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Abstract: Concrete materials often crack due to the temperature field caused by the early heat of
hydration, affecting structural safety and normal use. To solve this problem, this paper proposes the
method of incorporating polycarboxylate superplasticizer to improve its performance and explore
the influence of polycarboxylate superplasticizer on the properties of cement-fly ash composite
cementitious materials and concrete. Ordinary silicate was used to prepare cement-fly ash compos-
ite cementitious materials. Through isothermal conduction calorimetry, X-ray diffraction (XRD),
scanning electron microscopy (SEM), and other testing methods, the influence of polycarboxylate
water-reducing agent on the heat of hydration of cementitious materials was studied. In addition, the
hydration products and microscopic morphology of the cementitious materials were analyzed, and
the changes in the concrete properties due to the addition of polycarboxylate superplasticizers were
discussed. The results showed that the polycarboxylate superplasticizer could delay the onset time of
the hydration heat peak of the slurry and reduce the hydration heat peak, inhibit the crystallization
of Ca(OH)2 and AFt, improve the density of the slurry, and reduce the amount of chemically bound
water. In addition, it could delay the overall hydration process of the cementitious material, where
the adiabatic temperature increase rate and the early drying shrinkage rate of the concrete slowed
down, and the mechanical properties and impermeability of the concrete improved.

Keywords: adiabatic temperature increase; cementitious material; concrete; fly ash; hydration
reaction; polycarboxylate superplasticizer

1. Introduction

With the rapid development of the construction industry, the application of cement-
based materials has become increasingly widespread [1–3]. In actual production, a large
amount of hydration heat will be generated due to the hydration reaction of the internal
cementitious material, leading to thermal stress in the cement-based material, which results
in cracks [4–15]. To improve the performance of cement-based materials, water reducers
must be used in practical applications. Compared to traditional superplasticizers (such as
naphthalene sulfonate and melamine sulfonate), polycarboxylate superplasticizers have the
advantages of low dosage, a high water reduction rate, excellent dispersion performance,
and environmental protection [16–19]. In addition, they can improve the quality function
of concrete.

Scholars worldwide have conducted relevant research on the effect of polycarboxylate
superplasticizer on the performance of cement [20–25]. Ke et al. [26] studied the effect
of polycarboxylate superplasticizer on the fluidity, rheology, and thixotropic properties
of a low water-to-binder ratio cement-silica mortar slurry, and found that it had obvious
dispersion advantages for cementitious materials. Lin et al. [27] synthesized a new type of
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cross-linked polycarboxylate superplasticizer containing a large number of ethoxy groups
with steric hindrance. Under alkaline conditions, the ester groups in the polymer were
hydrolyzed, which increased the concentration of carboxyl groups and enhanced the effect
of the water-reducing agent on the secondary dispersion of cement. Ma et al. [28] found
that the super-long side chain polycarboxylate water reducer could promote the reduction
in the small-pore size air bubbles and increase large-pore size air bubbles in concrete. At
present, most researchers have focused on the rheological properties and dispersion effect
of polycarboxylate superplasticizers on cement-based materials, and minimal research
was conducted on cementitious materials and concrete hydration. Therefore, the perfor-
mance mechanism of coal ash composite cementitious material and concrete has important
practical significance for engineering applications.

In this work, ordinary silicate was used to prepare cement-fly ash composite cementi-
tious materials and concrete. Through isothermal conduction calorimetry, X-ray diffraction
(XRD), scanning electron microscope (SEM), and other testing methods, the effect of poly-
carboxylate water-reducing agent on the hydration heat of the composite cementitious
materials was studied. The effects of the hydration products and micro-morphology
were investigated, and the effects of the polycarboxylate superplasticizers on adiabatic
temperature increase, early drying shrinkage, and the mechanical properties of concrete
were explored.

