimum IMs for different structure types.
The proposed IMs can be categorized as being either structure-agnostic or structure-specific,
where the first group is directly computed from GM histories, and the latter uses structural
response spectra at a particular or range of period(s). Unfortunately, the PSDA community
might not get to celebrate such a perfect IM, as these studies show that different types of
structures are correlated to various characteristics (i.e., IMs) of GMs. In addition, optimal
IMs also depend on the considered EDP; for example, PGA is more efficient at capturing
acceleration-based responses compared to drift-based ones.

Table 2. Proposed IMs for different structural systems.

References Structure No. of Story Studied IM(s) Criteria a Results

Cordova et al. [73] Composite and
steel frame 6,12 S* E S* estimates structural response

with lower dispersion.

Luco and Cornell [59] Steel frames 3,9,20 IM1E, IM1I, IM1E&2E,
IM1I&2E

E, S IM1I&2E is the most sufficient and
efficient IM.

Bianchini et al. [89] Steel frames 6,12,18 Saavg E, S, SR, HC Saavg performs better than Sa.

Lin et al. [74] RC frames 4,10,16 SN1, SN2 E, S, SR
SN1 and SN2 perform better
Sa for short- and long-period
structures.

Akkar and Özen [90] SDOFs - PGV, PGA, PGV/PGA, Sa E PGV outperforms other IMs.

Yakut and Yilmaz [91] RC frames 2,7,9 11 different scalar IMs E
For frames with periods between:
(i) 0.2 s–0.5 s: PGA, VSI, Ic.
(ii) 0.5 s–1.1 s: VSI, HI, Sa

Mollaioli et al. [92] RC base-isolated
frames 4,6 14 non-structure-specific

and 13 structure-specific IM E, S MVEIr SI (None of the studied
IMs were sufficient)

Lucchini et al. [93] A 3D Irregular
RC frame 3 Several scalar and vector

IMs E

Sa(T1) and {ε, Sa(T1)} show poor
performance.
{Sa,x(T1,x),Sa,y(T1,y)} is a suitable
for multi-directional response.

Luco et al. [94] Non-ductile steel
frames 3,9,20 PGA, PGV, PGD, Sa(T1),

Sv(T1), Sd(T1), PSV(T1), TP
E, S {Sa(T1), (Sa(T2)/Sa(T1)},

Sd(T1)/Sa(T1)} is sufficient.

Ebrahimian et al. [67]
Bare and
Base-isolated RC
frame

4,6 32 scalar IMs and 6 vector
IMs E, S {Sa(T1), RT1,T2, ε} is suggested for

displacement-based responses.

Donaire-Ávila
et al. [95]

RC frame with
hysteretic dampers 6

16 non-structure specific
and 18 structure-specific
IMs

E, S
Modified integral-based IMs
(e.g., Housner) for
displacement-based responses.

Barbosa [96] 3D wall-frame 13 IM1={Sa(T1),Sa(1.5T1)}
IM2={Sa(T1),Sa(T2)} E, S

IM1 and IM2 for displacement-
and acceleration-based EDPs,
respectively.

Fagella et al. [97] 3D RC building 4
SaY(T1), SaY(1.5T1),
SaY(2T1), SaY(T4), PGAY,
SaX(T2)

E, S
None of the scalar IMs were
sufficient and efficient. Vector
IMs are preferred.

Shokrabadi et al. [98] Rocking braced
frame w/ infills Sa(T1), PGA, Saavg, Sdi E, S Saavg is suitable for peak and

residual story drift.

Yang et al. [99] High-rise
frame-core tube 17,22 25 scalar IMs E, S

PGV and MSI are suggested for
peak drift. MVSI is suitable for
isolator damage

a Criteria: Efficiency (E), Sufficiency (S), Scaling robustness (SR), Hazard computability (HC).
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While identifying more efficient and sufficient IMs is valuable, a new combinational
IM may not provide an explicit physical basis for the selection and combination of IM
terms. Rather, the new IMs are determined based on minimizing the model error of PSDA
for a particular EDP. This approach risks overfitting in PSDA, where the advanced IMs
outperform common ones for the considered case of the study yet might perform very
poorly for some other type of structure, or even the same class of structures in other sites
or with different configurations and design details. In addition, GMM of the refined IMs
are sometimes not readily available (i.e., the IMs have low hazard computability), which
further limits their application to derive annualized risk. To summarize, it might be more
practical to incorporate simpler refined IMs with rigorous hazard-consistent GM selection
methods, instead of identifying the optimal IM, for a robust PBEE assessment.

