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Abstract: Machine learning (ML) can be a valuable tool for discovering opportunities to save energy
and resources in manufacturing systems. However, the hype around ML in the context of Industry
4.0 in the past few years has led to blind usage of the approach, occasionally resulting in usage when
another analysis approach would be better suited. The research presented here uses a novel matrix
approach to address this lack of differentiation of when to best use ML for improving energy and
resource efficiency in manufacturing, by systematically identifying situations in which ML is well
suited. Seventeen generic levers for improving manufacturing energy and resource efficiency are
defined. Next, a generic list of six manufacturing data scenarios for when ML is a good method of
choice for analysis is created. This results in a comprehensive matrix in which each lever is evaluated
along each ML scenario and given a point, providing a quantitative ML suitability score for each lever.
The evaluation is conducted by drawing on past studies demonstrating whether ML is appropriate.
Specifically, operation parameter and input material optimization, as well as intelligent maintenance,
are the levers that score the highest and are thus identified to be most suitable for machine learning.
The majority of the remaining levers is deemed to have low suitability for machine learning. This
simple yet informative matrix can be used as a guideline in data-driven manufacturing energy and
resource efficiency projects to provide an appraisal on the applicability of ML as the initial analysis
tool of choice.

Keywords: manufacturing; data-driven sustainability; machine learning; energy efficiency; resource
efficiency

1. Introduction
1.1. Motivation

The industry sector consumes over a third of global energy, making increased energy
and resource (E&R) efficiency of the sector an important area to counter climate change [1].
Recognition in industry of the importance and urgency of this topic can be seen, for example,
in the growing trend globally of manufacturers integrating principles of circular economy
into their production systems and business models [2]. It can also be seen in the revival
of efforts around lean methodology in academia and industry, now being combined with
green principles [3]. In the context E&R efficiency, machine learning (ML) is a powerful tool
when it comes to identifying hidden efficiency improvement potentials in manufacturing
processes. However, ML (e.g., training ML algorithms to model part(s) of a manufacturing
system) is not always a better alternative to simpler non-ML methods (e.g., comparison
of past and current consumption, scatter plots, Pareto analysis of energy consumers or
calculation of energy value streams). The strength of ML lies in analyzing processes with
many potentially relevant and inter-related parameters and in providing recommendations
or predictions on the outcome (e.g., energy consumption, resource consumption, product
quality features, etc.) of the process. Traditional, non-ML methods range from simple
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monitoring of energy consumption to statistical analysis of limited amounts of parameters.
They are differentiated from ML approaches in that they are state of the art in industry
and do not require expert knowledge in ML to be applied. Even if the performance and
complexity of ML-based approaches is often higher than that of non-ML approaches,
there may be no benefit in the additional insights the company gets from the application
(e.g., a highly accurate model is not always needed to uncover energy savings potential).
In such situations, the application of a non-ML approach would be preferable for the
company due to the faster and easier application and lack of dependency on rare ML
expertise. In case the ML approach is able to generate findings the non-ML approaches
cannot provide, the ML approach application should be recommended though more effort
needs to be invested. The goal of this paper is to differentiate between these situations.
Although the suitability of ML vs. non-ML methods have been compared for generic data
scenarios as well as some manufacturing industries [4–6], this differentiation in the context
of improving manufacturing energy and resource efficiency is not well understood. See
Figure 1. A lack of differentiation of when to use ML for energy efficient manufacturing
leaves potential energy savings uncovered when ML is unknowingly not used and puts
unnecessary financial strain on manufacturers when it is used in place of a simpler analysis;
applying ML often requires scarce data science expertise, as well as larger amounts of data,
both of which can be expensive to acquire.
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1.2. Approach and Objective

The overarching goal of the authors is to create an industry generic overview of the
most common manufacturing energy and resource efficiency levers, differentiated by which
ones ML is better suited for. The authors expect that there are certain levers for which ML
is better suited than traditional non-ML methods by being able to uncover more savings
potential with less effort. Within this context, the aim of this study is to create a matrix
in which various levers for improving manufacturing E&R efficiency are given a score
for how applicable ML techniques are to enable the lever. To do this, a holistic view of
common manufacturing E&R efficiency levers will first be created based on the literature.
Next, several generic manufacturing situations in which ML is well suited will be defined
(e.g., large number of parameters, complex non-linear relationships, predictions, etc.), which
are also based on literature. Finally, each E&R efficiency lever will be evaluated qualitatively
on whether each pro-ML situation could occur when using the lever in practice. For each
pro-ML situation that would likely occur, a point will be given to the lever. Summing the
points for each lever will result in a tally giving an indication of the levers for which ML
is most applicable. Literature already exists for common manufacturing E&R efficiency
levers, as well as for generic situations in which ML is well suited. Thus, the authors expect
to extract valuable insights at the intersection of the literature on these two topics.
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This new analysis of the applicability of ML sheds light on when ML is well suited
to identify manufacturing E&R efficiency improvements, as an alternative to non-ML
approaches. The results of this study will hopefully provide a basis for practitioners as well
as researchers to apply and develop data-driven E&R efficiency tools in a more targeted
way, thereby facilitating the increase in manufacturing E&R efficiency in the future.

1.3. Current State of Research

A brief overview of selected works with related objectives are presented in this section.
Máša et al. categorize different levels of mathematical models used for manufacturing

energy saving measures, with recommendations for applications of each [7]. Their focus
is on providing a useful guideline for SME to use, sacrificing significant details for more
simplicity. The application areas, however, are limited to energy consumption monitoring
and modelling, unlike this study, in which the authors will cover many different E&R
application areas.

Kenett et al. propose using an information quality (“InfoQ”) framework to evaluate
analytics methods and tools when applied to manufacturing [8]. However, they do not test
the framework in practice, nor focus on E&R efficient manufacturing.

