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Abstract: The accurate calculation of reference evapotranspiration (ET0) is the fundamental basis
for the sustainable use of water resources and drought assessment. In this study, we evaluate the
performance of the second-generation China Meteorological Administration Land Data Assimilation
System (CLDAS) and two simplified machine learning models to estimate ET0 when meteorological
data are insufficient in China. The results show that, when a weather station lacks global solar
radiation (Rs) data, the machine learning methods obtain better results in their estimation of ET0.
However, when the meteorological station lacks relative humidity (RH) and 2 m wind speed (U2)
data, using RHCLD and U2CLD from the CLDAS to estimate ET0 and to replace the meteorological
station data obtains better results. When all the data from the meteorological station are missing,
estimating ET0 using the CLDAS data still produces relevant results. In addition, the PM–CLDAS
method (a calculation method based on the Penman–Monteith formula and using the CLDAS data)
exhibits a relatively stable performance under different combinations of meteorological inputs, except
in the southern humid tropical zone and the Qinghai–Tibet Plateau zone.

Keywords: reference evapotranspiration; reanalysis dataset; CLDAS; machine learning; limited
meteorological data

1. Introduction

Reference evapotranspiration (ET0) is an important consideration when estimating
crop evapotranspiration [1] and comprises essential data for planning and designing
farmland water conservancy projects [2]. It plays a vital role in accurately estimating water
resource management, regional water balance, drought assessment and climate change [3].
Currently, the Penman–Monteith (FAO-56 PM) method recommended by the Food and
Agriculture Organization of the United Nations (FAO) is the standard calculation method
for ET0. This approach, which integrates energy balance with aerodynamic theory, is highly
applicable to various geographic and climatic contexts [4], but requires air temperature
(T), relative humidity (RH), solar radiation (Rs) and wind speed (U) data, as well as other
meteorological factors. However, the distribution of meteorological stations in China is
uneven, making it difficult to obtain accurate and complete meteorological data in many
regions. Therefore, using limited meteorological data to obtain high-precision ET0 has
attracted much attention.

Due to the growth of machine learning algorithms in recent decades, many researchers
have used meteorological data to estimate ET0 based on machine learning and have de-
veloped models with great accuracy. In addition, machine learning is popular because of
its ability to handle massive datasets and compute results quickly. As increasing amounts
of data are provided to the system, machine learning models can produce more accurate
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results over time through self-learning, without requiring new codes and algorithms. At
present, there are three main types of machine learning algorithm with high fitting accuracy:
(1) kernel function algorithms, such as support vector machine (SVM) and the kernel-based
arps decline model (KNEA); (2) tree integration algorithms, such as random forest (RF),
categorical boosting (CatBoost) and extreme gradient boosting (XGBoost); and (3) neural
network algorithms, such as generalized regression neural networks (GRNNs) and extreme
learning machine (ELM). In relation to the semi-arid regions in Iran, Tabari et al. (2012) [5]
used a SVM and an adaptive neuro-fuzzy inference system (ANFIS) to estimate ET0, and
the prediction results were superior to those of the empirical models. Wu and Fan (2019) [6]
applied the KNEA and SVM to predict daily ET0 in different regions of China, and the
results showed that both SVM and KNEA had sound prediction effects. Feng et al. (2017) [7]
conducted an ET0 forecast study of humid regions in southwestern China, showing that
random forest (RF), based on temperature and radiation data, had a good forecasting effect.
The potential of a new machine learning approach by which to employ gradient boosting
on decision trees with categorical feature support was examined by Huang et al. (2019) [8],
and the results demonstrated that, in humid regions of China, the CatBoost algorithm
had an extremely significant potential for ET0 estimation. Liu et al. (2021) [9] studied
how to improve the adaptability and accuracy of machine learning to simulate ET0 in
Jiangxi Province, and found that Gaussian process regression (GPR) and limit gradient
boosting (CatBoost) models had higher prediction accuracy. Wang et al. (2017) [10] and
Zhang et al. (2018) [11] used 15 different combinations of meteorological factors, such
as maximum temperature (Tmax), minimum temperature (Tmin), wind speed and relative
humidity, and the RF and ELM machine learning methods. They compared these with the
traditional temperature-based Hargreaves method to predict ET0, and it was found that
the accuracy of the RF and ELM models was better than that of the Hargreaves method in
different situations. Feng et al. (2017) [12] conducted ET0 modeling at six meteorological
stations in the Sichuan Basin, China. Their findings revealed that both temperature-based
GRNN and ELM performed better than the Hargreaves method. Thongkao et al. (2022) [13]
selected five calculation models, including random forest (RF) and M5 model tree (M5),
to estimate the b factor in the calculation process. The research results showed that the
support vector regression with the radial basis function kernel (SVR-rbf) performed best
among the five models, followed by M5, RF, support vector regression with the polynomial
function (SVR-poly), and random tree (RT).

In addition, the data from meteorological stations in some areas are not comprehen-
sive, and these missing meteorological data will affect the estimation of ET0. However,
in recent years, many scholars have begun to use limited meteorological element data
to calculate ET0 based on machine learning methods and have achieved high accuracy.
Ferreira et al. (2019) [14] used a SVM and an ANN to estimate ET0 in Brazil under limited
meteorological data, and the results indicated that both techniques produced acceptable
prediction outcomes. Bakhtiari et al. (2016) [15] evaluated the ability of three machine
learning models, including support vector machine (SVM), to calculate ET0 in the case of
limited meteorological data in order to study the reference evapotranspiration in semi-arid
areas of Iran. The findings indicated that the machine learning approach performed better
than the empirical model. Chia et al. (2017) [16] used an ANFIS method to estimate the ET0
in eastern Malaysia with limited meteorological data, and the results demonstrated that the
ANFIS model was capable of providing precise forecasts.

Reanalysis datasets have also been developed simultaneously and have been fre-
quently utilized in water-resource management research and other fields in recent years [17].
The most cutting-edge massive data assimilation systems and excellent databases are used
with reanalysis data. This comprises a full range of reanalysis data that have been acquired
through quality assurance and assimilation of observation data from multiple sources
(ground, ship, radio sounding, wind balloon, aircraft, and satellite). The data not only
contain various elements and have a large range, but also have a long extension period
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and a high resolution. Datasets from global atmospheric reanalysis can offer the necessary
inputs for estimating ET0 [18].

