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Abstract: Traffic sign detection is a research hotspot in advanced assisted driving systems, given
the complex background, light transformation, and scale changes of traffic sign targets, as well as
the problems of slow result acquisition and low accuracy of existing detection methods. To solve
the above problems, this paper proposes a traffic sign detection method based on a lightweight
multiscale feature fusion network. Since a lightweight network model is simple and has fewer
parameters, it can greatly improve the detection speed of a target. To learn more target features
and improve the generalization ability of the model, a multiscale feature fusion method can be
used to improve recognition accuracy during training. Firstly, MobileNetV3 was selected as the
backbone network, a new spatial attention mechanism was introduced, and a spatial attention
branch and a channel attention branch were constructed to obtain a mixed attention weight map.
Secondly, a feature-interleaving module was constructed to convert the single-scale feature map of
the specified layer into a multiscale feature fusion map to realize the combined encoding of high-level
semantic information and low-level semantic information. Then, a feature extraction base network
for lightweight multiscale feature fusion with an attention mechanism based on the above steps
was constructed. Finally, a key-point detection network was constructed to output the location
information, bias information, and category probability of the center points of traffic signs to achieve
the detection and recognition of traffic signs. The model was trained, validated, and tested using
TT100K datasets, and the detection accuracy of 36 common categories of traffic signs reached more
than 85%, among which the detection accuracy of five categories exceeded 95%. The results showed
that, compared with the traditional methods of Faster R-CNN, CornerNet, and CenterNet, traffic
sign detection based on a lightweight multiscale feature fusion network had obvious advantages in
the speed and accuracy of recognition, significantly improved the detection performance for small
targets, and achieved a better real-time performance.

Keywords: traffic engineering; traffic sign detection; convolutional neural network; multiscale feature
fusion; attention mechanism

1. Introduction

Given the various problems existing in the process of road transportation [1], orga-
nizations in various countries have invested manpower, material resources, and financial
resources to find solutions. Advanced driving assistance systems (ADASs) have become
one of the key technologies to solve the problem. An ADAS can collect information about
the movement of a vehicle and the surrounding environment and understand the informa-
tion to help drivers make decisions; however, as an important part of an ADAS, traffic sign
identification and recognition can timely convey guidance, restriction, or warning or can
prompt information expressed by traffic signs within a certain range to drivers, which can
ensure the safety of road driving to a certain extent.

In early studies, the feature-learning method has mainly been used, which mainly
utilizes the inherent features of traffic signs and detects and identifies traffic signs based on
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machine learning. In references [2–5], traffic signs are detected by feature-learning methods.
However, these methods overuse the shapes and color features of traffic signs. Cases of
clear color and standard shape have better detection and recognition effects. However,
in complex environments, such as light transformation and shape distortion, this type of
method has the problem of low detection and recognition rates. Yu et al. [6] designed a
framework for traffic sign detection in complex scenes based on visual co-visuality that
used three visual attention cues, contrast, center deviation, and symmetry, to detect traffic
signs. The advantages of this method were the integration of bottom-up and top-down
visual processing and no heavy-learning tasks. Yu et al. [7] proposed a traffic sign detection
method based on saliency maps and Fourier descriptors. This method used frequency
tuning to obtain a saliency map and used binary operation to obtain a binary image and
capture traffic sign area. Based on a visual attention mechanism model, Zhang et al. [8]
extracted edge and color information as early visual features, calculated each feature to
obtain a visual saliency map, and then used a graph neural network and K-means algorithm
to determine candidate regions containing traffic signs. The visual saliency method mainly
relies on modeling of the visual attention mechanism. In complex environments, this kind
of method has a certain improvement in the detection and recognition rates of traffic signs
compared with the feature-learning method. However, this kind of method is relatively
deficient in the extraction of deep features of traffic signs, such as the feature extraction of
traffic signs of the same category in different weather environments.

