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Abstract: This study tested image fusion quality aiming at vegetation classification in the Kongquegou
scenic location on the southern slope of Huaguo Mountain in Lianyungang, Jiangsu Province, China.
Four fusion algorithms were used to fuse WorldView-2 multispectral and panchromatic images:
GS (Gram-Schmidt) transform, Ehlers, Wavelet transform, and Modified IHS. The fusion effect was
evaluated through visual comparison, quantitative index analysis, and vegetation classification
accuracy. The study result revealed that GS and Wavelet transformation produced higher spectral
fidelity and better-quality fusion images, followed by Modified IHS and Ehlers. In terms of vegetation
classification, for the Wavelet transform, both spectral information and adding spatial structure
provided higher accuracy and displayed suitability for vegetation classification in the selected
area. Meanwhile, although the spectral features obtained better classification accuracy using the
Modified IHS, adding spatial structure to the classification process produced less improvement
and a lower robustness effect. The GS transform yielded better spectral fidelity but relatively low
vegetation classification accuracy using spectral features only and combined spectral features and
spatial structure. Lastly, the Ehlers method’s vegetation classification results were similar to those of
the GS transform image fusion method. Additionally, the accuracy was significantly improved in the
fused images compared to the multispectral image. Overall, Wavelet transforms showed the best
vegetation classification results in the study area among the four fusion algorithms.

Keywords: vegetation types; image classification; fused images; mountainous areas

1. Introduction

Remote sensing image fusion refers to the process of combining multi-source remote
sensing according to certain rules to eliminate information redundancy in order to expand
the application scope and effects [1–4]. High-quality fusion of remote sensing images
entails more than simply combining data; it also implies improvement of the images’
spatial resolution while retaining the original spectral information, thereby enhancing
the reliability of interpretation [5]. Employing an appropriate method to fuse images is a
critical task in remote sensing image enhancement processing and represents a necessary
step for obtaining high-precision image classification results.

The increasing availability of high-resolution remote sensing images in terms of
both the amount of data and sensor types has focused much scholarly attention on high-
resolution image fusion, leading to a plethora of relevant research references in the current
literature [6–14]. Some of the previous research has demonstrated the effectiveness of
high-resolution image fusion in terms of improving classification accuracy. For example,
Wang et al. used WorldView-2 remote sensing images to compare the effect of five fusion
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techniques and found a significant improvement in image classification accuracy after
fusion [15]. Similarly, Chen et al. [16] reported that the fusion method of tasseled hat trans-
formation and principal component analysis effectively improved the overall classification
of ground objects’ identification. Experiments performed by Lu [17] also proved that the
accuracy of land information extraction based on GS (Gram-Schmidt) transform could be
improved using a certain segmentation scale.

While scholars have demonstrated that image fusion processing improves image
quality and increases image classification accuracy, the literature also reveals that different
fusion techniques have offered varied enhancement processing characteristics. Thus, the
choice of technique should take into consideration the image sensor type characteristics
and the purpose for image classification [18–25]. Regarding images that have originated
from various sensor types, many studies have been carried out to identify the effectiveness
of fusion techniques from the aspect of spectral and spatial fidelity. For example, Jun
Ma et al., using six fusion methods for GF-2 image fusion, showed that NNDiffuse was
more suitable for GF-2 image fusion [26]. Meanwhile, in experiments that used BJ-2 and
GF-2 images, Fang Wang found that Pansharp and GS transforms better improved spatial
resolution for the BJ-2 images, while for the GF-2 images, pansharp and HPF yielded better
effects [27]. In the existing literature, most of the previous investigations of image fusion
focused on the fidelity of spectral information, and researchers gave less consideration to
classification accuracy.

In addition, specific thematic application purposes can affect the classification or inter-
pretation of images; the requirements for image enhancement may also differ [25,28–32]. In
the context of using a fused image for the extraction of vegetation information in moun-
tainous areas, the requirement for highly accurate spatial fidelity and spatial structure
of the vegetation area image becomes much greater due to the large degree of similarity
of spectral characteristics between different vegetation types. In this case, selecting an
effective image fusion method should be carried out according to the classification accuracy
of vegetation types in the study area, in addition to the method’s spectral fidelity and
accuracy of spatial information.