The application of reanalysis data in water-resource management research has the
following two advantages [19]: (i) data continuity over a long period of time, whether at a
global or local level, and (ii) open availability of data to the public for free via specialized
web platforms that prepare these data for use in common formats, reducing the time-
consuming processes needed to acquire and homogenize weather station data from various
service providers. The spatial distribution of meteorological stations in China is not
uniform, making it difficult in some rural areas to collect observation data in respect of
various climate variables. This data scarcity is supplemented by reanalysis datasets, which
are highly accurate and have a high spatial resolution. They are widely used in hydrological
modeling and have been effectively employed by numerous authors to indicate surface
climate variables’ spatiotemporal variability [20–22].

Reanalysis data have been used to predict and compare evapotranspiration in dif-
ferent regions. Based on climate forecast reanalysis data, Woldesenbet et al. (2021) [23]
calculated the ET0 in the Omo-Gibetta watershed and obtained promising forecasting
results. Srivastava et al. (2015) [24] found that the medium-term ERA predicted ET0 more
accurately than the estimation of ET0 of the National Center for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/NCAR). Pelosi et al. (2020) [25]
also contrasted two reanalysis datasets for ET0 estimation in southern Italy. Tian and Mar-
tinez (2012) [26] calculated ET0 in south-eastern United States using the NCEP reanalysis
dataset. Song et al. (2015) [27] evaluated the spatiotemporal properties of reference evapo-
transpiration in Shaanxi Province using the NCEP reanalysis data and generated projections
for the future. The Poyang Lake basin’s ET0 was estimated by Liu et al. (2019) [28] using the
CMIP5 model. The results show that the ET0 calculated from the NCEP reanalysis data has
a good correlation, and the accuracy is significantly improved after deviation correction,
making it suitable for estimating future ET0 of Poyang Lake basin. Martins et al. (2016) [29]
evaluated ET0 inside the Iberian Peninsula; the goal was to apply an NCEP/NCAR hybrid
reanalysis product and a gridded dataset to estimate ET0, and the results show that the
reference evapotranspiration estimated using the mixed reanalysis has a high correlation
with the measured data at the station (root mean square error, RMSE = 0.49 mm/day).
Raziei (2021) [30] estimated monthly ET0 for 43 weather stations spread over Iran through
using NCEP/NCAR reanalysis together with a gridded dataset, and the results demon-
strate that the mixed reanalysis calculation of ET0 has a greater effect than the majority
of ET0 calculations based on research station observations. Milad and Mehdi (2022) [31]
used the reanalysis product ERA5 to obtain more accurate results for daily and monthly
ET0 estimates under limited data. With the continuous advancement of numerical weather
models and computational and data assimilation techniques, the accuracy of satellite-
derived atmospheric and ground data, and the geographical and temporal resolution and
dependability of reanalysis data have all steadily improved over time. However, unlike
this study, the above studies generally refer to a small catchment area and a short time-step
computational approach.

The more mature land surface data assimilation systems available today include the
US Global Land Data Assimilation System (GLDAS), the North American Land Data As-
similation System (NLDAS) and the Korean Land Data Assimilation System (KLDAS) [32].
In 2017, the China Meteorological Administration (CMA) completed its second-generation
Land Data Assimilation System (CLDAS), covering East Asia [33,34]. In China, CLDAS
is the sole real-time service system for assimilation of land surface data. To merge data
from diverse sources, including ground observation, satellite observation, and numerical
model outputs, it combines fusion and assimilation technologies [28]. The system’s output
comprises high temporal and spatial resolution land-surface driving products, such as
temperature, air pressure, specific humidity, wind speed, precipitation, solar shortwave
radiation and soil moisture, which could be utilized in the monitoring of agricultural
drought, the assessment of climate system models, mountain and flood geological disaster
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meteorological services, and the provision of fine spatial grid accurate data. Some of these
elements, such as surface soil moisture [35], surface soil temperature [36] and near-surface
air temperature [37], have been assessed but have not yet been used to calculate ET0 for
major land areas in China and to conduct a comprehensive and detailed assessment. The
evaluation of ET0 is a crucial component of the study of climate change, serving as a
useful guide and having practical value for comprehending regional ecological changes
and advancing sustainable development [38].

In conclusion, there is confusion regarding whether to use reanalysis data or machine
learning to calculate ET0 when meteorological data are insufficient. Therefore, in this study,
we aimed to evaluate whether the CLDAS data or a machine learning simplified model is
more suitable for estimating ET0 when meteorological data from 43 meteorological stations
in China are insufficient, and to develop a new product that might deliver precise ET0
values for regions without weather observation data.

2. Materials and Methods
2.1. Introduction to CLDAS

The CLDAS is a mesh fusion reanalysis product covering the entire Asian region
(0–65◦ N, 60–160◦ E), with a spatial resolution of 0.0625◦ × 0.0625◦ (the spatial geometric
distance between grid points is 9 km) and a minimum time resolution of 1 h. The meteoro-
logical variables included are 2 m air temperature, 2 m specific humidity, 10 m wind speed,
surface pressure, precipitation and shortwave radiation [18].

After strict checking, nearly 3000 national meteorological stations and nearly 40,000 regional
automatic meteorological stations provide the basis for the CLDAS ground observation
data. At the same time, CLDAS products integrate a variety of reanalysis products, includ-
ing ECMWF numerical analysis/prediction products, GFS numerical analysis/prediction
products, the National Satellite Meteorological Center FY2 precipitation estimation prod-
ucts (nominal disk map), and the East Asia Multisatellite Integrated Precipitation Data
Products (EMSIP). The digital elevation (DEM) data of CLDAS products are obtained from
the global 30 m spatial resolution terrain data products that are jointly measured by NASA
and NIMA of the Ministry of Defense. These products perform well in their respective
fields [18,39].

The above explanations and information were taken from the China Meteorological
Data Sharing Network (URL: https://data.cma.cn/, accessed on 1 May 2021). In order to
calculate ET0, five meteorological factors, including temperature, global solar radiation,
relative humidity and wind speed, were used in this study. The height of wind speed data
was 10 m, which needed to be converted, while the height of other meteorological variable
data was 2 m. The data span was from 2017 to 2020.

In order to verify the performance of ET0, as calculated by the CLDAS reanalysis
products, measured data from 43 ground meteorological stations of the CMA were collected,
including maximum and minimum temperature at 2 m, global surface radiation, relative
humidity at 2 m, and wind speed at 10 m (which must be converted to wind speed at 2 m).
The weather stations are divided into seven climate zones, and the specific distribution is
shown in Figure 1. The names of the climate zones are shown in Table 1, and see Table 2 for
basic geographic and meteorological information of the 43 meteorological stations.

Table 1. Names of the seven climate zones.

Zones Area Names

I Northwest desert zone
II Inner Mongolia grassland zone
III Northeast humid and semi-humid temperate zone
IV Humid and semi-humid warm temperate zone
V Humid subtropical zone
VI Humid tropical zone
VII Qinghai–Tibet Plateau zone

https://data.cma.cn/
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Table 2. Basic geographic and meteorological information of 43 meteorological stations.