4. GM Selection

This section first addresses record scaling, as almost all GM selection methods use
scaling either to provide GMs at certain intensity levels or to match to a site-consistent
hazard target. Then, the two perspectives on GM selection, as a dynamic loading protocol
(generic GMs) or a representation of future earthquakes (hazard-consistent GM selection
methods), are discussed.

4.1. The Curious Case of Amplitude Scaling

The accurate statistical representation of PSDA requires an adequate number of records
at different shaking intensities, which inevitably requires some sort of scaling due to the
limited number of as-recorded strong GMs. However, there is a long-standing debate over
the legitimacy of scaling, commonly measured in terms of the ratio of the median structural
response from scaled records to the response obtained from the unscaled response for a
target hazard (i.e., bias). Some authors focused on the fact that the current practice of
amplitude scaling does not consider all seismological features of GMs (particularly the
non-scalable ones), whereas others cite the negligible impact of these features on structural
response [100]. Grigoriu compares the scaled and unscaled GM records analytically by
representing them as zero-mean stationary Gaussian time series and assessing the similarity
between their probability laws. He showed that their probability laws do not match and
the difference depends on record length and scale factor [101]. Luco and Bazzuro studied a
range of different SDOFs with varying nonlinear properties, as well as a 9-story steel frame
building, and found bias in median responses. The bias increased for structures with lower
fundamental period and strength, and at larger scaling factors. The bias also was sensitive
to higher mode and range of M and R of the selected records. Furthermore, the authors
suggested that this bias can largely be explained by the difference in the spectral shape
of the target and the source records, hence scaling records with similar spectral shapes
can be justified [102]. The importance of ε to reduce bias is supported in other studies as
well [10]. Most notably, Baker compares scaling to Sa(T1), arbitrary scaling, scaling to match
causal parameters, and scaling considering ε for a 7-story RC frame. Baker measured bias
by performing regression on EDP versus scale factor and suggested that bias depends on
the GM scaling method: the ε-based selection method was associated with large p-values
(>0.05) for scale factor, indicating a lack of bias [103]. This observation emphasizes the
importance of considering spectral shape to select scale factors in IDAs, as will be discussed
in the next section.

4.2. Generic GM Suites to Support PSDA

A structural engineer might perceive GMs as standardized “dynamic loading inputs”
to obtain statistically valid estimates of P(EDP > edp|IM) , rather than the expected hazard
of the site. Hence, the notion of “generic” GM suites has been justified due to its simplicity
for performance evaluation of a large number of buildings, or a relative ranking of different
buildings. However, this approach disregards GM features that vary between different
locations, such as duration and ε, which is shown to be an important consideration for
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collapse risk assessment [104]. Generic GMs sets are mostly used in IDA, and to some
extent in cloud analysis; their application to and modification for these analysis procedures
are discussed in the following sections.

4.2.1. Application of Generic GMs to IDA

IDA is ubiquitously performed by scaling the same generic GM suite to different
shaking intensity levels. However, it is well-known that spectral shape changes with IM
level. Vamvatsikos and Cornell argued that while scaling depends on the structure and
the choice of EDP and IM, this procedure is “legitimate” if the selected IM is sufficient
with respect to M and R [105]. On the other hand, Zacharenaki et al. performed IDA on
several SDOFs and two 3- and 9-story steel frames using a generic set of 30 GM Records,
and estimated bias compared to results of cloud analysis employing 1480 as-recorded
(1015 records) and synthetic (465 records) GMs. The authors concluded that the IDA results
for MDOFs were unbiased since their median collapse capacities from IDA differed from
cloud analysis by only 3% and 25% for 3- and 9-story buildings, respectively. However, the
authors identified significant bias for SDOFs with shorter periods (T < 0.5 s), and at lower
damage states of SDOFs with longer periods [106].