Deep convolutional neural networks are widely used in traffic sign detection and
recognition tasks and have achieved good results. Yin et al. [9] designed a novel struc-
ture combining intranetwork connections and residual connections and used an efficient
GPU to accelerate convolution operations. Zhe et al. [10] created the TT100K traffic sign
database based on Tencent Street View and labeled each traffic sign appearing in the images.
Xie et al. [11] proposed a two-level cascaded convolutional neural network structure that
could effectively improve the classification accuracy of traffic signs. Zhu et al. [12] pro-
posed a novel framework for traffic sign detection and recognition that contained a fully
convolutional network to guide traffic sign proposals and a deep convolutional neural
network for target classification. Zhang [13] and Zuo [14] each applied Faster R-CNN to
traffic sign detection and recognition and improved the efficiency of feature extraction
through an RPN network and end-to-end model training. There are many kinds of traffic
signs, including not only graphic signs but also text signs. To detect graphic signs and
text signs at the same time, Luo et al. [15] first classified the region of interest into two
categories to distinguish graphic and text signs and then identified specific categories
through a deep feature extraction network. Zhu et al. [16] proposed a text-based traffic
sign detection network that solved the multiscale problem of text detection by narrowing
the text detection area. In practical applications, small traffic signs are prone to low reso-
lution when imaging and different degrees of blur or deformation, so the images contain
less information and the features are not easy to extract. In response to this problem,
Peng et al. [17] introduced local regions into a detection network structure to provide more
local information for the back-end recognition network and improve the detection and
recognition rates of small traffic signs. Pei et al. [18] proposed a multiscale deconvolution
network that flexibly used a multiscale CNN to form efficient and reliable local traffic sign
recognition model training. Li [19] and Heng [20] et al. both used adversarial generative
networks to enhance the detection and recognition capabilities of the original network.
Xiang et al. [21] proposed an improved capsule network for traffic sign recognition in a
multiscale capsule network. Traffic sign images are susceptible to the effects of shooting
angle and distance, which change the size of the sign and seriously affect the feature
extraction and classification processes. To address this problem, Xie et al. [22] proposed
a traffic sign recognition method based on an LeNet-5 network by adjusting target size
using bilinear interpolation and then using the adjusted image for feature extraction. In
complex traffic scenarios, some objects are similar to traffic signs in appearance, and a
detector may detect them incorrectly. To address this problem, Yuan et al. [23] found that
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the locations of traffic signs had obvious statistical features when they were counted, so
the location a priori information was introduced into a network to improve the accuracy
of traffic sign detection. Lee et al. [24] proposed a novel traffic sign detection system that
used CNN to simultaneously estimate the locations and precise boundaries of traffic signs.
Kong et al. [25] combed the latest research results and proposed future development trends
in machine learning and deep learning in traffic target detection. Zhou et al. [26] proposed
a standard dataset and presented a high-resolution traffic sign recognition algorithm for
complex environments. There are many small objects in traffic scenes, but their detec-
tion is still a challenge due to low resolution and limited information. For this reason,
Lian et al. [27] proposed a small object detection method for traffic scenes based on atten-
tional feature fusion to improve the small target detection accuracy.

To better apply convolutional neural networks in the field of traffic sign detection and
recognition, various research scholars have proposed many convolutional neural networks
with better performances but higher network complexity based on AlexNet [28], such as
VGG [29], ResNet [30], DenseNet [31], etc. The transportation problem is complex, as well as
nonlinear, and there is a lot of data information to be processed. The use of traditional deep
neural networks leads to great difficulties in storing models in embedded devices due to the
large limitation of storage space for hardware devices. In response to the high complexity of
deep neural networks, which is difficult to be applied in real life, some scholars have tried
to study lightweight networks to reduce complexity while maintaining the network effect
and have made breakthrough progress. The research on lightweight networks is mainly
divided into two directions, model compression and network structure design, in which
the representative methods of model compression are knowledge distillation, pruning,
quantization, and low-rank decomposition, and the representative networks of network
structure design are SqueezeNet [32], MobileNet [33,34], ShuffleNet [35], and Xception [36].

In summary, a traffic sign detection and recognition algorithm based on deep learning
can handle more complex application scenarios, but there are still some difficulties in the
process of practical application. A traffic sign detection algorithm requires high real-time
performance. Additionally, a traffic sign generally occupies a small proportion of the
image, and there is a certain scale change. Based on a situation analysis of traffic sign
detection and recognition, this paper researches and proposes a traffic sign detection and
recognition algorithm based on lightweight multiscale feature fusion and an attention
mechanism for intelligent driving applications. Firstly, the convolutional neural network
C-MobileNetV3, which is based on the improved MobileNetV3 [37], is adopted as the
feature extraction network, and the input images are convolved with different numbers
of convolutional kernels to generate single-scale images of different depths. Then, feature
maps of different scales are input into the feature-interleaving module, and the top-down
connection, bottom-up connection, and layer-by-layer cascade modules are used to obtain
multiscale feature fusion maps that fuse different scale information. Finally, the obtained
multiscale feature fusion map is input into the detection network for foreground and
background discrimination to complete the detection and recognition of traffic signs.

2. Methodology and Models
2.1. Feature Extraction
2.1.1. Lightweight Feature Extraction Network

To efficiently complete the extraction of feature maps, in this paper we selected a mod-
ified lightweight network based on MobileNetV3 as the base network for feature extraction
and named it C-MobileNetV3. The basic structure of the network was a bottleneck [38]. The
core idea was to reduce the computational complexity by using deep, separable convolution
instead of standard convolution. In addition, a lightweight attention module was added to
enhance the network learning ability. The bottleneck design consisted of two structures
with a step size of 1 and a step size of 2, respectively. Among them, the structure with the
step size of 1 was added with the residual connection. In addition, some bottlenecks were
added with a squeeze-and-excitation (SE [32]) module, as shown in Figure 1.