Zone Station
ID

Station
Number

Latitude Longitude Altitude Rs Tmax Tmin RH U2 ET0

(m) (m) (m) (MJ/m2d) (°C) (°C) (%) (m/s) (mm/d)

I(NWC) 1 51,076 47.4 88.1 736.9 15.1 10.9 −1.3 58.2 1.7 2.6
I 2 51,573 42.6 89.1 37.2 15.3 21.8 8.6 39.8 0.9 3.2
I 3 51,709 39.3 75.6 1290.7 15.6 18.5 6.0 49.9 1.3 3.2
I 4 51,828 37.1 79.6 1374.7 16.1 19.3 7.4 41.2 1.5 3.4
I 5 52,203 42.5 93.3 737.9 17.1 18.2 3.1 43.4 1.4 3.2
I 6 52,681 38.4 103.1 1368.5 16.6 16.3 1.7 44.5 2.0 3.2

II(IM) 7 53,068 43.4 111.7 965.9 17.3 12.0 −2.2 47.3 3.0 3.3
II 8 53,487 40.1 113.2 1069.0 15.4 14.1 0.8 52.2 2.1 2.8
I 9 53,614 38.3 106.1 1112.7 16.3 16.2 3.6 55.0 1.5 2.9

III(NEC) 10 50,468 50.2 127.3 166.9 12.8 6.7 −4.8 66.4 2.3 1.9
III 11 50,873 46.5 130.2 82.2 12.4 9.4 −2.1 66.4 2.4 2.1
III 12 50,953 45.5 126.4 143.0 13.0 10.2 −0.9 65.0 2.5 2.3
III 13 54,161 43.5 125.1 238.5 13.6 11.3 0.8 62.9 2.8 2.4
III 14 54,292 42.5 129.3 178.2 12.9 12.2 −0.2 64.6 1.9 2.1
III 15 54,342 41.5 123.3 45.2 13.5 14.1 3.2 63.6 2.1 2.4

IV(NC) 16 53,772 37.5 112.3 779.5 14.4 17.2 4.3 58.5 1.6 2.7
IV 17 53,963 35.4 111.2 535.0 13.5 19.6 7.4 64.6 1.4 2.7
IV 18 54,324 41.3 120.3 176.0 14.1 16.1 2.8 51.7 2.1 2.9
IV 19 54,511 39.5 116.2 54.7 14.3 18.1 7.4 56.2 1.8 2.9
IV 20 54,527 39.1 117.1 3.8 13.9 18.1 8.3 61.2 1.9 2.8
IV 21 54,823 36.4 116.7 57.8 13.5 19.6 10.5 56.9 2.2 3.2
IV 22 57,083 34.4 113.4 111.3 13.3 20.4 9.8 64.4 1.9 2.9

V(CC) 23 56,385 29.3 103.2 3048.6 12.6 7.7 0.5 85.6 2.3 1.7
V 24 56,651 26.5 100.2 2394.4 17.0 19.5 8.0 62.6 2.4 3.4
V 25 56,739 25.0 98.3 1648.7 15.2 21.6 10.7 77.3 1.2 2.7
V 26 56,778 25.0 102.4 1896.8 15.0 21.1 10.7 71.4 1.6 2.9
V 27 57,461 30.4 111.1 134.3 10.8 21.6 13.6 75.3 1.0 2.3
V 28 57,494 30.4 114.1 27.0 12.2 21.4 13.2 76.9 1.4 2.5
V 29 57,816 26.4 106.4 1074.3 10.2 19.6 12.1 77.4 1.7 2.3
V 30 57,957 25.2 110.2 166.2 11.3 23.3 16.0 74.9 1.8 2.7
V 31 57,993 25.5 114.7 124.7 12.3 24.2 16.3 74.9 1.2 2.7
V 32 58,208 32.1 115.4 57.9 13.0 20.4 11.9 76.1 2.0 2.6
V 33 58,238 31.9 118.5 12.5 12.6 20.6 11.9 75.1 1.9 2.5
V 34 58,321 31.5 117.2 36.5 12.2 20.6 12.4 75.3 1.9 2.5
V 35 58,457 30.2 120.1 43.2 11.7 21.2 13.4 76.3 1.6 2.5
V 36 58,606 28.4 115.6 45.7 12.3 21.9 14.9 76.1 1.8 2.7
V 37 58,847 26.1 119.2 85.4 12.2 24.6 17.0 75.3 1.9 2.9

VI(SC) 38 59,287 23.1 113.2 4.2 11.7 26.5 19.0 76.9 1.4 2.7
VI 39 59,316 23.2 116.4 7.3 13.9 25.5 19.0 79.5 1.8 3.0
VI 40 59,431 22.5 108.2 73.7 12.5 26.4 18.6 79.2 1.1 2.7
VI 41 59,758 20.0 110.2 18.0 14.0 28.1 21.6 83.2 2.0 3.2

VII(QTP) 42 52,866 36.4 101.5 2295.2 15.8 14.0 0.1 56.2 1.1 2.5
VII 43 56,137 31.1 97.0 3307.1 16.8 16.8 0.9 50.5 0.8 2.8
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2.2. Theories and Method
2.2.1. FAO-56 PM Model (PM–CLDAS Method)

According to the FAO56 PM equation [38], reference evapotranspiration (ET0; mm/d)
can be calculated as follows:

ET0 =
0.408(Rn − G) + γ 900

Ta+273 U(es − ea)

∆ + γ(1 + 0.34U)
(1)

In the equation:

Rn: the net radiation at the crop surface (MJ/(m2·d));
G: the soil heat flux density (MJ/(m2·d));
Ta: the mean daily air temperature at a 2 m height (◦C);
U: the wind speed at a 2 m height (m/s);
es: saturation vapor pressure (KPa);
ea: actual vapor pressure (KPa);
∆: the slope of the vapor pressure curve KPa/◦C;
γ: the air psychrometric constant (KPa/◦C).

This study used the following steps to obtain the daily reanalysis variables (subscript
CLD identification) in Equation (1): (a) the maximum and minimum values of 24 hourly
TmaxCLD and TminCLD values in the reanalysis temperature series were selected as daily
TmaxCLD and TminCLD; (b) daily RHCLD was obtained by calculating the average of 24 RH
values per day; (c) the 24-h cumulative value of the 12-h Rs was calculated as the daily
RsCLD value; and (d) the hourly wind speed in the reanalysis data was accumulated and
averaged to obtain the 10 m wind speed U10CLD, which was then converted to a height of
2 m using Equation (2) as follows [40]:

U2 = Uz
4.87

ln(67.8z−5.42)
(2)

In this paper, four grid points around the weather station were used to extract the
CLDAS grid data, and then the inverse distance weight (IDW) method was used to interpo-
late the four grid data to the weather station. The formula is as follows:

V =

n
∑

i=1

vi
D2

i

n
∑

i=1

1
D2

i

(3)

In the equation:

V: the inverse value;
vi: the value of the control point;
Di: the weight coefficient.