2. Raw Materials and Test Methods
2.1. Raw Materials

Yufeng brand P·O42.5 ordinary Portland cement was used in the experiment, which
was obtained from Liuzhou Yufeng Cement Co., Ltd. in Guangxi, China. The chemical
composition and basic physical and mechanical properties are shown in Tables 1 and 2,
respectively. The fly ash selected for the test consisted of class II fly ash, which was produced
by Guangxi Guilin Guoneng Yongfu Power Generation Co., Ltd. in Guangxi, China. The
quality inspection results are shown in Table 3. The KD-J standard polycarboxylate water-
reducing agent obtained from Guangxi Keda Building Materials Chemical Co., Ltd. in
Guangxi, China. was selected for the test, and its water-reducing rate was 26.3%. The
experimental mix design is shown in Table 4.

Table 1. Chemical composition of the cement (wt%).

Cement CaO SiO2 Al2O3 Fe2O4 MgO SO3
Loss on
Ignition

P·O42.5 65.52 22.45 4.49 4.13 1.47 0.94 1.09

Table 2. Physical and mechanical properties of the cement.

Cement
Specific
Surface

Area (m2/kg)

Density
(g/cm3)

Standard Water
Consumption (%)

Coagulation Time (min) Compressive Strength
(MPa)

Flexural Strength
(MPa)

Initial
Setting

Final Co-
agulation 3 d 28 d 3 d 28 d

P·O42.5 365 3.11 25.2 215 269 34.3 47.0 5.3 7.7

Table 3. Quality inspection results of fly ash.

Density (g/cm3) Fineness
(%)

Loss on Ignition
(%) Water Demand (%) Free Oxidation (%) Trioxide (%)

28 d Compressive
Strength Activity

Index (%)

2.13 15.5 5.70 99 0.04 1.40 71
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Table 4. Test mix ratio.

Test Number W/C Cement Type of Water
Reducer

Dosage of
Water Reducer

Fly Ash
Content

Cement
Consumption

PO + FA 0.45 P·O42.5 - - 20% 80%
PO + FA + WR 0.45 P·O42.5 KD-J 0.2% 20% 80%

2.2. Test Method

(1) Heat of Hydration Test

A TAM-AIR eight-channel microcalorimeter was used to test the effect of the poly-
carboxylate superplasticizer on the hydration heat of the cementitious material, where
the experimental temperature was 20 ◦C, with reference to GB/T 12959-2008 “Method for
Determination of Heat of Hydration of Cement”. Table 4 indicates the mix proportions
of the materials considering the percentage of water reducer (KD-J), fly-ash, and cement
for each combination. After mixing the materials they were placed in the instrument for
hydration heat test after a quickly stirring. The test lasted for 7 days.

(2) X-ray diffraction analysis

The gelling material samples were prepared according to the mixing ratio shown in
Table 4. After curing for 1 h, 1 d, and 3 d, the samples were soaked in absolute ethanol to
achieve final hydration. However, the sample molded for 1 h was not hardened and had to
be stirred in anhydrous ethanol with a cleaned glass rod to allow it to make full contact
with the anhydrous ethanol. The soaking time of the sample in anhydrous ethanol was no
less than 24 h. Finally, according to the Rietveld refinement method, the content of each
phase in the sample was quantitatively analyzed by an Ultima IV X-ray diffractometer,
where the scanning angle ranged from 5 to 80◦, and the scanning speed was 2◦/min.

(3) Scanning electron microscope analysis

The cementitious material samples were prepared according to the mixing ratio shown
in Table 4. After curing for 1 and 3 d, the samples were placed into absolute ethanol
to stop hydration. The dried samples were then tested after vacuum gold plating, and
a Hitachi Su1510 SEM analyzer was used for analysis. The loading voltage was 20 KV,
the observation points were randomly selected, and the microscopic photographs of the
hardened slurry were obtained at 3200 × and 3500 × magnification.

(4) Combined water content test

The cementitious material samples were prepared according to the mixing ratio pre-
sented in Table 4. After curing for 1 h, 24 h, and 72 h, the samples were soaked in absolute
ethanol for 24 h to stop hydration, and then dried in an oven at 105 ◦C until they achieved
a constant weight. We weighed 1–2 g of the dried sample, which was placed in a crucible,
and then placed into a muffle furnace with a set temperature of 1050 ◦C for 90 min. The
bound water content was calculated according to Formula (1)

Ww =
(100 − WL)m1 − 100m2

m2
(1)

where Ww is the bound water content (%), WL is the loss on ignition of the cementitious
material (%), m1 is the mass of the sample before calcination (g), and m2 is the mass of the
sample after calcination (g).