To improve hazard consistency of IDA, Haselton et al. proposed simplified approaches
to adjust the median collapse capacity from IDA using generic FEMA P-695 records sets.
The authors regressed Sa at collapse with respect to ε of generic records and used this
relationship to estimate a median Sa for the site’s target ε [107,108]. Lin and Baker proposed
adaptive incremental dynamic analysis to combine IDA and MSA by defining bin sizes of
IM based on target ground motion properties, choosing GMs that are useable at several IM
bins, and then scaling the GMs within their tolerable range [109].

4.2.2. Application of Generic GMs to Cloud Analysis

Despite the sensitivity of cloud analysis to selected GMs [39], the majority of studies
use lax GM selection methods based on providing a wide range of IMs. Miano et al.
suggested that [39]: (i) a wide range of IM should be considered because doing so decreases
the variance of regression coefficients, (ii) a “significant portion” (e.g., 30%) of records
should push structure to the life safety limit state (i.e., where the EDP is “of interest”), (iii)
“too many” (e.g., 10%) records should not be included from the same earthquake event.
In this approach, the second condition increases the risk of response heteroscedasticity
(i.e., larger dispersion of response at higher levels of IM), which subsequently increases
regression coefficient’s variance. Additionally, while some application of PBEE, such as
collapse risk assessment, is focused on the near-collapse domain of EDP-IM, EDPs at lower
IMs usually dominate loss analysis.

Some authors developed more refined regression formulations to reduce the sensitivity
of results to input GMs. Jalayer et al. proposed a Bayesian cloud method where the results
of conventional cloud analysis on different realizations of structural model parameters are
used to update a joint posterior of cloud analysis parameters (i.e., regression coefficients
and model error) and fragility model parameters. The fragilities are generated by sampling
from this updated distribution, and their expected values are denoted as the “Robust
Fragility”. It is suggested that a more robust formulation would possibly ease the effect
of relaxed ground motion selection [110]. Zareian et al. incorporated different levels of
response, each corresponding to a level of IM, to avoid extrapolation of results from one
IM level to another [111].

Regarding studies that address cloud-based GM selection, Bradley et al. compared a
stratified sampling-based GM selection method to a direct hazard-consistent benchmark.
They selected a statistically robust number of records from each bin and adjusted the weight
of the selected GMs from the bin based on the annual frequency of occurrence associated
with each bin. The authors concluded that while the stratified method and benchmark
agree reasonably well for IMs with a strong correlation to the EDP, the bin sizes and IM
choice significantly affect the results [112]. Esteghamati and Huang proposed an adaptive
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stratified-based GM selection, where structural analysis and GM selection are carried out
in an iteration fashion and, based on the updated demand model, the new GM records
are selected from bins that reduce model error at response level with larger estimation
error [113]. Esteghamati et al. also showed that hazard deaggregation formulation and
scenario have a significant impact on seismic demand models obtained from a stratified
GM selection for cloud analysis [114].

4.2.3. How Many GMs Are Needed?

The primary concern of generic GM approaches is to use an adequate number of
records to obtain a statistically valid estimate of P(EDP > edp|IM) at a low computational
expense. Table 3 provides some recommended values of the required GM record number
in the literature. Most studies addressing this question establish a relationship between
GM record number (i.e., sample size) and variability of the model parameter (distribution
parameter of the fragility function/ regression coefficient of demand model). Eads et al.
investigated uncertainty in collapse probabilities associated with a small GM by calculating
a confidence interval of collapse’s underlying binomial proportion as follows [115]:

p̂im ±
√

p̂im(1− p̂im)

N
(8)

where p̂im is the fraction of records causing collapse at a certain IM and N is the total
number of records. The authors showed that a small number of records leads to a larger
confidence interval, significantly overestimating small probabilities of collapse. In addition,
using a small GM suite will yield erroneous estimates of λc for N < 40 [115]. Kiani et al.
suggested that a small number of GMs can be used if an efficient IM is used with a hazard-
consistent GM selection approach (i.e., GCIM approach described in Section 4.3.2), and
the number depends on the structure height. They showed that if N > 20, the risk-based
assessment generally shows less than 10% error, and this error further decreases for more
frequent intensities, indicating that even a smaller number of records can be used for
hazards with an exceedance rate greater than 10−3 [116]. Baltzopoulos et al. investigated
the coefficient of variation of structural failure rate, COVλf, (defined based on Cornell’s
closed-form reliability method) and showed this metric is inversely related to the root
square of N. They estimated that between 40 to 100 records are needed to have a COVλf less
than 10%. COVλf also depends on the hazard curve of the site: sites dominated by multiple
sources require a larger number of records [117]. Sousa et al. studied a building portfolio
with varying properties and concluded that 60 records could provide an adequate trade-off
between accuracy and effort to estimate drift profiles [118].