Sustainability 2022, 14, 14019 4 of 18

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 18 
 

convolution instead of standard convolution. In addition, a lightweight attention module was 

added to enhance the network learning ability. The bottleneck design consisted of two struc-

tures with a step size of 1 and a step size of 2, respectively. Among them, the structure with 

the step size of 1 was added with the residual connection. In addition, some bottlenecks were 

added with a squeeze-and-excitation (SE [32]) module, as shown in Figure 1. 

conv 1×1

BN

ReLU6/h-swish

D-conv (3×3/5×5)

BN

P-conv 1×1

BN

SE

conv 1×1

BN

D-conv (3×3/5×5)

BN

P-conv 1×1

BN

SE

Average 
pooling

FC

ReLU

FC

h-swish

scale

Stride = 1 Stride = 2 SE Module

ReLU6/h-swish

ReLU6/h-swish

ReLU6/h-swish

 

Figure 1. Bottleneck structure diagram. 

The input image was first mapped from the low-dimensional space to the high-di-

mensional space by expanding the convolution of 1 × 1 to obtain enough information 

that the number of expansion channels could be set as desired. Next, channel-by-channel 

convolution was used to output the information of each channel, and point-by-point con-

volution was used to complete the joint coding between channels to compress the number 

of channels, which in turn made the network lighter. ReLU6 was used as the activation 

function for the first half of the model, and Hard-Swish was used for the second half. The 

overall framework of the lightweight feature extraction base network is shown in Figure 

2. The input image was first convolved in 16 dimensions with a step size of 2 and a con-

volution kernel size of 3 × 3  to extract preliminary information and generate a 

1024 1024 16   feature map. Then, it was input into the feature extraction network and 

stacked by different bottleneck specifications. 

co
n

v
 3

×3
 S

 =
 2

B
ot

tl
en

ec
k

_1

B
ot

tl
en

ec
k

_2

B
ot

tl
en

ec
k

_3

B
ot

tl
en

ec
k

_4

B
ot

tl
en

ec
k

_5

B
ot

tl
en

ec
k

_6

B
ot

tl
en

ec
k

_7

B
ot

tl
en

ec
k

_8

B
ot

tl
en

ec
k

_9

B
ot

tl
en

ec
k

_1
0

B
ot

tl
en

ec
k

_1
1

B
ot

tl
en

ec
k

_1
2

B
ot

tl
en

ec
k

_1
3

B
ot

tl
en

ec
k

_1
4

B
ot

tl
en

ec
k

_1
5

Feature 
Map

32×32
×112

16×16
×160

8×8
×180

4×4
×240

64×64
×80

128×128
×40

256×256
×24

512×512
×16

 

Figure 2. C-MobileNet overall framework. 

  

Figure 1. Bottleneck structure diagram.

The input image was first mapped from the low-dimensional space to the high-
dimensional space by expanding the convolution of 1× 1 to obtain enough information
that the number of expansion channels could be set as desired. Next, channel-by-channel
convolution was used to output the information of each channel, and point-by-point
convolution was used to complete the joint coding between channels to compress the
number of channels, which in turn made the network lighter. ReLU6 was used as the
activation function for the first half of the model, and Hard-Swish was used for the second
half. The overall framework of the lightweight feature extraction base network is shown
in Figure 2. The input image was first convolved in 16 dimensions with a step size of 2
and a convolution kernel size of 3× 3 to extract preliminary information and generate a
1024× 1024× 16 feature map. Then, it was input into the feature extraction network and
stacked by different bottleneck specifications.
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Figure 2. C-MobileNet overall framework.

2.1.2. Multiscale Feature Fusion Network

In this paper, we proposed a feature-interleaving module by borrowing the idea of
BiFPN [39] for feature fusion. As shown in Figure 3, the network was generally com-
posed of three parts: a top-down module, a bottom-up module, and a layer-by-layer
connection module.
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1. Top-down module. To obtain a rich feature representation, the multiscale fusion
module designed in this paper selected seven different sizes of feature maps for

fusion, denoted as
⇀
P = (P1, P2, . . . , P7). These feature maps were the feature maps

output from Bottleneck_2, Bottleneck_4, Bottleneck_7, Bottleneck_9, Bottleneck_11,
Bottleneck_13, and Bottleneck_15 in the lightweight feature extraction network, with
sizes of 512 × 512 × 24, 256 × 256 × 40, 128 × 128 × 80, 64 × 64 × 112, 32 × 32 × 160,
16 × 16 × 200, and 8 × 8 × 240, respectively.

In this paper, we used the summation operation for feature fusion and achieved
consistency in the number of channels through the convolution kernel of 1× 1× 240. The
green arrow in the figure represents the bilinear interpolation. The size of the feature map
after the bilinear interpolation became twice the previous one, and the transformed feature
map could be fused with the underlying feature map. The convolution kernel of 3× 3 was
used to re-extract the features to ensure the stability of the features.

2. Bottom-up Module. To improve the limitations of unidirectional information flow,
a bottom-up module was designed in this paper. The bottom-up module mainly
consisted of three parts: max pooling, lateral connection, and cross-stage connection.
The purple arrows in the figure represent max pooling, and show the cross-level con-
nections. By cross-level connection, more features could be fused without additional
cost. The feature map after max pooling, the feature map after cross-level connection,
and the feature map obtained in the top-down module were added pixel by pixel, and
the obtained results were used for feature extraction through convolution to obtain
the output of the top-down module.