(5) Concrete adiabatic temperature rise test

The adiabatic temperature rise test was carried out with reference to DL/T 5150-
2001 “Test Procedure for Hydraulic Concrete”. Two types of concrete, PO + FA and
PO + FA + WR, were prepared according to the mixing ratio of the cementitious material,
which followed water:sand:stone = 1:0.45:2.5:4.2, in which the cementing material contained
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80% cement and 20% fly ash. The effect of the polycarboxylate water-reducing agent on
the adiabatic temperature increase of the concrete was tested by a concrete thermophysical
parameter analyzer.

(6) Early drying shrinkage test of the concrete

According to the mixing ratio of the cementitious material of water:sand:stone = 1:
0.45: 2.5: 4.2, two types of concrete test blocks consisting of PO + FA and PO + FA + WR,
100 × 100 × 515 mm in size were formed. According to SL/T 352-2020 “Test Procedure for
Hydraulic Concrete”, the drying shrinkage of the concrete was tested for 12 h, 24 h, 48 h,
and 72 h after it was placed into an environment of (20 ± 3) ◦C and with constant humidity
(relative humidity of 60 ± 5%) for 1 d.

(7) Concrete mechanical properties test

The mechanical properties of concrete were tested including the cubic compressive
strength, split tensile strength, and the elastic modulus. According to the mixing ratio of the
cementitious material of water:sand:stone = 1:0.45:2.5:4.2, two types of concrete test blocks,
PO + FA and PO + FA + WR were formed, under standard curing conditions (T = 20 ± 3 ◦C,
RH ≥ 95%) of 7 d, 28 d, and 90 d, to test the mechanical properties of the concrete, with
reference to DL/T 5150-2001 “Test Procedure for Hydraulic Concrete”.

(8) Concrete impermeability test

Referring to SL/T 352-2020 “Testing Procedure for Hydraulic Concrete”, we formed
test blocks according to the above concrete mix ratio and sealed it with wax, checked the
sealing and then carried out the impermeability test, the water pressure was set to 1.2 MPa.
After 24 h, the water seepage height of the specimen was taken as the arithmetic mean of
the water seepage height at 10 measuring points.

3. Results and Discussion
3.1. Effect of Polycarboxylate Superplasticizer on the Heat of Hydration of Cementitious Materials

Figure 1 shows the effect of polycarboxylate superplasticizer on the hydration process
of the cementitious materials. We observed that following the addition of polycarboxylate
superplasticizer, the hydration induction period was significantly shortened, the exothermic
peak was delayed, the peak exothermic rate decreased with the addition of the polycarboxy-
late superplasticizer, and the cumulative heat release of 7 d was significantly reduced. The
hydration exothermic rate of the cementitious material mixed with polycarboxylate super-
plasticizer and the hydration exothermic rate of the sample without superplasticizer showed
that the polycarboxylate superplasticizer significantly reduced the exothermic rate of early
hydration of the cementitious material, as shown in Figure 1a. The order of the exother-
mic rate of the cementitious material followed PO + FA (1.74 mW/g) > PO + FA + WR
(1.745 mW/g), with the fastest time to reach the maximum exothermic rate of the cemen-
titious material without superplasticizer, of about 13–15 h. Meanwhile, the time for the
exothermic rate of the cementitious material with superplasticizer to reach the peak was
delayed by 11.6 h. This finding is similar to that of Zhang et al. [29]. Figure 1b shows
the hydration exotherm curve of the cementitious material mixed with polycarboxylate
superplasticizer and the hydration exotherm curve of the sample without superplasticizer,
where the cumulative exothermic heat of hydration of the cementitious material mixed
with polycarboxylate superplasticizer at each age was lower than the corresponding value
of the sample without superplasticizer. When the hydration age was 7 d, the addition
of superplasticizer reduced the cumulative heat release by about 11.4%, indicating that
the addition of the polycarboxylate superplasticizer played a positive role in reducing the
hydration heat of the cementitious material.
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3.2. Regulation Mechanism of the Polycarboxylate Superplasticizer on the Hydration Heat of
Cementitious Materials