Holman et al. (2014) [41] used publicly accessible meteorological data provided by
Texas Gao to evaluate the accuracy of the GPR model in estimating ET0 compared to the
baseline least-squares regression model, and found that the accuracy of the GPR model
is higher. Karbasi et al. (2018) [42] reported that the GPR model has higher prediction
accuracy with the increase in time series. Chen et al. (2020) [43] used three machine learning
models, including the GPR model, the XGBoost model and the CatBoost model, to estimate
reference crop evapotranspiration in Jiangxi province in China. The results show that the
GPR and CatBoost models have obvious advantages in simulation accuracy under the
same input combination. Niu et al. (2022) [44] aimed to address the issue of the traditional
Penman–Monteith method requiring many parameters and the complexity of calculating
ET0, and proposed a XGBoost algorithm based on supporting classification features to
estimate ET0. The results show that XGBoost model has the best estimation accuracy and
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stability, and can calculate ET0 better than other machine learning models. Therefore, GPR
and XGB machine learning methods were selected to estimate ET0 in this study, and the
details are shown below.

2.2.2. Gaussian Process Regression (GPR) Model

Rasmussen and Williams (2004) [45] defined GPR as a complex set of random variables
with a joint Gaussian distribution. Kernel-based approaches can work together to solve
flexible and applicable problems. Two functions are usually used to explain GPR: the mean
and the covariance function. These are given by the following formulas:

f ≈ GP(m, k) (4)

In the equation:

f : the Gaussian distribution;
m: the mean function;
k: the covariance function.

The covariance value represents the correlation between the various outputs related
to the input, and can determine the correlation between a single output and the input. The
specific formula is as follows:

Cov
(

xp
)
= C f

(
xp
)
+ Cn

(
xp
)

(5)

In the equation:

C f : the functional part;
Cn: the noise part of the system.

Gaussian process regression (GPR) is closely related to SVM, and is part of the kernel
machine region in ML models. Kernel methods comprise sample-based learners. Instead of
learning fixed parameters, the kernel remembers training data samples and assigns certain
weights to them.

2.2.3. Extreme Gradient Boosting (XGBoost) Model

XGBoost is a new type of gradient boosting machine (GBM) that improves the handling
of databases by optimizing the decision tree algorithm. It solves the overfitting problem
through regularization and built-in cross-validation, improves computational accuracy,
and maintains an optimal calculation speed. In addition, during the training period, the
functions in the XGBoost model will be run and computed automatically, so they are widely
used in feature extraction [46], classification [47] and estimation [48]. The XGBoost model
is derived from “boosting,” which combines a set of predictions of all weak learners and
trains strong learners through special training. Its formula is as follows:

f (t)i =
t

∑
k=1

fk(xi) = f (t−1)
i + ft(xi) (6)

In the equation:
fk(xi) and ft(xi): the predicted values of the k-th and i-th iterations of the XGBoost

model;
f (t)i and f (t−1)

i : the predicted value of the t and t− 1 iterations of the i sample;
xi: the input variable (k = [1,2, . . . ,t], =[1,2, . . . ,n]).
To prevent the overfitting problem without affecting the calculation speed of the

model, the XGBoost model can derive the following formula:

Obj(t) =
n

∑
i=1

l
(

f (t)i , f (t)i

)
+

n

∑
i=1

Ω( fi) (7)
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In the equation:

l: the loss function;
Obj(t): the objective function;

f (t)i : the actual value of the t-th iteration of the i-th sample;
Ω( fi): the regular term of the objective function, whose equation is:

Ω( fi) = βT +
1
2

λ‖ω‖2 (8)

In the equation:

β and λ: regularization coefficients;
T: the number of leaf nodes.

In terms of adjusting the parameters of these models, grid search method is used in
XGB model. The presented statistical parameters (R2, RMSE and MAE) are trained with
70% of the data, and the remaining 30% are verified. As for the machine learning model,
this paper applies the same model to all stations.

2.2.4. Inputs of Meteorological Parameters

In this study, first of all, when the meteorological station data are missing, the CLDAS data
are used to replace them, and eight different input combinations are set (the CLD subscripts
represent the CLDAS data). When one measured meteorological factor is missing, combina-
tion 1 (Tmax·Tmin·Rs·U2·RHCLD), combination 2 (Tmax·Tmin·Rs·U2CLD·RH) and combination
3 (Tmax·Tmin·RsCLD·U2·RH) are set. When two measured meteorological factors are missing,
combination 4 (Tmax·Tmin·RsCLD·U2CLD·RH), combination 5 (Tmax·Tmin·RsCLD·U2·RHCLD)
and combination 6 (Tmax·Tmin·Rs·U2CLD·RHCLD) are set. When there are only temper-
ature data, combination 7 (Tmax·Tmin·RsCLD·U2CLD·RHCLD) is set. When all measured
data are missing, combination 8 (TmaxCLD·TminCLD·RsCLD·U2CLD·RHCLD) is set. The input
combination corresponding to the machine learning method is shown in Table 3.

Table 3. Eight input combinations set by PM-CLDAS method and machine learning method according
to missing data.

Input
CLDAS GPR XGB

Combination Combination

1 Tmax·Tmin·Rs·U2·RHCLD Tmax·Tmin·Rs·U2
2 Tmax·Tmin·Rs·U2CLD·RH Tmax·Tmin·Rs·RH
3 Tmax·Tmin·RsCLD·U2·RH Tmax·Tmin·U2·RH
4 Tmax·Tmin·RsCLD·U2CLD·RH Tmax·Tmin·RH
5 Tmax·Tmin·RsCLD·U2·RHCLD Tmax·Tmin·U2
6 Tmax·Tmin·Rs·U2CLD·RHCLD Tmax·Tmin·Rs
7 Tmax·Tmin·RsCLD·U2CLD·RHCLD Tmax·Tmin
8 TmaxCLD·TminCLD·RsCLD·U2CLD·RHCLD -

2.2.5. Statistical Indicators

Quantitative measures, including the coefficient of determination (R2), root-mean-
square error (RMSE) and mean absolute error (MAE), were used to evaluate the perfor-
mance of the different combinations in estimating daily ET0, as follows:

R2 =

[
∑n

i=1

(
ET0i −

−
ET0i

)(
ET0CLDi −

−
ET0CLDi

)]2

∑n
i=1 (ET0i −

−
ET0i)

2

∑n
i=1 (ET0CLDi −

−
ET0CLDi)

2 (9)
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RMSE =

√
1
n

n

∑
i=1

(ET0i − ET0CLDii)
2 (10)

MAE =
1
n

n

∑
i=1
|ET0i − ET0CLDi| (11)

In the equations:
ET0i: the ET0 calculated using meteorological station data;
ET0CLDi: the ET0 calculated using the CLDAS data;
−

ET0i: the average ET0 calculated using meteorological station data;
−

ET0CLDi: the average ET0 calculated using the CLDAS data;
n: the number corresponding to ET0 data.
Higher R2 values (closer to 1) or lower RMSE and MAE values indicate a better

estimation performance of the CLDAS dataset.