3. Layer-by-Layer Connection Module. To improve the efficiency of network detec-

tion, the connection module fused the feature map
→
N(N1, N2, . . . N7) generated by

the bottom-up module by summation and then performed feature re-extraction by
convolution with a size of 3× 3, a step size of 1, and a number of output channels to
generate the fused feature map of 256× 256× 240.
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2.2. Hybrid Attention Module

As can be seen from the structure in Figure 4, the input feature map of the attention
module [40] generated the channel domain attention feature map after the channel attention
branch. After spatial-domain-attention-branching, the spatial attention feature map was
generated, and then the two were added pixel by pixel to generate the hybrid attention
feature map.
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2.2.1. Spatial Attention Module

The structure diagram of the spatial attention module is shown in Figure 5, which
omits the batch normalization (BN) layer and the sigmoid layer.
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The main steps of the spatial-attention-branching subnetwork calculation method
were as follows:

1. Input the feature map F ∈ RH×W×C, where the superscript indicates the height and
width of the feature map and the number of channels.

2. Convolution of the input feature map of the size 3× 3 to generate spatial feature map
FS ∈ RH×W×C:

FS = BN( f (3×3×C)(F)) (1)

where BN denotes the batch normalization operation and the convolution opera-
tion, and the superscript f denotes the convolution kernel size and the number of
output channels.
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3. Compression of the channel direction to generate the feature map FS
′ ∈ RH×W×C/4;

its generation process is as follows:

F′S = BN( f (1×1×C/4)(FS)) (2)

4. Generation of spatial attention weight maps by pooling, convolution, and deformation
operations WS ∈ RH×W×C:

Ws = ReaShape(Sigmoid(BN( f (1×1×1)(Concat(MaxPoolC(F′S) + AvgPoolC(F′S)))))) (3)

where MaxPoolC is the pixel maximum in the channel direction of the feature map;
AvgPoolC is the pixel average in the channel direction of the feature map; Concat is
the stitching of the feature map in the channel direction; Sigmoid is the activation
function; and ReaShape is the deformation.

5. Acquisition of the spatial attention map by multiplying the spatial attention weight
map WS ∈ RH×W×C and the spatial feature map FS; then, the spatial attention map is
added to FS to obtain the final output of the spatial attention subnet FH×W×C

SW :

FSW = FS + (WS � FS) (4)

2.2.2. Channel Attention Module

The channel domain attention mechanism used a network-learning method to obtain
feature map channel weights, which complemented the spatial domain attention branch to
achieve a reasonable allocation of computer resources. The structure of the channel-domain
attention branch is shown in Figure 6.
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The main steps of the channel-domain-attention-branching subnetwork calculation
method were:

1. Enter the feature map F ∈ RH×W×C, where the superscript indicates the height and
width of the feature map and the number of channels.

2. After the convolution operation of 3× 3 is performed on the input feature map F,
generate the channel domain basic feature map FC:

FC = BN( f (3×3×C)(F)) (5)
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where BN denotes the batch normalization operation; f denotes the convolution
operation; and the superscript denotes the convolution kernel size, as well as the
number of output channels.

3. Calculate the global maximum pooling and global average pooling:

FC M = MaxPool(FC) (6)

FCA = AvgPool(FC) (7)

where MaxPool represents the pixel maximum value among the H ×W data of each
channel of the feature map, and AvgPool represents the pixel average value among
the H ×W data of each channel of the feature map.

4. Compress the channels through compressed convolution, and then the feature maps
are updimensioned using C neurons to obtain the outputs of the global maximum
pooling branch F′CM ∈ R1×1×C and the global average pooling branch F′CA ∈ R1×1×C,
respectively:

F′CM = BN( f (1×1×C)(BN( f (1×1× C
4 )(FCM)))) (8)

F′CA = BN( f (1×1×C)(BN( f (1×1× C
4 )(FCA)))) (9)

5. Obtain the fused feature maps of the global maximum pooling branch and the global
average pooling branch by adding F′CM and F′CA pixel by pixel to obtain the channel
domain attention weight map:

WC = ReaShape(Sigmoid(BN( f (1×1×1)(F′CM + F′CA)))) (10)

where + denotes pixel-by-pixel summation, Sigmoid denotes the activation function,
and ReaShape denotes upsampling.

6. Obtain the channel domain attention map by multiplying the channel domain at-
tention weight map WC ∈ RH×W×C with the channel domain basis feature map FC;
then, add the channel domain attention map with FS to obtain the final output of the
channel domain attention subnetwork FH×W×C

CW :

FCW = FC + (WC � FC) (11)

where � indicates multiplying pixel by pixel, and + indicates adding pixel by pixel.