Figure 2a shows the infrared spectrum of the polycarboxylate superplasticizer. We
observed that the structure of the polycarboxylate superplasticizer contained functional
groups such as −OH, −COOH, and −O-C=O. In an alkaline environment, −OH could
form calcium salt complexes with free Ca2+ in the slurry of the cementitious material,
which reduced the concentration of Ca2+ in the early stage of hydration of the cementitious
material and reduced the diffusion of water and Ca2+ on the surface of the cementitious
material. This inhibited the hydration of the cementitious material (Figure 2b) [30]. In
addition, both −OH and −COOH could be adsorbed on the surfaces of the cementitious
material particles, and at the same time, they could associate with the water molecules
through hydrogen bonds, resulting in a layer of cement particles on the surface. A stable
hydration film formed, reducing the hydration exothermic peak of the gelling material and
delaying the hydration reaction of the gelling material.
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3.3. Influence of the Polycarboxylate Superplasticizer on the Early Hydration Products of
Cementitious Materials

Figure 3 shows the effect of the polycarboxylate superplasticizers on the early hydra-
tion products of cementitious materials. As shown in Figure 3a, for the slurry without
polycarboxylate superplasticizer, with the hydration of the cementitious material, the
C3S minerals in the cementitious material were gradually consumed, and the Ca(OH)2
hydration products and the content of the amorphous phase gradually increased, while
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the content of the AFt phase initially increased and then decreased, which was due to
the conversion of AFt to AFm after the sulfate phase was depleted. For the cementitious
material slurry mixed with polycarboxylate superplasticizer (shown in Figure 3b), the
consumption of C3S and the generation of hydration product Ca(OH)2 slowed down signif-
icantly, indicating that the incorporation of superplasticizer significantly delayed gelation.
This finding is similar to the findings of Chen et al. [31]. In the early hydration process
of the materials, after 3 d of hydration, the content of each mineral phase in the slurry
mixed with polycarboxylate superplasticizer showed no significant differences compared
to the sample without superplasticizer. The XRD results showed that in the early hydration
stage, there was an obvious retardation effect of the polycarboxylate superplasticizer on
the hydration of the cementitious material, which was consistent with the above hydration
heat test results.
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3.4. Effect of Polycarboxylate Superplasticizer on the Microscopic Morphology of the Hydration
Products of Cementitious Materials

Figure 4 reflects the effect of polycarboxylate superplasticizer on the microscopic
morphology of the hydration products. As shown in Figure 4a, after hydration of the
sample for 1 d without polycarboxylate superplasticizer, we observed serious aggregation
and agglomeration phenomena between the particles, with many flocs, and the structure of
each component was relatively relaxed, indicating that the hydration reaction degree of the
sample is low. Compared to the sample without superplasticizer, after hydration for 1 d
(Figure 4b), the diameter of the particle micelles in the sample was significantly reduced
and dispersion was more uniform. Figure 4c,d shows the microscopic morphologies of the
cementitious material without a water-reducing agent and with the polycarboxylate water-
reducing agent after 3 d of hydration. We found that with an increase in hydration age,
the cementitious material slurry structure of the body was more compact than after 1 d of
hydration. At the same time, with the flocculated C-S-H gel, the crisscross acicular ettringite
and the hexagonal plate-shaped monosulfide calcium sulfoaluminate hydrate were clearly
distinguishable in the figure, which indicated that the composite cementitious material
underwent relatively sufficient hydration when hydrated for 3 d. In comparison, the
structure of the doped polycarboxylate superplasticizer slurry was more compact, and more
monosulfur-type hydrated calcium sulfoaluminate AFm could be observed. Therefore, the
addition of polycarboxylate superplasticizer reduced the crystal size of Ca(OH)2, AFt, and
the other hydration products to a certain extent, accelerating the conversion of ettringite AFt
to AFm, and delaying the progress of the hydration reaction of the cementitious material.
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(a) PO + FA 1 d, (b) PO + FA + WR 1 d, (c) PO + FA 3 d, and (d) PO + FA + WR 3 d.