This investigation used WorldView-2 images to compare four methods of fusing
images: GS (Gram-Schmidt) transform, Ehlers, Modified IHS, and Wavelet transform. The
accuracy of vegetation classification, image visual effect, and quantitative index analysis
was used to evaluate fusion quality. The research results contribute to the field by providing
technical support for image fusion enhancement in the extraction of vegetation information
in mountain areas.

2. Materials and Methods
2.1. Study Area

The Kongquegou scenic spot, located on the southern slope of Huaguo Mountain in
Lianyungang City, was selected as the study area. Huaguo Mountain is situated in the
northern part of Jiangsu Province in the transition zone dividing northern and southern
China. It has a temperate monsoon climate with moderate rainfall and abundant sunshine
and is suitable for plant growth. Many vegetation types that grow in both northern and
southern regions can be found in this mountainous area, with a highest peak of 624.4 m
above sea level. The vertical distribution characteristics of vegetation types are not obvious,
and the vegetation is mainly characterized as artificial forest. The Kongquegou scenic
spot extends along a mountain river formed in the main valley line on the southern slope
of Huaguo Mountain. Most of the vegetation types existing in the Huaguo Mountain
study area are affected by the terrain, including Quercus acutissima, Castanea mollissima,
Pterocarya stenoptera, and other vegetations. Hence, the chosen area provided good repre-
sentative significance for vegetation information extraction from remote sensing imagery
in a mountainous area.
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Figure 1 shows the location and an image of the study area. This space illustration
extended from the southern end of Kongquegou to the northern Jiulong Bridge, with an
area of 38.4 hectares.
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Figure 1. Study area.

2.2. Data Preprocessing

The data used in the research comprised WorldView-2 images, which included 1
panchromatic band and 8 multispectral bands. The spatial resolution of the panchromatic
band was 0.5 m and the spatial resolution of the 8 multispectral bands was 2 m. The 8
multispectral bands were red, green, blue, near-infrared1 and 2, coastline, yellow, and red
edge. The imaging date was 31 August 2019, and the imaging quality was good. At that
season, the leaves of various vegetation types in the study area were all in a luxuriantly
green state and distinguishing the spectral features of different vegetation types was
relatively smaller than at any other point in the entire vegetation growing period. Thus,
spectral fidelity for the extraction of vegetation information had to be higher.

Before image fusion, atmospheric calibration was performed on 2 m multispectral
data, and geometric correction was applied to both 2 m multispectral (MUL) and 0.5 m
panchromatic (PAN) data. The FLAASH model was used for atmospheric correction, the
2 s 3D polynomial model algorithm was used for geometric correction, and the cubic
convolution was used for resampling.

2.3. Study Method
2.3.1. Image Fusion Algorithms

This paper compares the performance of four fusion methods, GS transform, Wavelet
transform, Modified IHS, and the Ehlers, when used to fuse images. Each of these methods
offered unique characteristics, as shown in Table 1. For example, the GS transform, a
high-fidelity remote sensing image fusion method, used multispectral images to simulate
panchromatic images, which could maintain the consistency of image spectral information
before and after fusion. Wavelet transform reduced image noise and detail distortion
through a low-entropy and de-correlation algorithm. Because the Modified IHS technique
employed a panchromatic image to substitute the I component produced by the IHS
(Intensity, hue, saturation) transformation of the RGB image, only 3 multispectral bands
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could be used for fusion processing at a time, resulting in an unstable fusion effect. The
Ehlers was based on Fourier filtering and Modified IHS transformation, which effectively
combined spectral information with high-frequency information. Because the Modified
IHS and Ehlers could only combine 3 multispectral bands with a panchromatic image, it
was necessary to first identify the optimum bands. Therefore, we calculated the optimal
index factor (OIF). A larger OIF index indicated that a greater quantity of information was
preserved in the combined bands and used as the optimal combination of bands for image
fusion. For the image used in the study, the largest OIF value was 236.39 when 578 bands
were combined, which corresponded to red and the near-infrared 1 and 2 bands.