2.3. Detection Network

Based on the idea of CenterNet [41], this paper used a target detection method without
an anchor frame to detect traffic signs. This paper used the center point of the traffic
sign truth box in the image to represent the current target, that is, a traffic sign was
detected as a point. The actual prediction box of the object was obtained by predicting the
center point offset and width of the target, and a heat map represented the classification
information. The detection network framework is shown in Figure 7. The output of
the multiscale fusion feature extraction network was used as the input of the detection
network, and the input was input into three branches that predicted the heat map, width
and height, and position offset of the traffic sign center point. Then, the obtained results
were mapped to the original image size by suppressing the center point with a higher
retention score through the maximum value, and finally, the target position and category
were obtained.
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The loss function for the heat map portion was denoted as follows:

LK =
1
N ∑

xyz

{ (
1− Ŷxyz

)α log
(
Ŷxyz

)
, Yxyz = 1(

1−Yxyz
)β(Ŷxyz

)α log
(
1− Ŷxyz

)
, otherwise

(12)

where Ŷxyz represents the predicted value of the heat map at the channel c position (x, y);
Yxyz represents the true value of the corresponding position, which was calculated based
on the Gaussian distribution of the centroid of the true value; N represents the number
of traffic signs in the picture; the α parameters are used to control the loss weights of the
hard and easy classification samples; and the β parameters are used for weight. In the
experiments, α was taken as 2, and β was taken as 4.

The bias loss function was denoted as follows:

Lo f f =
1
N ∑

p

∣∣Ôp −Op
∣∣ (13)

where Op is the actual bias, and Ôp represents the bias predicted by the network.
The length and width predicted loss value was calculated as follows:

Lsize =
1
N

N

∑
k=1

∣∣∣Ŝpk − Sk

∣∣∣ (14)

where Ŝpk refers to the predicted width and height, and Sk refers to the actual width
and height.

The total loss function of the network was as follows:

Ldet = Lk + λsizeLsize + λo f f Lo f f (15)

where λsize = 0.1 and λo f f= 1 represent the weights of different partial loss functions.
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3. Experiments and Results
3.1. Experiment Platform

The dataset used in this chapter was TT100K, and the evaluation metrics used were
precision, recall, PR curve, index, and frames per second (FPS). The experiments were
conducted with an Intel(R) Xeon(R) E5-2680v3 processor, with a 2.5 GHz GPU and an
NVIDIA Geforce GTX 1080ti graphics card using Python3.6 as the programming language
and Pycharm as the software, based on Pytorch 1.1.0 deep learning platform, CUDA 9.0
and CUDnn7.1 was used to implement the algorithms in this paper.

3.2. Ablation Study

The models for conducting the ablation experiments were classified as follows.
Model 1: The network contained C-MobileNet with a detection network.
Model 2: The network contained C-MobileNet, a spatial domain attention module,

and a detection module.
Model 3: The network contained C-MobileNet, a channel domain attention module,

and a detection module.
Model 4: The network contained C-MobileNet, a hybrid attention module, and a

detection module.
Model 5: The network contained C-MobileNet, a feature-interleaving module, and a

detection module.
Model 6: The network contained C-MobileNet, a feature-interleaving module, a spatial

domain attention module, and a detection module.
Model 7: The network contained C-MobileNet, a feature-interleaving module, a

channel domain attention module, and a detection module.
Model 8: The network contained C-MobileNet, a feature-interleaving module, a hybrid

attention module, and a detection module.
The experimental results are shown in Table 1.

Table 1. Ablation study.

Average Accuracy (%) Recall (%) F1 (%)

Small Mid Large Small Mid Large Small Mid Large

Model 1 82.7 91.1 89.8 78.6 87.9 87.5 80.6 89.5 88.6
Model 2 83.3 91.7 90.4 80.8 88.6 88.2 82.0 90.1 89.2
Model 3 83.4 91.8 90.6 81.5 89.8 89.0 82.4 90.7 89.8
Model 4 84.7 93.1 91.9 82.6 91.3 89.8 83.6 92.2 90.8
Model 5 84.1 91.8 91.3 81.6 90.8 88.9 82.8 91.3 90.1
Model 6 84.6 92.7 91.4 84.5 92.8 91.7 84.6 92.7 91.5
Model 7 85.0 92.8 91.9 85.2 93.8 93.1 85.1 93.3 92.5
Model 8 86.7 93.7 92.8 89.8 94.9 94.7 88.2 94.3 93.7

An analysis of the horizontal information in the table shows that the recognition effects
of medium-sized traffic signs and large-sized traffic signs were better than those of small-
sized traffic signs. This was due to the clear edges and obvious features of medium-sized
and large-sized traffic signs, while the small-sized traffic signs had fuzzier features, which
led to poorer recognition results. Through a longitudinal comparison of the information
in the table, it can be seen that, for small-sized traffic signs, supplementation with the
attention module and the multiscale feature fusion module could effectively improve the
recognition effect.