Table 3. Suggested minimum number of records.

References Proposed
Minimum Number Studied Structure Comment

Eads et al. [115] 40 A 4-story frame
The confidence interval

of the mean annual
frequency of collapse

Kiani et al. [116] 20 4-,8-, and 16-story
buildings

If used with a
hazard-consistent

GM method

Baltzopolous et al. [117] 40–100 Three SDOFs and two
4-story frames

Using the Cornell
reliability method

Sousa et al. [118] 60 A building portfolio Compared to a GCIM-based
suite with 150 records
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4.3. Target-Based GM Selection

The hazard-consistent GM selection procedures provide a suite of records with re-
sponse spectra (or distribution) matching a target response spectrum (or distribution). The
difference among these methods stems from either the way they select their “target” or how
they establish the relationship between individual records and this target. Figure 3 provides
a schematic of the evolution of the target-based GM selection. As a side note, care should
be given to not confuse matching to a target with the “spectral matching” procedure in the
literature. Spectral matching alters the frequency and phasing of a record to match a smooth
spectrum such as the design code spectrum [119], whereas the approaches discussed in
this section match records to the target without changing their frequency or phase through
amplitude (or another type of) scaling.

4.3.1. GM Selection Based on Causal Parameters

Causal parameters are implicit measures of GM severity, such as magnitude (M),
distance (R), fault type, etc. Since a site’s hazard is usually represented using M and R,
intuitively, the first generation of GM selection methods (such as [70] among others) choose
records from different M-R pairs such as small-distance small-magnitude, or small-distance
and large-magnitude, based on hazard deaggregation of the site [69]. However, it has
been suggested that there is no difference between this method and arbitrarily selected
GMs to estimate the response of MDOF systems [100]. Baker and Cornell showed that
under extreme ground motions, selecting records based on magnitude and distance bins
leads to a biased estimate of response because these parameters are not robust proxies for
structural shape [59]. Instead, the authors suggested that ε should be included with causal
parameters. Other authors suggested more refined proxies for spectral shape using the
linear combination of ε of spectral and non-spectral IMs [120,121].

While causal parameters are no longer the primary means to select GMs, a pre-defined
range of these parameters is still used to filter the GM database for earthquakes consistent
with the site hazard. The range of the causal parameter is typically determined based on
the experience of the analyst, and this subjectivity may be exacerbated by the conflicting
suggestions from the literature [69,122]. Recently, Tarbali and Bradley suggest that a narrow
range of causal parameters will lead to an ineffective description of the seismic hazard
features. Instead, they proposed some formal criteria based on the percentile of the marginal
distribution of causal parameters from site deaggregation with a certain tolerance [53].

4.3.2. Target Spectra: From Uniform Hazard to Conditional

The target spectrum should represent the actual seismic hazard of the site, hence
the initial GM selection methods (especially code-based methods) matched records to
the elastic design response spectra obtained from statistical analysis of all representative
GM records of the site, defined in terms of Sa corresponding to the fundamental period
of an oscillator [123]. The early design response spectrums used one control point and
a standardized shape, which resulted in a large discrepancy in the non-control spectral
ordinates. Therefore, the uniform hazard spectrum (UHS) concept was introduced, where
several spectral ordinates with a specific exceedance probability, e.g., 2% in 50 years, were
enveloped at different periods [124], as shown in Figure 4.
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Despite the popularity of UHS in the earthquake engineering community, it has been
shown that a single ground motion record does not produce high-amplitude Sa at all
periods, and UHS leads to an overestimation of structural response [125]. To overcome the
limitations of UHS, Baker presented the conditional mean spectrum (CMS), which for large
ε (indicating a rare event) has a peak value at Sa(Ti), and decays to the median spectrum
at other periods, presenting a more realistic representation of ground motion. As shown
in Figure 4, CMS constructs a conditional multivariate distribution of spectral ordinates
where the Sa at a conditioning period (T*) is determined from PSHA based on a target
probability of exceedance. The corresponding target site characteristics such as the mean of
magnitude (M), distance (R) and (ε) are calculated using hazard deaggregation, and GMMs
are then used to estimate the mean and standard deviation of Sa at the conditioning period
(i.e., µlnSa(T*) and σlnSa(T*), respectively) for these target site characteristics. Finally, if one
knows the correlation between ε values at different periods, ρ(Ti, T∗), they can compute
the conditional distribution of mean spectral values, i.e., CMS, as follows [125,126]:

µlnSa(Ti)|lnSa(T∗) = µlnSa
(

M, Ti
)
+ σlnSa(Ti)ε(T∗)ρ(Ti, T∗) (9)

An issue of CMS is that it predicts larger responses than UHS for negative ε values.
Such negative values are mostly limited to Eastern North America with special seismicity
and near characteristic earthquake sources, and therefore, the target spectra could be
adjusted for that area or the median spectrum of the characteristic earthquake should be
used [127].
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Figure 4. Comparison of uniform hazard (UHS) and conditional mean (CMS) spectra.

Since logarithms of Sa values at different sites and periods follow a multivariate
normal distribution [128], the idea of CMS can readily be extended to account for the
variability of spectral Sa at all periods. This spectrum, referred to as conditional spectrum
(CS), fully describes the distribution of Sa values using conditional mean from Equation (9)
and standard deviation as follows [129,130]:

σlnSa(Ti)|lnSa(T∗) = σlnSa
(

M, Ti
)√

1− ρ(Ti, T∗)2 (10)

Variance and mean are “minimally sufficient” statistics for normal distributions, and
no other statistics are needed to obtain the parameters of the multivariate distribution
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through sampling. However, the accuracy of CS (from a hazard analysis point of view) can
be improved by including multiple GMMs and casual earthquake characters (i.e., M, R)
from hazard deaggregation [131]. This “exact CS” is obtained as follows:

µlnSa(Ti)|lnSa(T∗) = ∑j ∑
k

Pd
j,kµlnSaj,k(Ti)|lnSa(T∗)

σlnSa(Ti)|lnSa(T∗) =

√
∑
j

∑
k

σ2
lnSaj,k(Ti)|lnSa(T∗)Pd

j,k −
(

µlnSaj,k(Ti)|lnSa(T∗) − µlnSa(Ti)|lnSa(T∗)

)2 (11)

where µlnSaj,k(Ti)|lnSa(T∗) and σlnSaj,k(Ti)|lnSa(T∗) are computed from Equations (9) and (10)

for the kth GMM and corresponding jth combination of M and R. Pd
j,k is the deaggregation

weight corresponding to this GMM and M-R combination [131].
Bradley proposed the generalized conditional intensity measure (GCIM) approach to

implement other IMs into the CS framework, arguing that conventional CS only provides a
limited description of ground motion in terms of spectral ordinates, while other aspects
of ground motion such as duration are neglected [132]. For any arbitrary IM vector
conditioned on a specific earthquake rupture scenario, Rup, the conditional probability
density function of IMi on the occurrence of IMj can be obtained as follows:

f IMi |IMj

(
imi
∣∣imj

)
=

Nrup

∑
k=1

f IMi |IMj

(
imi
∣∣rupk, imj

)
Prupk |IMj

(12)

Assuming that the joint density function of any arbitrary IM is a lognormal multivari-
ate distribution (i.e., f IMi |IMj

(
imi
∣∣imj

)
is lognormal), similar equations such as (9) and (10)

are derived as follows:

µlnIMi |Rup,IMj

(
rupk, imj

)
= µlnIMi |Rup(rupk) + σlnIMi |Rup(rupk)ε lnIMj

ρlnIMi ,lnIMj

σlnIMi |Rup,IMj

(
rupk, imj

)
= σlnIMi |Rup(rupk)

√
1− ρlnIMi ,lnIMj

2 (13)

Although the lognormality assumption is not necessary for the GCIM approach, as
equation 13 holds for any distribution, it is backed by current empirical GMMs of different
IMs [132]. Nevertheless, the assessment of this assumption is of ongoing interest [133].