Table 1. Principle of four image fusion methods.

Methods Principles Features

GS (Gram-Schmidt) transform

Multispectral image is used to simulate
panchromatic image, multi-dimensional linear

orthogonal transformation is carried out to
simulate panchromatic image and multispectral

image, and the first component of orthogonal
transformation is replaced by high spatial

resolution panchromatic image, and finally GS
inverse transformation is carried out.

The number of fusion bands is not
limited, and the spectral information of

the image is well maintained, but it takes
a little longer.

Wavelet transform

The panchromatic image and the resampled
multispectral image are decomposed by wavelet
to obtain the low frequency and a series of high
frequency parts. Then the fusion is processed

according to their respective fusion strategies to
get the low frequency and high frequency parts

after fusion, and then the inverse wavelet
transform is carried out to get the fused image.

The spectral information is well
preserved, but the spatial resolution is

not improved significantly

Ehlers

First, the panchromatic image is sharpened by
fast FFT, and then the spectrum is changed by

ISH, replacing the I-component with the
sharpened panchromatic component and finally

inverting to RGB.

The spectrum is well maintained, which
takes a long time, and only 3 bands can

be fused at a time.

Modified IHS

The image is converted from RGB color space to
the color space with IHS as the parameter, and

then the I-component is replaced by a
high-resolution image, and the HS component is
kept, and the fusion is completed through HIS

inverse transformation.

Only 3 bands can be fused at a time, and
the fusion effect is unstable.

2.3.2. Vegetation Type Classification Based on Fusion Images

The vegetation in the study area was divided into 9 types based on a combination
of the extent of image expression and characteristics of the vegetation’s composition, as
shown in Table 2 [33,34]. Plotting vegetation type samples for training and validation was
accomplished by visual delineation, along with field investigation. To be sure that each
sample region corresponded to the indicated type, we carried out the delineation within
a larger pure forest patch type. We also sought to ensure efficient, accurate field survey
performance by developing the Field Sampling Surveying and Management System based
on the Global Navigation Satellite System (GNSS), which was used to navigate and locate
the sample quickly and correctly. Field surveying and identification of vegetation types
were completed with the assistance of the Lianyungang City Forestry Technology Guidance
Station, which had practical requirements for vegetation mapping by remote sensing and
whose technicians were familiar with this region’s vegetation construction.
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Table 2. Mountainous vegetation classification system and sampling results.

Vegetation Category Image Training/Validation Image Features

Pinus thunbergii
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165/193

After being artificially planted, Pinus thunbergii is
distributed in mountain forest where the slope is

relative steep and soil is poor in a semi-natural form.
The brightness is darker, the texture is rougher than

pine, and the shadows are more pronounced.

Cunninghamia lanceolata
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93/144 Similar to the pine texture features, it is denser and
slightly taller than the P. thunbergii in the study area.

Phyllostachys spectabilis
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features, and the features are obvious.

Castanea mollissima
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The leaves of the trees are wide, mostly pruned, and
randomly arranged, with bright colors and obvious

spectral characteristics.

Quercus acutissima
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Pinus densiflora
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The Tea Plantations are distributed in strip-shaped

terraces, with regular, long and narrow shapes and
obvious features.

In order to evaluate the quality of images fused by different algorithms, image classifi-
cation was carried out based on the multispectral image and various fusion images in turn.
For the fusion images, vegetation classifications were performed using spectral features
only and then subsequently by combining spectral and texture features, and then the fusion
quality could be analyzed from the two aspects of image spectral and spatial structure.

All image classification regarding vegetation type was carried out via the random
forest algorithm based on an object-oriented technique. The process of segmentation was
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implemented using the region growing algorithm, and segmentation parameters were
acquired by a series of tests. According to our final determination, the scale was 55; the
shape factor was 0.1, and the color factor was 0.5.