3. Results
3.1. Estimation When One Type of Meteorological Data Is Missing

When the meteorological station data are relatively complete and the calculation of
ET0 lacks certain data except for temperature, the estimation performances of the three
methods under combinations 1, 2, and 3 are shown in Table 4. Better performances are
shown in bold (all the statistical parameters displayed here are the average values of the
statistical parameters calculated for each site).

Table 4. The PM–CLDAS method and two machine learning methods estimate the performance of
ET0 under combinations 1, 2, and 3.

Input/ RMSE
mm/d

MAE
mm/d R2

Model

1
CLDAS 0.312 0.217 0.966

GPR 0.330 0.223 0.961
XGB 0.303 0.210 0.966

2
CLDAS 0.377 0.248 0.969

GPR 0.303 0.208 0.968
XGB 0.301 0.205 0.968

3
CLDAS 0.661 0.424 0.838

GPR 0.488 0.351 0.911
XGB 0.493 0.345 0.907

Under combination 1, when local meteorological RH data are missing, the CLDAS
data RHCLD are used to replace them to estimate ET0. The three methods perform
well, and the XGB method has good accuracy (R2 = 0.966, RMSE = 0.303 mm/d, and
MAE = 0.210 mm/d). The performance of the PM–CLDAS method is second, and the
performance of the GPR method is relatively poor.

Under combination 2, when the local meteorological U2 data are missing, the CLDAS
data U2CLD are used to replace them to estimate ET0. The results calculated using the three
methods have good correlation with the measured data (R2 > 0.968), and the CLDAS performs
relatively poorly in terms of RMSE and MAE (RMSE = 0.377 mm/d, and MAE = 0.248 mm/d).

Under combination 3, when the local meteorological Rs data are missing, the CLDAS
data RsCLD are used to replace them to estimate ET0. The estimation performance drops
significantly relative to combinations 1 and 2, and the PM–CLDAS method performs
relatively poorly (R2 = 0.838, RMSE = 0.661 mm/d, and MAE = 0.424 mm/d).
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Overall, when we use the CLDAS data RHCLD or U2CLD instead of the measured data
to estimate ET0, accuracy and stability are high. However, when there is a lack of local
meteorological Rs data, the estimated results drop significantly (by about 5%~13.5%), but
there is still a certain degree of accuracy. Therefore, the accuracy of the CLDAS RsCLD data
is relatively low [39], which affects the estimation of ET0. These results are similar to the
results reported by Liu et al. (2009) [49] and Fan et al. (2019) [50]. This may be due to the
immature radiation simulation mechanism of the CLDAS and the severe air pollution in
the areas mentioned above, which pose certain challenges in respect of obtaining accurate
simulations [18]. Therefore, we propose using the corresponding CLDAS data instead of
local meteorological data to predict ET0 when the local meteorological RH or U2 data are
missing; when the Rs data are missing, we can use machine learning methods to predict
ET0. Furthermore, we selected three meteorological stations in different climate zones and
compared the ET0 estimated by the three methods with the measured ET0, as shown in
Figure 2. It can still be found that the scattered points of combination 1 and combination 2
are more concentrated, and the estimate for combination 3 is even worse.
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3.2. Estimation When Two Kinds of Meteorological Data Are Missing

When the data from the meteorological stations are relatively scarce, and the calcu-
lation of ET0 lacks two kinds of data except temperature, the estimation performances of
the three methods under combinations 4, 5, and 6 are shown in Table 5, and the better
performances are shown in bold.
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Table 5. The PM–CLDAS method and two machine learning methods estimate the performance of
ET0 under combinations 4, 5 and 6.

Input/ RMSE
mm/d

MAE
mm/d R2

Model

4
CLDAS 0.768 0.531 0.786

GPR 0.546 0.399 0.892
XGB 0.592 0.419 0.874

5
CLDAS 0.802 0.539 0.761

GPR 0.638 0.465 0.846
XGB 0.673 0.481 0.828

6
CLDAS 0.477 0.302 0.947

GPR 0.438 0.312 0.932
XGB 0.458 0.322 0.925

Under combination 4, when the local Rs and U2 data are missing, and the CLDAS
RsCLD and U2CLD data are used to replace them to estimate ET0, the performance of the
three methods decreases compared to the case where only one type of meteorological data
is missing. The performance of the XGB and GPR methods is relatively better (R2 > 0.874,
RMSE < 0.592 mm/d, and MAE < 0.419 mm/d), but the performance of the PM–CLDAS
method drops significantly (R2 = 0.786). Under combination 5, when the local Rs and
RH data are missing, and the CLDAS RsCLD and RHCLD data are used to replace them
to estimate ET0, the specific situation is the same as in combination 4. The performance
of the XGB and GPR methods is relatively good (R2 > 0.828), and the performance of
the PM–CLDAS method has a significant decline (R2 = 0.761). However, under combina-
tion 6, when the local U2 and RH data are missing, and the CLDAS U2CLD and RHCLD
data are used to replace them to estimate ET0, the estimated performance is significantly
improved compared to combinations 4 and 5, and second only to combinations 1 and 2.
The PM–CLDAS method performs relatively well (R2 = 0.947, RMSE = 0.477 mm/d, and
MAE = 0.302 mm/d).

Overall, when we use CLDAS RHCLD and U2CLD data instead of local meteorological
data to estimate ET0, accuracy and stability are high. However, when the missing data
involve Rs, the estimation results drop significantly (about 3.5%~19.6%) but still have
accuracy. It can still be concluded that the accuracy of the CLDAS RsCLD data is relatively
low, which affects the estimation of ET0, so we suggest that when local meteorological RH
and U2 data are missing, the corresponding CLDAS data are used instead to estimate ET0.
We also suggest using machine learning methods to estimate ET0 when the lack of data
involves Rs. Furthermore, we selected three meteorological stations in different climate
zones and compared the ET0 estimated using the three methods with the measured ET0,
as shown in Figure 3. It can still be found that the scattered points of combination 4 and
combination 5 are more concentrated, and the estimate for combination 6 is even better.