Specifically, comparing Model 1, Model 2, Model 3, and Model 4 showed that the
channel domain attention module and the spatial domain attention module could improve
the detection effect to a certain extent, while the hybrid attention module, as well as the
hybrid attention module combining the two, had more significant improvement effects on
the detection task of traffic signs. Comparing Model 1 with Model 5, it can be seen that
the introduction of the feature-interleaving module in the model improved the recognition
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effect from an overall perspective, especially for small sizes, where the improvement effect
could reach 1.4%. Model 6, Model 7, and Model 8 added the attention module based on
Model 5. Comparing Model 5, Model 6, and Model 7, it can be seen that adding the channel
domain attention module and spatial domain attention module to the network improved
the detection effect of traffic signs in a certain range. Comparing Model 6, Model 7, and
Model 8 shows that using both the spatial domain attention module and the channel
domain attention module further improved the detection effect of the models.

Figure 8 shows the detection plots of different models for traffic signs.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 18 
 

network improved the detection effect of traffic signs in a certain range. Comparing Model 
6, Model 7, and Model 8 shows that using both the spatial domain attention module and 
the channel domain attention module further improved the detection effect of the models. 

Figure 8 shows the detection plots of different models for traffic signs. 

 
Figure 8. Ablation study results. 

3.3. Structural Experiments 
To verify the effectiveness of each module in the proposed network, we designed the 

following experiments to demonstrate the effectiveness of the proposed method. 
The models for conducting structural experiments were classified as follows: 
Model 1: MobileNetV1 was chosen as the base network for lightweight feature ex-

traction, and other parts of the network remained unchanged. 
Model 2: ShuffleNet was selected as the base network for lightweight feature extrac-

tion, and other parts of the network remained unchanged. 
Model 3: MobileNetV2 was selected as the base network for lightweight feature ex-

traction, and other parts of the network remained unchanged. 
Model 4: BiFPN was selected for the multiscale fusion module, and other parts of the 

network remained unchanged. 
Model 5: NAS-FPN [42] was selected for the multiscale fusion module, and other 

parts of the network remained unchanged. 
Model 6: PANet [43] was selected for the multiscale fusion module, and other parts 

of the network remained unchanged. 
Model 7: CBAM [44] was selected as the attention module, and other parts of the 

network remained unchanged. 
Model 8: DANet [45] was selected as the attention module, and other parts of the 

network remained unchanged. 
Model 9: The network proposed in this paper was used. 
Experiments were conducted on the above models, and the data results are shown in 

Table 2. 
  

Figure 8. Ablation study results.

3.3. Structural Experiments

To verify the effectiveness of each module in the proposed network, we designed the
following experiments to demonstrate the effectiveness of the proposed method.

The models for conducting structural experiments were classified as follows:
Model 1: MobileNetV1 was chosen as the base network for lightweight feature extrac-

tion, and other parts of the network remained unchanged.
Model 2: ShuffleNet was selected as the base network for lightweight feature extrac-

tion, and other parts of the network remained unchanged.
Model 3: MobileNetV2 was selected as the base network for lightweight feature

extraction, and other parts of the network remained unchanged.
Model 4: BiFPN was selected for the multiscale fusion module, and other parts of the

network remained unchanged.
Model 5: NAS-FPN [42] was selected for the multiscale fusion module, and other parts

of the network remained unchanged.
Model 6: PANet [43] was selected for the multiscale fusion module, and other parts of

the network remained unchanged.
Model 7: CBAM [44] was selected as the attention module, and other parts of the

network remained unchanged.
Model 8: DANet [45] was selected as the attention module, and other parts of the

network remained unchanged.
Model 9: The network proposed in this paper was used.
Experiments were conducted on the above models, and the data results are shown

in Table 2.
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Table 2. Structural experiments.

Average Accuracy (%) Recall (%) F1 (%)

Small Mid Large Small Mid Large Small Mid Large

Model 1 84.5 92.6 92.1 82.7 91.8 88.9 83.5 92.2 90.5
Model 2 84.9 92.9 92.5 83.6 92.2 89.4 84.2 92.5 91.0
Model 3 85.6 93.2 91.8 87.7 93.5 92.1 86.6 93.3 91.9
Model 4 84.9 92.0 91.6 83.9 89.3 88.5 84.4 90.6 90.0
Model 5 85.2 92.3 91.8 84.2 91.7 91.2 84.7 82.0 91.5
Model 6 85.7 92.8 92.3 86.2 93.9 94.6 85.9 93.3 93.0
Model 7 85.2 93.2 92.5 89.3 94.6 93.6 87.2 93.9 93.0
Model 8 86.0 93.3 91.5 89.5 94.8 94.4 87.7 94.0 92.9
Model 9 86.7 93.7 92.8 89.8 94.9 94.7 88.2 94.3 93.7

According to the cross-sectional information in the analysis table, it can be seen that
the recognition effects of medium-sized traffic signs and large-sized traffic signs were
better than that of small-sized traffic signs. By comparing Model 1, Model 2, Model 3, and
Model 7 longitudinally, it can be seen that the accuracy rate of the lightweight network
using the C-Mobilenetv3 proposed in this paper was higher. Compared with MobileNetV1,
ShuffleNet, and MobileNetV2, the accuracy rate of small-scale traffic signs was improved by
1.2–3.2%, that of medium-scale traffic signs was improved by 1–2.6%, and that of large-scale
traffic signs was improved by 1–2.8%.