The spectral features used for classifying included means and standard deviations
of the objective grayscale value on each fused layer. Meanwhile, texture features were
extracted using the gray-level co-occurrence technique that was accomplished along
45-degree angles.

2.3.3. Fusion Image Quality Evaluation

First, the fused image quality was evaluated by visual comparison and quantitative
index analysis. Visual comparison can intuitively analyze fusion quality in terms of color
contrast, sharpness, and texture. The quantification index was calculated by the image
algorithm in order to indicate the amount of information preservation and relevance to
the multispectral and pan images, including the grayscale value mean, standard deviation,
correlation coefficient, and information entropy [18]. The calculation formula of each
quantitative index is shown in Table 3. In the table, M and N represent the number of rows
and columns of the image; L is pixel gray level, z

(
xi, yi

)
is the gray value of a point on the

image, P is the ratio of the number of pixels with gray value I to the total pixels, A
(

xi, yi
)

is the value of panchromatic image, and F
(
xi, yi

)
is the value of the fused image.

Table 3. Calculation formula of quantitative index.

Quantitative Index Formula

mean value of gray value −
Z =

∑M
i=1 ∑N

j=1 z(xi , yj)
M × N

standard deviation
σ =

√
∑M

i=1 ∑N
j=1

(
z
(

xi, yi
)
−−

z

)2

M × N

correlation coefficient E = −
L−1
∑

i=0
Pilog1Pi

information entropy P =
∑ ∑

[
F
(

xi, yi
)
−−

f

][
A
(

xi, yi
)
−−

a

]
√

∑i=1 ∑j=1

[
F
(

xi, yi
)
−−

f

]2
×
√

∑i=1 ∑j=1

[
A
(

xi, yi
)
−−

a

]2

Second, vegetation classification accuracy was employed to indicate the quality of
various fused images. Validation samples were used to evaluate the classification result,
and then the confusion matrix was produced to reveal the accuracy.

3. Results
3.1. Visual Evaluation

The above four fusion procedures produced color images with higher spatial res-
olution; however, obvious differences in spectral and structure quality emerged in the
results. According to a visual comparison of spectral information preservation, as shown
in Figure 2, the image fused by the Wavelet transformation had almost the same color as
the original multispectral image, whereas the GS transform and Modified IHS produced a
slightly inferior image and the Ehlers transform yielded the largest deviation.
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Figure 2. Image fusion results.

As for the spatial structure, though the PAN image was fused with the multispectral
image directly and no information was lost, different algorithms differed somewhat in
the clarification of spatial structure detail on the fused image. Specifically, images fused
by the Wavelet transform and GS transform had the clearest spatial details, followed by
the Modified IHS, while the image fused by the Ehlers demonstrated the lowest spatial
clarification.

A visual comparison reveals that though there was no information loss during the
fusing procedure for the high spatial resolution PAN image, the distortion of multispectral
information potentially reduced the level of clarification in terms of the image’s spatial
detail and introduced texture blurring, which influenced image classification.

3.2. Quantitative Index Analysis

Table 4 displays all of the calculated results of the quantitative index. The mean and
standard deviation of the gray value reflects the brightness information and clarity of the
fused image. Additionally, the information entropy is an index that measures the amount
of information, and the correlation coefficient reflects the spectral fidelity. According to
the calculated results in Table 4, the gray value mean and standard deviation of the GS
transform fusion image had the closest characteristics to the original multispectral image,
followed by the Wavelet transform image. The correlation coefficient indicated that the
GS transform effectively preserved the spectral information of the original image while
improving the image resolution. In contrast, the average value and standard deviation of
the image obtained by the Ehlers transformation deviated from the original image to the
greatest extent; in particular, more spectral information was lost, resulting in serious color
distortions after fusion. The information entropy and correlation coefficient of the images
obtained by the Wavelet transformation were the highest, indicating that the Wavelet
transformation provided better spectral fidelity. Overall, the GS transform and Wavelet
transform demonstrated the best spectral fidelity.
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Table 4. Calculation results of the mean value of quantitative indicators.