An important issue in both CS and GCIM methods is the choice of the conditioning
variable (T* in CS and IMj in GCIM, respectively). Lin et al. have shown that as long as the
selected records meet “hazard consistency”, i.e., the response spectrum of selected records
at each Sa level matches the site hazard curve, the choice of CS conditioning period does
not significantly affect the results of a risk-based assessment [129]. Along the same lines,
Bradley showed that GCIM-based records obtained from different IMj lead to statistically
similar seismic demand hazard curves [54]. While the conditioning IM might not affect
the response estimation directly, it could still be important for the correct representation of
other IMs. For example, Kiani et al. showed that when IMj = Sa(T1), GM duration should
be used to develop GCIM, whereas for IMj = PGA the effect of duration is negligible [134].

Recent work aims to extend the scope of hazard-consistent methods to consider addi-
tional information. For example, Mergos and Sextos proposed a multi-objective approach
based on genetic algorithms to attain both spectral compatibility with a target distribution
and additional objectives in terms of regional seismicity or local soil condition or the level
of GM scaling [135]. Similarly, Dhulipala and Flint integrated CS into Bayesian statistics,
allowing seamless consideration of M-R variability and vector–IM conditioning [136].

4.3.3. Target-Matching Methods

After the target spectrum is selected, the GM selection method must relate GM records
to the target at either individual record- or suite-levels. Individual records may be selected
based on the least distance from the target (usually in terms of the sum of squared deviation).
Alternately, the difference between a GM suite and the target spectrum may be minimized
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within a period range. Both formulations are optimization problems, where different
algorithms such as harmony search [137] and genetic algorithm [138] have been proposed
for the matching. When the distance is measured between the means of records and
the target spectrum, it is computationally easy to select individual records with the least
deviation, however, matching to the target mean might lead to a biased structural response
estimation and unrealistically low dispersion [139]. Therefore, it is more appropriate (and
necessary if CS is selected as the target spectrum) to match both the mean and variance
of the target spectrum. Kottke and Rathje proposed a semi-automated procedure where
records of a candidate suites are scaled using an average scale factor to fit to target mean
and individual records are scaled separately to match the target standard deviation (the
automatic phase), and then the analyst could select the best suite based on the suites’
rank provided by the algorithm (the manual part) [140]. Wang suggested matching to
realizations from a multivariate distribution of spectral ordinates, where each variable is
determined from GMM for a specific scenario. The target realizations are selected in a way
that each of them has the closest mean and standard deviation to GMM’s specified values.
Then, for each target realization, a record is selected that has the least weighted sum of
squared errors value [141].

4.3.4. Comparison of Different Target-Based Methods

The literature on comparing different target-based methods consistently shows the
superiority of CS/GCIM over UHS. Uribe et al. evaluated 4- and 8-story steel moment-
resisting frames using records matched to CMS and UHS. The authors showed that the CMS
method estimates structural response with lower dispersion when the first-mode controls.
Additionally, the expected values of predicted responses were different [142]. Dyanati et al.
compared the results from four generic GM suites (e.g., SAC, FEMA far-field records) with
GMs selected based on CMS for a 6-story steel braced frame, and showed that responses
obtained from CMS cover all damages states, whereas the generic records are suitable
for performance assessment at either low or high damage states [143]. Cantagallo et al.
assessed the demand sensitivity of ten 3D regular and irregular RC structures to GM scaling
methods and showed that as structural irregularity increases, spectrum-compatible records
maintain the same precision for the estimated demand. In addition, they showed that EDP
variation is consistent with records’ deviation from the target spectrum [144]. Huang et al.
compared the four different scaling methods and concluded that distribution scaling (i.e.,
CS matching to median and dispersion of a target spectral ordinate distribution) produces
unbiased estimates of mean response and reasonably (yet sometimes conservative) capture
response dispersion. They suggested the distribution should explicitly consider ε [10].
Koopaee et al. investigated the effect of GM selection methods on fragility curves of a 10-
story RC moment-resisting building, and showed that records selected based on UHS yield
around 40% smaller median collapse capacity compared to the CMS method, indicating
that UHS is quite conservative [12].