A longitudinal comparison of Model 4, Model 5, Model 6, and Model 7 shows that the
multiscale fusion module using the feature-interleaving module proposed in this paper
had a significant improvement in the recognition effect. Compared with BiFPN, NAS-FPN,
and PANet, the accuracy rate of small-scale traffic signs was improved by 1–1.8%, that of
medium-scale traffic signs was improved by 0.7–1.5%, and that of large-scale traffic signs
was improved by 0.4–1.4%.

A longitudinal comparison of Model 7, Model 8, and Model 9 shows that, compared
to CBAM and DANet, the accuracy rate of small-scale traffic signs improved by 0.7–1.5%,
that of medium-scale traffic signs improved by 0.2–0.3%, and that of large-scale traffic signs
improved by 0.3–0.5%.

3.4. Evaluation of TT100K
3.4.1. Comparative Experiment of Similar Algorithm

To verify the proposed algorithm, Traffic Sign Detection and Recognition Network
Combining Multiscale Features and Hybrid Attention Mechanism (MFHA-TSDR), com-
parative experiments were conducted with similar algorithms, including Faster R-CNN,
CornerNet [46], and CenterNet, which were selected based on the TT100K dataset in the
same hardware environment, as shown in Table 3, and Figure 9.

Table 3. Algorithm comparison experiments.

Average Accuracy (%) Recall (%)
FPS

Small Mid Large Small Mid Large

Faster R-CNN 76.5 88.7 88.2 76.2 89.3 88.6 12.0
CornerNet 79.6 91.2 91.0 78.3 90.4 91.8 4.3
CenterNet 82.7 91.0 90.8 78.7 91.5 93.6 7.9

Ours 86.7 95.5 95.0 92.8 97.1 96.5 10.8
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By analyzing the information in the table, it can be seen that the comprehensive
performance of the proposed network for traffic sign detection in this paper was excellent,
and the accuracy and recall rates of each scale were well-improved compared to other
networks. By comparing the FPS values, it can be seen that the proposed network in this
paper also had a great advantage in speed due to the use of a lightweight network. Overall,
the proposed network could meet the requirements for both accuracy and speed of traffic
sign detection and reduce the false detection rate caused by scale differences.

Analyzing the recognition effect graphs of each algorithm for different scales of traffic
signs shows that our proposed algorithm had higher recognition accuracy, while CornerNet
and CenterNet were second, and Faster R-CNN was less effective. Especially for the
detection of small-scale traffic signs, the detection effect of Faster R-CNN was significantly
lower than those of the other two algorithms. In contrast, the proposed network achieved
good detection results for all three scales of traffic signs with better robustness.

Above was the quantitative analysis of the three algorithms; next, some of the actual
detection result plots were selected for qualitative analysis, as shown in Figure 10. Among
them, column a shows the original images in the TT100K dataset, column b shows the
detection results of Faster R-CNN, column c shows the detection results of CornerNet,
column d shows the detection results of CenterNet, and column shows the detection results
of MFHA-TSDR (the proposed algorithm in this paper).
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Comparing the detection results in the first row, we can see that all four methods
obtained good detection results for traffic signs with larger scales, while for small-scale
targets, Faster R-CNN did not detect them, and there was a missed detection situation. The
traffic signs presented in the images in the second row are of large scale, and the results
show that all four methods detected them correctly. In the third row, the traffic signs are
dense, and Faster R-CNN had a large number of missed detections. CornerNet also had
some missed detections, and CenterNet had no missed detections, but the “minimum
speed limit of 80 km/h” was wrongly detected as “The proposed network detects all
traffic signs completely”. The traffic signs in the fourth row of images are traffic signs
with serious deformation, and the proposed network could detect the traffic signs with
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serious deformation for “drive on the right”. In the fifth row, the traffic signs are shaded by
trees, and Faster R-CNN failed to detect the “speed limit” and “no parking” traffic signs,
while CornerNet and CenterNet failed to detect the “no vehicle” signs that were shaded
by leaves. Faster R-CNN failed to detect “speed limit” and “no parking” traffic signs, and
CornerNet and CenterNet failed to detect “no long-time or temporary parking” traffic signs
that were obscured by leaves. The algorithm proposed in this paper detected “no long-time
or temporary parking” traffic signs that were heavily obscured by leaves and shadows and
achieved the highest detection rate and accuracy.

In summary, all four algorithms could detect traffic signs well when the traffic sign
features in the image were obvious. Faster R-CNN, CornerNet, and CenterNet had missed
or false detection when the traffic signs in the images were small-scale, densely laid
out, deformed, and obscured, while the proposed network in this paper demonstrated
better robustness.