Average Value Standard Deviation Information Entropy Correlation Coefficient

Mul 355.128 79.819 2.9477 -
Pan 251.356 52.395 2.9477 -

Ehlers 534.649 107.443 3.1219 0.53
GS transform 355.066 75.52 3 0.7824

Mod-IHS 249.970 56.750 3.2776 0.5581
Wavelet-pc 250.832 60.249 3.5216 0.8426

3.3. Fusion Quality Analysis by Image Classification Accuracy
3.3.1. Quality Analysis According to the Overall Accuracy of Image Classification

Tables 4 and 5 present the evaluation results concerning vegetation classification
accuracy. In Table 5, (1) indicates the classification experiment with spectral features
only, while (2) denotes classification that combined spectral and texture features. As
shown in Table 3, for both spectral features only and the combined spectral and texture
features, the classification accuracy for all four fusion-treated images was significantly
higher than that of the original multispectral image, indicating that the image fusion
algorithm effectively combined the spectral and spatial structure information to achieve
higher classification accuracy for vegetation types. However, a further comparison of the
vegetation classification accuracy among the four fused images revealed obvious differences
caused by the image fusion effect on both spectral and spatial information.

Table 5. Image classification accuracy.

MUL (1) MUL (2) Ehlers (1) Ehlers (3) GS (1) GS (2) Modified
HIS (1)

Modified
HIS (2)

Wavelet
(1)

Wavelet
(2)

OA 1 0.508 0.666 0.674 0.763 0.650 0.712 0.726 0.776 0.710 0.783
Kappa 0.444 0.627 0.637 0.735 0.610 0.678 0.695 0.75 0.677 0.759

1 In the table, OA represents the Overall Accuracy.

When considering only spectral information, the image fused using the Modified IHS
demonstrated the highest accuracy for vegetation-type classification, followed by Wavelet
transformation and the Ehlers. GS transform yielded the poorest result. Thus, while the GS
transform showed better spectral fidelity, the Modified IHS and Ehlers proved to be more
suitable for vegetation classification after selecting the best band.

As shown in Table 5, adding texture features to the classification procedure improved
classification accuracy. This outcome is in line with the findings of previous studies that
have also shown that in WorldView-2 images, the texture features of trees are particularly
prominent; therefore, adding texture features can be an effective way to improve classifica-
tion accuracy [35,36]. In terms of overall classification accuracy, when combining spectral
features and texture features, the classification accuracy of the Wavelet transform fusion
image, which had the best vegetation classification accuracy, was 78.6%, followed by the
Modified IHS fusion image, with a classification accuracy of 77.6%.

3.3.2. Quality Analysis of Vegetation Classification Accuracy from Spectral Characteristics

As can be observed in Table 4, when using only the spectral features of the fused image
to classify vegetation, the Modified IHS fused image produced the highest accuracy for
classifying P. stenoptera, C. mollissima, Tea Plantations, and Q. acutissima. According to the
results, albeit only 3 bands were included in the fusion procedure using the Modified IHS
algorithm, the selection of the best index of OIF allowed the fused image to retain most of
the spectral information of 8 multispectral bands, leading to a better ability to distinguish
among the four kinds of vegetation, thereby acquiring a better classification result. In
comparison, the image fused by the Wavelet transform technique displayed a similar ability
to identify each vegetation type, with slightly lower accuracy in the case of most vegetation
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classification, except for P. thunbergii, Cunninghamia lanceolata, P. densiflora, and Phyllostachys
spectabilis, which demonstrated higher classification results. In order to distinguish them
precisely, a fused image should have higher spectral fidelity, larger separability, and more
robustness. This classification result implied that the Wavelet transform technique could
yield relatively better quality in fused images. In terms of production and user accuracy,
GS and Ehlers transform each extracted only one kind of vegetation type with higher
accuracy, which were Phyllostachys spectabilis, and Tea Plantations, respectively. Furthermore,
although the GS transform was able to establish high spectral fidelity, the vegetation
type spectral separability of the image was relatively lower than image fused by Wavelet
transform. Meanwhile, in the image fused by Ehlers, both the resulting spectral fidelity and
separability were relatively low. According to these results, in order to obtain a high-quality
fused image, the fusion algorithm needs to preserve the spectral information well while
simultaneously enhancing the image-oriented image classification aims.