3.5. Influence of Polycarboxylate Superplasticizer on the Chemically Bound Water Content of the
Cementitious Materials

Figure 5 shows the effect of polycarboxylate water-reducing agent on the chemically
bound water content of the cementitious materials at different ages. Chemically bound
water is typically a part of the structure of hydration products, where the higher the
content of chemically bound water, the greater the degree of hydration of the hardened
cementitious material slurry, and the more hydration products that will be generated during
the hydration process. With increasing age, the content of chemically bound water in the
cementitious material slurry increased gradually. At the same age, compared to the samples
without the water-reducing agent, the addition of the polycarboxylate water-reducing agent
reduced the chemically bound water content. Furthermore, with a longer curing time,
the more obvious the effect of the polycarboxylate water-reducing agent on delaying the
hydration process of the cementitious material. When the two groups of samples were
hydrated for 1 h, the chemically bound water content was the same, and the hydration
reaction had just started. After 72 h of hydration, the chemically bound water content in
the samples mixed with the water-reducing agent was higher than the samples without the
water-reducing agent, and the water volume decreased by 1.63%. We observed from the
chemical binding of water that the incorporation of the polycarboxylate water-reducing
agent could delay the hydration process of the cementitious material to a certain extent.
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3.6. Influence of the Polycarboxylate Water Reducer on Concrete Adiabatic Temperature Increase

Figure 6 shows the effect of polycarboxylate superplasticizer on the adiabatic tempera-
ture increase of the concrete. We observed that the polycarboxylate water reducer could
reduce the rate of concrete temperature increase and reduce the temperature of the concrete
samples. Comparing the adiabatic temperature rise curves of the two groups of concrete,
we found that within 5 d of pouring, the internal temperature of the concrete specimen
without water-reducing agent increased from 25 ◦C to 61.5 ◦C, presenting a slow upward
trend, and the internal temperature at 28 d was about 63.5 ◦C. The internal temperature
of the concrete specimen mixed with the polycarboxylate superplasticizer increased from
25 ◦C to 57.4 ◦C in 5 d and then stabilized, and the internal temperature of the 28 d spec-
imen was about 59.1 ◦C. Combined with the above research, the polycarboxylate water
reducer could delay the hydration process of the cementitious materials, and it could also
slow down the temperature increase to a certain extent in the concrete. We observed that
the polycarboxylate superplasticizer had a positive effect on slowing down the adiabatic
temperature rise of the concrete.
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3.7. Effect of Polycarboxylate Superplasticizer on the Early Drying Shrinkage of Concrete

Figure 7 shows the effect of polycarboxylate superplasticizer on the early drying
shrinkage of the concrete. As shown in Figure 7, with an increase in age, the shrinkage rate
of the concrete showed an increasing trend, and the early shrinkage rate of the concrete
samples mixed with water reducer was smaller than the samples without water reducer,
where after 12 h, 24 h, 48 h, and 72 h, the shrinkage decreased by 10.2%, 7.6%, 6.3%, and
4.7%, respectively. The drying shrinkage of concrete was caused by the diffusion of water
in its internal capillary pores to the outside unsaturated air, resulting in the formation of
capillary tension capillary walls, where the finer the capillary pores, the greater the negative
pressure of the capillary tube caused by water loss. The negative pressure acted on the
capillary tube walls, causing the cement stone in the concrete to shrink; thus, the finer the
capillary pores, the more severe the drying shrinkage. The addition of polycarboxylate
superplasticizer improved the workability of the concrete mixtures, causing the cement
particles to be better dispersed, greatly reducing water consumption, reducing water
evaporation, reducing capillary bleeding pores, and increasing cementitious material slurry
body cohesion. At the same time, the addition of the polycarboxylate water-reducing
agent could significantly reduce the surface tension of the pore solution in the concrete,
thus reducing the capillary negative pressure caused by water loss, achieving the effect of
reducing shrinkage [29]. In addition, owing to its air-entraining properties, polycarboxylate
water reducers could reduce the deformation resistance of concrete. Therefore, the effect of
polycarboxylate superplasticizer on concrete drying shrinkage was mainly the result of the
combined effects of the degree of capillary refinement and the reduction in surface tension.
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3.8. Effect of Polycarboxylate Superplasticizer on the Mechanical Properties of Concrete