3.4.2. Different Types of Traffic Sign Detection

The traffic sign detection and recognition network proposed in this paper could
complete the detection and recognition of 221 types of traffic signs, which mostly covers
the traffic signs that may be encountered in daily traffic scenarios. In this paper, we selected
some traffic signs that appeared more frequently in the TT100K dataset for data analysis,
and the traffic sign detection and recognition network proposed in this paper could achieve
more than an 80% recognition rate for all kinds of traffic signs. The results are shown
in Table 4.

Table 4. Different classes of detection precision.

Classes p3 p5 p6 p10 p12 p19 p23 p26 p27 pg

Precision(%) 87.0 94.1 86.5 86.2 76.2 93.2 92.1 90.2 91.2 90.2

Classes ph4 ph4.5 ph5 pl20 pl30 pl40 pl50 pl60 pl70 pl80

Precision(%) 80.2 90.5 69.5 82.3 90.3 90.0 85.5 90.2 86.8 92.0

Classes pl100 pl120 pm20 pm30 pm55 pn pne pr40 w13 w32

Precision(%) 96.5 97.5 90.5 90.9 93.9 86.9 96.8 93.6 70.2 90.2

Classes w55 w57 w59 i2 i4 i5 il60 il80 il100 ip

Precision(%) 88.5 91.9 87.5 84.6 86.5 87.3 92.2 96.5 95.3 85.6

According to the information in the table, it can be seen that the detection accuracy of
the network proposed in this paper was different for different categories of traffic signs,
and most of them could reach more than 85%. However, the accuracy of the target in the
category of height limit 5 (ph5) was 69.5%, which was not very good. After analyzing
the test, we concluded that the reason was that the signs in this category of height limit
were similar to many other signs, including signs of the same type of height limit such as
height limit 5.3 (ph5.3), which had similar appearances and extracted similar features, so
the recognition accuracy was not high; secondly, for the “120km/h” (pl120), these traffic
signs had obvious features and were easy to distinguish, so the detection accuracy was the
highest, reaching 97.5%. The detection accuracy of “no entry (pne)” was the second most
accurate, reaching 96.8%. Overall, the algorithm proposed in this paper achieved good
detection results for all kinds of traffic signs.

4. Discussion

The traffic sign detection method based on a lightweight multiscale feature fusion
network proposed in this paper had better advantages than similar algorithms and was
tested in real scenarios with good results, but there are still some limitations when applying
it to actual assisted driving systems. An automated driving system is large and complex,
and further research can be carried out on the following aspects in the future.
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(1) The meanings of traffic signs are expressed through shapes, colors, graphics, and
words, and traffic signs with the same meanings in different countries or regions may
have different shapes, colors, graphics, and words. Therefore, it is a challenge for
a network to recognize not only the existing data categories in the training set, but
also the data not previously seen. Therefore, in the next step of study, the migra-
tion capability of the network should investigated so that the network can be more
widely used.

(2) When testing the network, experiments were conducted only under daily conditions,
such as normal conditions, the presence of occlusion, and uneven lighting. However,
during actual driving, traffic sign detection results in bad weather are more important
for driving safety. Therefore, in future study, more challenging environments, such as
the presence of fog, haze, rain, or snow, should be selected for experimental analysis.

(3) In the process of driving, a driver pays different attention to the traffic signs he sees,
paying attention to ones that require attention and ignoring unwanted information.
For example, if a driver is at an intersection and his route is straight, while the
traffic signs for a right-turn road may also exist in the driver’s field of vision, the
driver automatically ignores the information that is not meaningful for behavioral
decision making, which reduces the burden of information processing in the human
brain. Therefore, the next step of research should try to construct a network that
gives different attention to traffic signs in images to further simplify information
redundancy and make the network more suitable for complex traffic environments.

5. Conclusions

A traffic sign detection and recognition network based on lightweight multiscale
feature fusion and an attention mechanism was proposed to address the problems of
poor real-time performance, the single scale of extracted information, and unreasonable
allocation of computer resources in the currently proposed convolutional neural network
for traffic sign recognition.

(1) To address the problems that traffic sign detection requires high real-time perfor-
mance and that the existing convolutional neural networks had many redundancies,
a lightweight feature extraction network was designed and a key-point detection
method was adopted instead of the original anchor frame traversal detection method.
In addition, a feature-interleaving module was designed to realize the multiscale
extraction of feature information for the problem that traffic sign sizes in a traffic scene
map were variable and the semantic information obtained by the existing network
was single.

(2) To improve the detection effect when a traffic sign occupied a small image size, was
densely arranged, or had too much background information in the image, a hybrid
attention module was designed and constructed, which was divided into a spatial
attention branch and a channel attention branch, giving different weights to different
locations in space and different channels, respectively.

(3) Experiments showed that the algorithm in this paper achieved 85% recognition accu-
racy for different scale targets and most categories. Compared with Faster R-CNN,
ConerNet, and CenterNet, the check-all rate and check-accuracy rate of the algo-
rithm in this paper were significantly higher, and a better real-time performance
was achieved. Therefore, the proposed network in this paper was robust, had high
recognition accuracy, and achieved a good real-time performance.
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