3.3.3. Quality Analysis with Texture Features Incorporated for Classification

Table 3 offers the evaluation results for overall accuracy and the Kappa coefficients.
Additionally, results for Producer’s accuracy and User accuracy can be found in Table 6.

Table 6. Vegetation classification accuracy.

P.
stenoptera

C.
mollissima

Tea
Plantations

P.
taeda

P.
thunbergii

P.
densiflora

Cunninghamia
lanceolata

Q.
acutissima

Phyllostachys
spectabilis

Wavelet
PA * 0.595 0.532 0.660 0.722 0.608 0.853 0.609 0.56 0.788
UP * 0.706 0.451 0.723 0.824 0.701 0.843 0.725 0.422 0.663

add texture
PA 0.673 0.628 0.675 0.725 0.64 1 0.677 0.813 0.956
UP 0.760 0.513 0.792 0.781 0.756 0.920 0.723 0.638 0.805

GS
transform

PA 0.853 0.535 0.692 0.555 0.477 0.807 0.466 0.368 0.751
UP 0.417 0.378 0.604 0.715 0.654 1 0.531 0.371 0.846

add texture
PA 0.502 0.602 0.701 0.664 0.595 0.807 0.461 0.508 0.611
UP 1 0.398 0.944 0.757 0.655 0.536 0.437 0.491 0.804

Modified
IHS

PA 0.788 0.595 0.781 0.783 0.479 0.832 0.566 0.540 0.722
UP 0.786 0.454 0.825 0.632 0.632 0.810 0.671 0.628 0.635

add texture
PA 0.512 0.604 0.820 0.703 0.549 0.999 0.677 0.686 0.699
UP 0.627 0.554 0.743 0.740 0.763 0.742 0.750 0.609 0.878

Ehlers
PA 0.522 0.577 0.739 0.722 0.589 0.808 0.398 0.470 0.431
UP 0.438 0.373 0.865 0.657 0.577 0.679 0.624 0.414 0.611

add texture
PA 0.623 0.586 0.741 0.759 0.656 0.92 0.663 0.625 0.631
UP 0.422 0.504 0.753 0.587 0.749 0.788 0.772 0.803 0.733

* In the table, PA represents the Producer’s precision, and UP represents the User’s precision.

The results in Table 5 support the following conclusions: (1) Adding texture features
can improve classification results for both multispectral images and the four fused images,
but the level of improvement is different. Among all the results, the multispectral image
showed the largest improvement, with an accuracy improvement of 15.8% and 17.3%
for overall accuracy and Kappa, respectively, followed by Wavelet transformation, with
an accuracy improvement of 7.3% and 8.3%, respectively. This outcome illustrates the
importance of texture features in vegetation classification using remote sensing images.
(2) Overall, in the case of lower classification accuracy using spectral features only, adding
texture features led to greater improvement, for example, in the multispectral image and
the image fused via Ehlers transformation. Meanwhile, for the image fused by the Wavelet
transform, which already demonstrated higher classification accuracy using the spectral
feature only, the incorporation of texture features further improved vegetation classification.
Therefore, combining spectral and spatial features led to the best classification results in
terms of higher image fusion quality for both spectral and spatial information among the
four fused images.

Analysis of the texture effect for individual vegetation types by production accuracy
and user accuracy, as shown in Table 6, supports the following conclusions: (1) Adding
texture information was not sufficient to improve all vegetation classification results, and
the texture effect on all of the fused images led to some degree of uncertainty, especially
in terms of user accuracy. (2) Of the images that resulted from the four methods, only
the image fused by the Wavelet transformation showed better robustness when texture
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was added to the classification process. All of its accuracy assessment results, except
for P. taeda’s user accuracy, were improved. (3) In the case of images fused by the three
other algorithms, the influence of texture on vegetation classification revealed a larger
degree of uncertainty. When texture features were added, vegetation classification accuracy
decreased in some areas while increasing at different levels in other areas. For example,
for the image fused by the Ehlers, the decrease level of classification user accuracy caused
by addition of texture features could reach up to 11.2%, while the increase level could
reach 38.9%.