Figure 8a–c shows the effects of polycarboxylate water-reducing agent on the com-
pressive strength, splitting tensile strength, and elastic modulus of concrete, respectively.
Adding an appropriate amount of water-reducing agent could improve the mechanical
properties of the concrete. At the same age, compared to the blank group, the addition
of polycarboxylate superplasticizer improved the strength of the concrete samples. The
compressive strength of concrete mixed with the water-reducing agent increased by 6.64%,
4.53%, and 8.96% at different ages, while the splitting tensile strength increased by 16.67%,
18.25%, and 14.41%, respectively, and the static compressive elastic modulus increased
by 5.78%, 6.08%, and 6.18%, respectively. After the polycarboxylate superplasticizer was
added to the concrete, the superplasticizer molecules were adsorbed on the surface of the
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cement in a comb shape, and its side chains extended into the liquid phase, resulting in
significant steric repulsion between the cement, and electrostatic repulsion was generated
to break the glue. The floc structure of the cementitious material (shown in Figure 8d) pro-
moted the hydration of the composite cementitious material slurry that was more sufficient
and the dispersion was more uniform; thus, making the concrete structure more compact.
In addition, after the polycarboxylate superplasticizer was adsorbed on the surface of the
particles in the cementitious material, it would also form a water film consisting of the
dissolving agent on the surface of the particles of the cementitious material, which not only
has a certain mechanical strength, but also acts as a lubricating “ball” between the particles
and aggregates of the cementitious material. At the same time, the carboxylate group in
the polycarboxylate superplasticizer could easily form a complex with the Ca2+ hydrated
from the cement, increasing the mutual bonding force between the cementitious materials,
reducing the water consumption for concrete mixing, shrinking the concrete capillary pore
size, and reducing the internal pores. Thus, the microcracks were more compact, and the
strength and elastic modulus of the overall structure improved. This finding is similar to
the findings of Wu et al. [32].
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Figure 8. Effect of polycarboxylate superplasticizer on the mechanical properties of concrete: (a) com-
pressive strength, (b) splitting tensile strength, (c) static compressive elastic modulus, (d) Working
mechanism diagram of polycarboxylate superplasticizer.

3.9. Influence of Polycarboxylate Superplasticizer on the Impermeability of Concrete

Figure 9 reflects the effect of polycarboxylate superplasticizer on the impermeability
of concrete. The addition of polycarboxylate water-reducing agent to the cement-fly ash
cementitious material could greatly reduce water consumption, reduce the pores in the
cementitious material slurry, reduce the total number of pores, and improve the pore
structure of the cementitious material slurry. Thus, the reduction in the average pore size
could improve the strength of cement stone, and also improve the impermeability of the
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concrete. Under 1.2 MPa of water pressure, the water seepage height of the concrete block
mixed with polycarboxylate superplasticizer was 27 mm, which was 4.7% lower than the
concrete without a water reducer. The test results showed that the polycarboxylate water
reducer had a positive effect on the impermeability of the concrete.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 13 
 

3.9. Influence of polycarboxylate superplasticizer on the impermeability of concrete 

Figure 9 reflects the effect of polycarboxylate superplasticizer on the impermeability 

of concrete. The addition of polycarboxylate water-reducing agent to the cement-fly ash 

cementitious material could greatly reduce water consumption, reduce the pores in the 

cementitious material slurry, reduce the total number of pores, and improve the pore 

structure of the cementitious material slurry. Thus, the reduction in the average pore size 

could improve the strength of cement stone, and also improve the impermeability of the 

concrete. Under 1.2 MPa of water pressure, the water seepage height of the concrete block 

mixed with polycarboxylate superplasticizer was 27 mm, which was 4.7% lower than the 

concrete without a water reducer. The test results showed that the polycarboxylate water 

reducer had a positive effect on the impermeability of the concrete. 