Recently, a few studies focused on whether the advanced target-based method, such as
CS and GCIM, yield unbiased estimates of response at the full spectrum of the site hazard.
Kwong and Chopra compared the seismic demand hazard curves from GCIM and CS-exact
procedures to a benchmark seismic demand hazard curve from site-consistent synthetic
records. They concluded that although both methods are generally unbiased, the GCIM
approach provides unbiased estimation even for the cases where CS-exact fails. However,
even GCIM could not provide an unbiased estimation for all considered responses at every
hazard level [145]. This conclusion raises some concern, as unbiasedness should have
been attained if the IM was (theoretically) sufficient and records were hazard-consistent.
Bradley addressed Kwong and Chopra’s methodology, pointing out that the majority
of the records are scaled excessively to match the amplitude of the target spectrum and
hence they produce bias in the non-Sa IMs distribution. They additionally argued that
the hazard consistency (i.e., the difference between the empirical hazard curve of the GM
suite and the true hazard curve) is checked in an average sense rather than for each single



Sustainability 2022, 14, 12994 20 of 26

IM level, therefore the analysis does not have adequate statistical power to reject the null
hypothesis [146]. Davalos and Miranda compared the lateral displacement and collapse risk
of SDOFs and 4 RC frames (2- and 4-story) from unscaled and CS-scaled GMs and showed
that for larger scale factors, the CS method introduces bias, particularly for degrading
systems. This bias increases with the reduction in the system’s period. The authors argue
that the bias is due to the difference in input energy, incremental velocity, and energy
distribution among individual pulses [147]. As the literature on this topic is conflicting,
future efforts are still needed to validate the existence and source of a bias in advanced
target-based methods.

5. Conclusions

This paper attempts to provide a comprehensive review of IM/GM selection for
performance-based evaluation of individual structures. While substantial progress has
been made towards high-resolution GM selection methods, IM and GM selection remain
structure and site-specific. The following summarizes general recommendations based on
the analyzed literature:

• GM uncertainty is a major factor contributing to the uncertainty in PSDA, and a
complete probabilistic description of GM uncertainty is suggested for performance-
based applications. EDPs should be evaluated at different levels of seismic hazard that
fully represent the site hazard. Additional inclusion of modeling uncertainties will
improve the estimation of response at near-collapse levels.

• The minimum criteria for IM selection are efficiency (reducing the model error of
PSDA; measured by its standard deviation) and sufficiency (independence of any other
seismological feature of site; measured by information gain or statistical t-tests). The
structure-dependency of IMs requires some literature review (such as one provided in
Table 1) for the preliminary screening of candidate IMs for a given application.

• No available IM is sufficient in an absolute sense: careful GM selection is needed to
account for hazard characteristics that are not represented using the selected IM. GM
selection methods must also be chosen in conjunction with the structural response
analysis procedure.

• A site-consistent GM selection method that considers the distribution of IM at the site
is preferred for cloud and multiple stripe analysis. For cases where EDP can efficiently
be described using one IM, the CS method provides a viable solution, whereas, for
structures that require several IMs, the GCIM method is recommended.

• Generic GM suites may be used in IDA, but care should be given to adjusting the
results based on the difference between the site and suite epsilon, particularly at
near-collapse limit states.

These recommendations are based on consensus findings confirmed in a variety of
studies when such a consensus exists, and careful review of the comprehensiveness and
statistical power where evidence is not in agreement. A holistic approach that yields
consistent results at different hazard levels has yet to be introduced. In this context,
“consistent” refers to an optimal pairing of IM and GM, which leads to a similar risk
estimate of a given structure through different analysis procedures and applies to different
types of structures with varying taxonomies.

Since this review paper aimed to compile and synthesize studies of GM/IM selection
for single structures, some other critical research topics have not been covered. For example,
GM selection for regional-level seismic assessments poses new challenges due to the
required statistical treatment of event-based simulations [148,149]. Additionally, GM for
near-fault sites shows different characteristics than far-field GMs, such as velocity pulses,
that need to be incorporated in GM selections [150]. Therefore, care should be given that
the reviewed literature does not encompass all different cases of PBEE application and their
associated decisions for accurate GM/IM selection.
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