Sustainability 2022, 14, 14577 12 of 24

Sustainability 2022, 14, 14577 12 of 26 
 

Under combination 4, when the local Rs and U2 data are missing, and the CLDAS 
RsCLD and U2CLD data are used to replace them to estimate ET0, the performance of the three 
methods decreases compared to the case where only one type of meteorological data is 
missing. The performance of the XGB and GPR methods is relatively better (R2 > 0.874, 
RMSE < 0.592 mm/d, and MAE < 0.419 mm/d), but the performance of the PM–CLDAS 
method drops significantly (R2 = 0.786). Under combination 5, when the local Rs and RH 
data are missing, and the CLDAS RsCLD and RHCLD data are used to replace them to esti-
mate ET0, the specific situation is the same as in combination 4. The performance of the 
XGB and GPR methods is relatively good (R2 > 0.828), and the performance of the PM–
CLDAS method has a significant decline (R2 = 0.761). However, under combination 6, 
when the local U2 and RH data are missing, and the CLDAS U2CLD and RHCLD data are 
used to replace them to estimate ET0, the estimated performance is significantly improved 
compared to combinations 4 and 5, and second only to combinations 1 and 2. The PM–
CLDAS method performs relatively well (R2 = 0.947, RMSE = 0.477 mm/d, and MAE = 0.302 
mm/d). 

Overall, when we use CLDAS RHCLD and U2CLD data instead of local meteorological 
data to estimate ET0, accuracy and stability are high. However, when the missing data 
involve Rs, the estimation results drop significantly (about 3.5%~19.6%) but still have ac-
curacy. It can still be concluded that the accuracy of the CLDAS RsCLD data is relatively 
low, which affects the estimation of ET0, so we suggest that when local meteorological RH 
and U2 data are missing, the corresponding CLDAS data are used instead to estimate ET0. 
We also suggest using machine learning methods to estimate ET0 when the lack of data 
involves Rs. Furthermore, we selected three meteorological stations in different climate 
zones and compared the ET0 estimated using the three methods with the measured ET0, 
as shown in Figure 3. It can still be found that the scattered points of combination 4 and 
combination 5 are more concentrated, and the estimate for combination 6 is even better. 

 

Figure 3. Comparison of the estimated ET0 and the measured ET0 of the three methods under
combinations 4, 5, and 6.

3.3. Estimation When Three Kinds of Meteorological Data Are Missing

When the meteorological station data are very scarce, and the calculation of ET0 only
involves the temperature data, the estimation performances of the three methods under
combination 7 are shown in Table 6, and the better performances are shown in bold.

Table 6. The PM–CLDAS method and two machine learning methods estimate the performance of
ET0 under combination 7.

Input/ RMSE
mm/d

MAE
mm/d R2

Model

7
CLDAS 0.860 0.601 0.740

GPR 0.753 0.559 0.791
XGB 0.848 0.614 0.741

Under combination 7, when the local Rs, U2 and RH data are missing, and the CLDAS
RsCLD, U2CLD and RHCLD data are used to replace them to estimate ET0, the performance
of the three methods decreases compared to the case where two meteorological data types
are missing. The performance of the XGB (R2 = 0.741) and CLDAS (R2 = 0.740) methods
is relatively worse. The GPR method performs better (R2 = 0.791, RMSE = 0.753 mm/d,
and MAE = 0.559 mm/d). Compared to combination 4, the estimated performance of the
three methods decreases by about 5% under combination 7. Therefore, we propose the
use of the machine learning method GPR to estimate ET0 when only temperature data are
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available. In addition, we selected three stations and compared their estimated ET0 with
the measured ET0, as shown in Figure 4.
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3.4. Estimation When All Meteorological Data Are Missing

In the actual situation, there are no meteorological stations in some areas. When the
data for all meteorological factors are unavailable, the performance of estimating ET0 is
shown in Table 7. As can be seen from the table, when all CLDAS data are used instead,
the performance is slightly lower than that of combination 7, but the overall performance is
still good.

Table 7. The PM–CLDAS method and two machine learning methods estimate the performance of
ET0 under combination 8.

Input/ RMSE
mm/d

MAE
mm/d R2

Model

8
CLDAS 0.963 0.678 0.701

Overall, when we replace local meteorological data with CLDAS RsCLD, U2CLD and
RHCLD data to estimate ET0, combination 7 (R2 = 0.740, RMSE = 0.860 mm/d, and
MAE = 0.601 mm/d) does not result in a significant decline in the accuracy of estimat-
ing ET0 compared to combinations 4 and 5, but the estimated stability declines to a certain
extent; therefore, combination 7 represents a dataset with a high-cost performance. When
we use all CLDAS data to estimate ET0, the results show that combination 8 (R2 = 0.701,
RMSE = 0.963 mm/d, and MAE = 0.678 mm/d) is not far behind combination 7; consid-
ering the difficulty in obtaining ET0 using this method, the results of combination 8 to
estimate ET0 are entirely acceptable. Combination 8 is especially suitable for those areas
where there are no weather stations temporarily. In addition, we selected three stations
and compared their estimated ET0 with the measured ET0, as shown in Figure 5. All the
statistical indicators of ET0 estimated using the PM–CLDAS method and machine learning
methods under different combinations are shown in Figures 6–8.
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3.5. Estimation by the PM–CLDAS Method in Different Climate Zones

When the data from the meteorological stations are relatively complete, and only one
of the data types except temperature is missing, the PM–CLDAS method is used to calculate
ET0. The estimated ET0 in the seven climate zones is shown in Table 8.
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Table 8. The PM–CLDAS method estimates the performance of ET0 in seven climate zones under
combinations 1, 2, and 3.