PO+FA PO+FA+WR
0

5

10

15

20

25

30

35

40

 Water seepage height

 Relative penetration height

W
a
te

r 
se

ep
a
g
e 

h
ei

g
h

t/
m

m

0

5

10

15

20

25

30

35

40

R
el

a
ti

v
e 

p
en

et
ra

ti
o
n

 h
ei

g
h

t/
%

 

Figure 9. Effect of polycarboxylate water reducer on the impermeability of concrete. 

4. Conclusions 

In this paper, cement-fly ash composite cementitious materials were prepared using 

ordinary silicate, and the influence of polycarboxylate superplasticizer on the properties 

of cement-fly ash composite cementitious materials and concrete was studied. The specific 

findings of this study are as follows: 

(1) The polycarboxylate superplasticizer effectively shortened the hydration induction 

period of the cement-fly ash cementitious material, and significantly reduced the ex-

othermic rate of the hydration exothermic peak. From a cumulative heat release point 

of view, the total heat release in the polycarboxylate superplasticizer decreased most 

significantly at 7 d. 

(2) The incorporation of polycarboxylate superplasticizer inhibited the crystallization of 

Ca(OH)2 and AFt, accelerating the conversion of ettringite AFt to AFm, and delaying 

the overall hydration reaction of the cementitious material. 

(3) The chemical bound water test results showed that the polycarboxylate water re-

ducer reduced the bound water content of the cementitious material, where the 

longer the curing time, the more significant the effect. 

(4) Polycarboxylate superplasticizer could reduce the rate of concrete adiabatic temper-

ature increase and reduce the temperature of the concrete samples, which had a pos-

itive effect on slowing down the adiabatic temperature rise of the concrete. 

Figure 9. Effect of polycarboxylate water reducer on the impermeability of concrete.

4. Conclusions

In this paper, cement-fly ash composite cementitious materials were prepared using
ordinary silicate, and the influence of polycarboxylate superplasticizer on the properties of
cement-fly ash composite cementitious materials and concrete was studied. The specific
findings of this study are as follows:

(1) The polycarboxylate superplasticizer effectively shortened the hydration induction
period of the cement-fly ash cementitious material, and significantly reduced the
exothermic rate of the hydration exothermic peak. From a cumulative heat release
point of view, the total heat release in the polycarboxylate superplasticizer decreased
most significantly at 7 d.

(2) The incorporation of polycarboxylate superplasticizer inhibited the crystallization of
Ca(OH)2 and AFt, accelerating the conversion of ettringite AFt to AFm, and delaying
the overall hydration reaction of the cementitious material.

(3) The chemical bound water test results showed that the polycarboxylate water reducer
reduced the bound water content of the cementitious material, where the longer the
curing time, the more significant the effect.

(4) Polycarboxylate superplasticizer could reduce the rate of concrete adiabatic tempera-
ture increase and reduce the temperature of the concrete samples, which had a positive
effect on slowing down the adiabatic temperature rise of the concrete.

(5) The addition of polycarboxylate water-reducing agent inhibited the early drying
shrinkage of concrete to a certain extent, improving the compressive strength, splitting
tensile strength, elastic modulus, and impermeability of concrete.

In this paper, the influence of polycarboxylate superplasticizer on the overall perfor-
mance of cementitious materials and concrete was studied by selecting a few typical tests,
which can be extended in further research to compare the influence of polycarboxylate
superplasticizer on the performance of cementitious materials and concrete from various
aspects. For the temperature control study of concrete, the establishment of a finite element
model of the temperature field is an excellent tool, which can be used in further studies to
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simulate the temperature difference between the inside and outside of concrete during con-
struction, so as to study the temperature control effect of polycarboxylate superplasticizer.
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