The above analysis shows that adding the texture feature to the Wavelet transform
technique for fusing the image achieved the best outcome in terms of overall accuracy and
the robustness of individual vegetation classification results.

4. Discussion

This experiment compared four methods for fusing a WorldView-2 image. Visual
comparison and quantity index evaluation revealed that the GS transform and Wavelet
transform better retained the spectral information of the image. Nevertheless, in terms of
vegetation classification, even though the Modified IHS and Ehlers retained only 3 bands
of the multispectral image, these methods yielded superior results compared to the GS
transform.

When using only spectral features for vegetation classification, the GS transform’s
classification result after fusion was inferior to that of the Modified IHS and Ehlers. Two pos-
sible reasons may explain this result. (1) The 8-band information retained by GS transform
reduced the performance of the classifier due to information redundancy in the process of
vegetation classification. In contrast, because the Modified IHS and Ehlers retained only
3 bands through band selection, the reduction of dimension reduced information redun-
dancy. (2) Although the Modified IHS and Ehlers retained only 3 bands of information,
the band selected by the optimal band combination retained spectral information that was
more suitable for vegetation classification.

Even though adding texture features significantly improved the overall classification
accuracy of the four fusion methods, classification accuracy for some vegetation types
was reduced. For example, in the Ehlers fusion image, User accuracy could be reduced
by up to 11.2% after texture features were added. There are two possible reasons for this
phenomenon. First, the texture information for trees in the WorldView-2 image was very
prominent, but some critical bands were screened out in the process of band selection.
Second, the poor spectral fidelity of the 3-band combination may have indirectly affected
the performance of its texture features.

Conceivably, in the area of vegetation classification, higher accuracy was not only
dependent on spectral fidelity but also related to the image enhancement algorithm. For
example, while the GS transform’s fused image had high spectral fidelity, the image feature
dimension was high and various features is highly correlated, which increased the com-
plexity of the classifier calculation and led to the unsatisfactory classification effect [37–40].
Meanwhile, although the Modified IHS and Ehlers involved optimizing spectral bands
according to vegetation classification characteristics, the lower spectral fidelity might have
affected spatial construction and induced instability in the image texture features. Com-
pared to the other three methods, the Wavelet transform applied a de-correlation algorithm
before the process of image fusion, and the fused image was characterized by better quality
and acquired higher vegetation classification. Therefore, the ability to obtain a suitable
fusion image requires further investigation of both spectral fidelity and effective feature
optimization according to the image and vegetation growth characteristics.

5. Conclusions

Based on data drawn from WorldView-2 imagery, this investigation explored four
fusion methods to fuse the image, including GS transform, Ehlers, Modified IHS, and
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Wavelet transform. Our analysis of visual and quantitative indicators, along with the
extraction accuracy of mountain vegetation information, led to the following conclusions:

(1) Judging by our visual inspection and the quantitative indicators, the GS transform
and Wavelet transform techniques provided the best spectral fidelity quality and the
best image fusion effect, followed by the Modified IHS, while the Ehlers had the worst
spectral fidelity.

(2) In terms of the classification accuracy of vegetation types, in the images fused by either
the GS or Ehlers transform, the classification accuracy was relatively low when using
only spectral features; furthermore, adding texture features did not make the effect
more robust. The image rendered by the Modified IHS technique displayed lower
quality in terms of spectral fidelity but higher accuracy in vegetation classification than
the image fused by the GS transform. However, the image fused by Wavelet transform
yielded better classification results than the other techniques in using both spectral
features and the combination of spectral features and texture features. Therefore,
this method was shown to be the most suitable for vegetation classification in the
study area.

(3) The classification accuracy of the fused image showed significant improvement com-
pared to the original multispectral image.

(4) In general, in the image fusion process, establishing definite aims before implementing
the enhancements, improved the classification accuracy of the fused image.
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