Zone

Tmax·Tmin·Rs·U2·RHCLD Tmax·Tmin·Rs·U2CLD·RH Tmax·Tmin·RsCLD·U2·RH

RMSE
mm/d

MAE
mm/d R2 RMSE

mm/d
MAE
mm/d R2 RMSE

mm/d
MAE
mm/d R2

I 0.257 0.167 0.989 0.652 0.430 0.949 0.488 0.287 0.954
II 0.263 0.161 0.985 0.431 0.275 0.966 0.578 0.328 0.918
III 0.311 0.205 0.965 0.331 0.192 0.968 0.565 0.324 0.892
IV 0.305 0.204 0.974 0.508 0.351 0.949 0.688 0.417 0.884
V 0.330 0.241 0.955 0.276 0.185 0.975 0.751 0.511 0.772
VI 0.241 0.178 0.973 0.206 0.132 0.982 0.768 0.560 0.694
VII 0.589 0.440 0.920 0.243 0.163 0.974 0.603 0.381 0.830

average 0.312 0.217 0.966 0.377 0.248 0.969 0.661 0.424 0.838

For combination 1 (Tmax·Tmin·Rs·U2·RHCLD), after replacing the missing local meteo-
rological RH data with the CLDAS RHCLD data, the PM–CLDAS performed better in zones
1–6 (R2 > 0.955, RMSE < 0.330 mm/d, and MAE < 0.241 mm/d). Zone 7 was the next-best
performer (R2 = 0.920, RMSE = 0.589, and MAE = 0.440), and the overall performance
in the seven zones was better (R2 = 0.966). For combination 2 (Tmax·Tmin·Rs·U2CLD·RH),
after replacing the missing local meteorological U2 data with the CLDAS U2CLD data, the
performance in all seven zones was good (R2 = 0.969). It was the best in zone 6 (R2 = 0.982)
and the worst in zone 1 (R2 = 0.949). For combination 3 (Tmax·Tmin·RsCLD·U2·RH), after
replacing the missing local meteorological Rs data with the CLDAS RsCLD data, the best
performance was in zones 1 and 2 (R2 > 0.918), followed by zones 3 and 4, and there was a
relatively poor performance in the remaining zones 5–7 (R2 < 0.830, RMSE > 0.603 mm/d,
and MAE > 0.381 mm/d). The specific performance is shown in Figure 9.
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When the data from meteorological stations are relatively scarce (two meteorological
variables are missing), the performance of their estimated ET0 in the seven climate zones is
shown in Table 9.
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Table 9. The PM–CLDAS method estimates the performance of ET0 in seven climate zones under
combinations 4, 5, and 6.

Zone

Tmax·Tmin·RsCLD·U2CLD·RH Tmax·Tmin·RsCLD·U2·RHCLD Tmax·Tmin·Rs·U2CLD·RHCLD

RMSE
mm/d

MAE
mm/d R2 RMSE

mm/d
MAE
mm/d R2 RMSE

mm/d
MAE
mm/d R2

I 0.762 0.509 0.914 0.628 0.393 0.926 0.737 0.504 0.940
II 0.702 0.457 0.884 0.722 0.431 0.879 0.486 0.329 0.951
III 0.659 0.429 0.851 0.738 0.466 0.815 0.443 0.289 0.940
IV 0.811 0.568 0.820 0.824 0.529 0.824 0.566 0.408 0.936
V 0.812 0.570 0.710 0.875 0.611 0.671 0.387 0.294 0.955
VI 0.813 0.605 0.644 0.875 0.658 0.608 0.279 0.203 0.967
VII 0.645 0.445 0.800 0.871 0.620 0.695 0.542 0.452 0.938

average 0.768 0.531 0.786 0.802 0.539 0.761 0.477 0.302 0.947

For combination 4 (Tmax·Tmin·Rs·U2CLD·RHCLD), after replacing missing local mete-
orological U2 and RH data with the CLDAS U2CLD and RHCLD data, there was a better
performance in zones 1–3 (R2 > 0.851, RMSE < 0.762 mm/d, and MAE < 0.509 mm/d), and a
poor performance in zones 4~7 (R2 < 0.820, RMSE > 0.645 mm/d, MAE > 0.445 mm/d). The
best performance was in zones 1 and 2 (R2 < 0.884) and the worst performance was in zone 6
(R2 = 0.644); overall, there was a mediocre performance in estimating ET0 in the seven zones
(average R2 = 0.786). For combination 5 (Tmax·Tmin·RsCLD·U2·RHCLD), after replacing the
missing local meteorological Rs and RH data with the CLDAS RsCLD and RHCLD data, the
performance in zones 1 and 2 was good (R2 > 0.879), the performance in regions 3~7 was rel-
atively average (R2 < 0.824, RMSE > 0.738 mm/d, and MAE > 0.466 mm/d), and the worst
performance was in zone 6 (R2 = 0.608). For combination 6 (Tmax·Tmin·Rs·U2CLD·RHCLD),
after replacing the missing local meteorological U2 and RH data with the CLDAS U2CLD
and RHCLD data, the overall performance was good (R2 = 0.947, RMSE = 0.477 mm/d, and
MAE = 0.342 mm/d). The specific performance is shown in Figure 10.
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When the data from meteorological stations are very scarce, we set up two combi-
nations. The performance of their estimated ET0 in the seven climate zones is shown in
Table 10.
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Table 10. The PM–CLDAS method estimates the performance of ET0 in seven climate zones under
combinations 7 and 8.

Zone

Tmax·Tmin·RsCLD·U2CLD·RHCLD TmaxCLD·TminCLD·RsCLD·U2CLD·RHCLD

RMSE
mm/d

MAE
mm/d R2 RMSE

mm/d
MAE
mm/d R2

I 0.880 0.592 0.888 0.984 0.669 0.863
II 0.797 0.522 0.853 0.918 0.600 0.810
III 0.789 0.523 0.791 0.895 0.594 0.738
IV 0.889 0.621 0.783 0.978 0.683 0.742
V 0.878 0.624 0.661 0.977 0.702 0.612
VI 0.880 0.665 0.588 0.936 0.704 0.546
VII 0.832 0.613 0.716 1.069 0.834 0.678

average 0.860 0.601 0.740 0.963 0.678 0.701

For combination 7 (Tmax·Tmin·RsCLD·U2CLD·RHCLD), after replacing the missing local
meteorological Rs, U2, and RH data with the CLDAS RsCLD, U2CLD, and RHCLD data, there
was a relatively good performance in zones 1 and 2 (R2 > 0.853), an average performance
in zones 3 (R2 = 0.791) and 4 (R2 = 0.783), and a poor and unstable performance in zones
5–7 (R2 < 0.716, RMSE > 0.832, and MAE > 0.613), in which zone 6 performed the worst.
Combination 7 performed poorly in estimating ET0 in the seven climate zones, with a
significant drop in accuracy and stability compared to when lacking two local meteorologi-
cal data types. For combination 8 (TmaxCLD·TminCLD·RsCLD·U2CLD·RHCLD), after replacing
all the missing local meteorological data with all the CLDAS data, the performance in
zones 1 and 2 was relatively good (R2 > 0.810), and the performance in zones 3 (R2 = 0.738)
and 4 (R2 = 0.742) was relatively average. The performance in regions 5~7 was signifi-
cantly reduced (R2 <0.678, RMSE > 0.936 mm/d, and MAE > 0.704 mm/d). The specific
performance is shown in Figure 11.
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4. Discussion

In this study, we found that the accuracy of ET0 is very sensitive to the amount of
data, which is similar to the findings of Ni et al. (2019) [51] et al.; its accuracy will decrease
with the decrease in the number of input parameters. The reason for this phenomenon is
that the XGBoost model uses a greedy algorithm. When the input data are not sufficient
to explain the cause of all evaporation changes, the model will over-explain to a certain
extent. The GPR model has higher requirements for data distribution. When the data
distribution does not conform to the Gaussian distribution, the accuracy of the model will
be affected. Therefore, the GPR model is not recommended as the prediction model for this
region. In addition, the accuracy of each method is higher when the four meteorological
factors Tmax, Tmin, RH and U2 are input, and the results are similar to those of Cao et al.
(2011) [52] and Mao et al. (2020) [4]. On the whole, ET0 is positively sensitive to changes in
air temperature, wind speed and solar radiation, and negatively sensitive to changes in
relative humidity. Among these, ET0 is the most sensitive to solar radiation [25], followed
by relative humidity and 2 m wind speed, and ET0 is the least sensitive to temperature
changes. In addition, the modeling of global wind speed has always been challenging and
often difficult to predict. Similar results have been obtained in reanalysis data, such as the
ERA5 [53], NCEP/NCAR [30] and GLDAS [54]. This may be because the terrain change in
some areas is very complex, and the roughness of the underlying surface will also challenge
the prediction of wind speed. In addition, the prediction of the wind speed direction is
very difficult [18]. Solar radiation is an important parameter of the ET0 radiation term,
which usually has a great impact on ET0 [55,56]. Finally, Liu et al. [57] analyzed the cause
of reference crop evapotranspiration in the Yunnan Guizhou Plateau, and the results show
that solar radiation has the greatest effect on ET0 at an annual scale.

As far as the results of estimating ET0 are concerned, the overall results for the CLDAS
are good, especially for air temperature data; these results are the same as those of Liu et al.
(2021) [32], but the estimation accuracy is not as good as the machine learning methods
in some cases. This is due to the instability of the accuracy of the CLDAS RsCLD data [18],
which has a particularly negative impact on the results when estimating ET0; subsequent
bias correction can be performed on the CLDAS data, which may improve the prediction
results [58]. However, in the current situation, we do not recommend using the CLDAS
data instead of local meteorological Rs data.

China’s administrative regions are divided into four levels: provinces, cities, counties
and towns, of which the province is the highest level of administrative division. Various
provinces/autonomous regions have formulated many relevant policies based on climate
change, and these policies also have differences [59]. Therefore, separately controlling the
data quality of the CLDAS from the perspective of each province will better improve the
accuracy of the CLDAS data, which can help different provinces/autonomous regions
select and apply the CLDAS data sets according to their own needs. At the same time, the
division of provinces/autonomous regions in China is mostly based on natural geograph-
ical attributes, such as mountains and rivers, which are closely related to the division of
climate [60]. Therefore, it is important to evaluate the dataset on a province-wide basis,
provide a more detailed reference basis from an application point of view, and consider
different types of environmental climate.

When using the CLDAS near-surface meteorological data to estimate ET0, it is gener-
ally reliable in the plain area of China but has large fluctuations in complex terrain areas
and high-altitude areas under some input combinations [61]. Overall, some individual
stations have relatively high errors when they are located at high altitudes, in areas with
complex terrain, and in areas with sparse observations. These stations are often located
in areas with a complex topography and significant elevation changes, which can lead
to problems with the representativeness of the stations (the Digital Terrain Model (DTM)
map (elevation and slope) of the Qinghai–Tibet Plateau is shown in Figure 12); thus, more
caution is required when using data from these areas [62,63]. However, we only assessed
gridded datasets for a limited time and a limited number of meteorological stations, which
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may not accurately demonstrate the assessed characteristics of some climate states. In
addition, the evaluation results of high-altitude stations are relatively poor. Therefore, how
to correct the evaluation results of these stations, in addition to increasing the number of
research stations, is a problem that needs further research.
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We evaluated the performance of the CLDAS dataset in estimating ET0 across China
during the period 2017–2020. Not only the Penman–Monteith method but also other
methods and different datasets can be used to calculate ET0. Weiland et al. (2012) [64]
compared six different methods using Climate Forecast System Reanalysis (CFSR) data
and evaluated the results with Global Climate Research Unit (CRU) data, pointing out
that the PM method was data-intensive and sensitive to inaccuracies in the input data.
Five complete meteorological factors were required to calculate ET0 and the estimation
accuracy decreased with a decline in the number of input climatic factors; therefore, the
recalibrated Hargreaves equation was recommended. Lang et al. (2017) [65] compared
eight models in southwest China with the PM method and found that the Makkink and the
Hargreaves–Samani methods can be good alternatives to the PM method. Therefore, the
Hargreaves method has advantages in regions such as Africa, where the complete datasets
of climatic variables are generally inaccessible [66].

5. Conclusions

In this study, we evaluated which of the CLDAS product or machine learning simpli-
fied model is more suitable to estimate ET0 when meteorological data are insufficient in
China. According to the number of missing meteorological data, eight combinations were
set for comparative analysis. The results show the following.

In the case of missing meteorological data, where local meteorological U2 or RH data
are missing, it is recommended that U2CLD or RHCLD data from the CLDAS products are
used to replace the data of the local meteorological station to estimate ET0. When the Rs data
are missing, the performance estimated by the PM–CLDAS method degrades significantly,
and it is recommended that machine learning is used to estimate ET0. Therefore, among
the CLADS products, RsCLD significantly affects the estimation accuracy of ET0.

When two kinds of data, except temperature data, are missing, the performance of the
three methods in estimating ET0 decreases to varying degrees. Furthermore, we propose to
use the corresponding CLDAS data instead of local meteorological data to estimate ET0
in the absence of meteorological RH and U2 data. Nevertheless, when the lack of data
involves Rs, it is recommended that machine learning methods are used to estimate ET0.

When multiple meteorological factor data are missing, it is recommended that ma-
chine learning methods are used to estimate ET0 when there are only local temperature
data. In addition, when all data are missing, it is recommended that the CLDAS data are
used instead of local meteorological data to estimate ET0, which estimation performance
is acceptable.

In addition, we analyzed the estimation performance of the PM–CLDAS method
in seven regions under different combinations. We concluded that the performance in
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zones 1–5 is relatively good, and the performance in zones 6~7 may fluctuate. To summa-
rize, when the CLDAS data are used to estimate ET0, the calculation results for TmaxCLD,
TminCLD, RHCLD and U2CLD are more accurate. However, the use of RsCLD needs careful
consideration in some zones.
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