In their literature review, Renna et al. provide a thorough review of the mathematical
methods used to improve energy efficiency in manufacturing systems [9]. What separates
that study from the one presented herein is that no summarizing conclusions are made as
to which analysis approaches are most relevant for which E&R efficiency applications.

Luque et al. highlight that there is a lack of conceptual frameworks integrating
sustainability and ML [10]. They develop a framework to help guide researchers in the
optimization of engineering projects under the criteria of sustainability (environmental,
economic, and social). This high-level framework dictates different dimensions that should
be considered in such a project, such as required data, sensors, tools, and target applications
in the engineering system. The framework, however, only justifies the use of ML for
sustainable manufacturing by saying that the use of ML is a growing trend. The authors of
this study will derive more specific reasons for when ML is relevant and when it is not.

In their trends analysis of artificial intelligence (AI) and ML applications in smart pro-
duction, Cioffi et al. highlight that ML is playing an increasingly critical role in sustainable
manufacturing but that the relationship between AI/ML and sustainability requires further
investigation [11].

In their extensive literature review of ML applications for sustainable manufacturing,
Jamwal et al. detail a wide range of ML methods and how they have been applied for
sustainable manufacturing. They go as far as to list the quantitative results various methods
have had in past studies. Though not directly comparable, this provides a valuable sample
of the impact various ML methods can have [12]. They do not, however, provide reasoning
for the applicability of the different ML methods, and do explain for which areas ML is
less applicable.

In summary, it is apparent that a breadth of studies exist in which ML is used for
improving the sustainability of manufacturing. However, the investigation of when ML
is and is not suitable for different sustainability approaches and the reasons for this are
missing and are precisely what this paper addresses.

2. Energy and Resource Efficiency Levers
2.1. Energy and Resource Efficiency Levers Table

As a first step in identifying the areas where ML can provide a benefit for E&R
efficiency, the authors create a comprehensive list of generic potential levers for improving
a manufacturing system’s E&R efficiency. A widely applied classification of organization
improvement measures, which is also relevant when considering manufacturing E&R
improvement approaches, is one consisting of three dimensions: people, processes, and
technology. The first application is often attributed to a 1964 book by management expert
Harold Leavitt [13]. This paper assumes that in the context of manufacturing E&R, ML
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is most relevant in the dimensions of technology (ML is in itself a technology and thus
clearly falls within this dimension) and processes (ML is often applied as a technology
with the effect of changing or supporting processes). The people dimension includes areas,
such as organizational change, mindset, values, skills, and learning capacity. While all
these are potent barriers as well as opportunities to improving E&R efficiency, ML can add
limited value here directly [14]. Of course, it can be argued that ML also addresses the
people dimension, e.g., it can help change mindsets or facilitate upskilling, but these are
not considered direct benefits in the context of E&R efficiency in this study. The levers are
shown in Table 1 and are organized along six manufacturing domains. The domains cover
the primary areas in which manufacturing E&R efficiency can be improved, as visualized
in Figure 2.

Table 1. Overview of generic levers for improving manufacturing energy and resource efficiency.

Manufacturing
Domain Domain Description ID Energy and Resource (E&R)

Efficiency Lever

Product Design

Designing the product is the first step in the
production process. This domain includes all
activities associated with product design, such as
determining functionality, form factor,
and materials.

1 E&R efficient design (optimized for
production, use, or end-of-life)

2
Integrated product life cycle data
management for strategic E&R
decision support

Manufacturing
Systems

The manufacturing systems domain includes all
processes and machinery used to manufacture
the product.

3 Operation parameters optimization to
improve process E&R efficiency

4 Input materials optimization (use less
materials or use sustainable materials)

5 E&R consumption monitoring

6 Waste heat utilization/energy
recovery systems

7 Quality control for wasted material and scrap

8 Energy product tags for holistic value
chain improvements

9 Advanced automation and controls for
process precision and stability

Logistics
The logistics domain consists of the logistics within
the plant (shop floor and inventories) as well as at
the plant boundaries (incoming and outgoing).

10 E&R efficient production scheduling

11 Efficient shop floor layout to minimize
transport and waiting

12
In- and outbound logistics timing to
optimize E&R efficiency of production and
product delivery

Maintenance
The maintenance domain includes all maintenance
activities within the plant as well as outside of the
plant for in-use products.

13 Intelligent maintenance to avoid downtime
and extend equipment lifetime

14 Remote services to avoid travel

Plant Energy and
Resource Mgmt.

The plant E&R management domain includes the
overall facilitation of energy to the plant, the usage
by the building, as well as handling of
manufacturing byproducts.

15 Renewable energy sources

16 Optimized technical building services (TBS)

17 Capture and controlled disposal of waste,
hazardous substances, and emissions

Recycling
The recycling domain consists of activities aimed
toward incorporating used products and materials
back into the production process.

18 Remanufacturing
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2.2. Deep Dive on Each of the Levers

This section contains the full E&R levers table, including a description of each lever
(Table 2).

Table 2. Detailed overview of generic levers for improving manufacturing energy and resource efficiency.

Manufacturing
Domain Domain Description ID Energy and Resource

(E&R) Efficiency Lever Lever Description

Product Design

Designing the product is
the first step in the

production process. This
domain includes all

activities associated with
product design, such as

determining functionality,
form factor, and materials.

1

E&R efficient design
(optimized for

production, use, or
end-of-life)

Designing a product with E&R efficiency in mind can have
significant impact on not only the E&R needed to produce the
product but also on that which was consumed during the use
and end-of-life stages of the product. Product design plays a
major role in the realization of circular economy and
upgradeable products, which are two trending topics in
industry and academia [2]. Design features can include product
form, material, and intended functionality to name a few [15].

2

Integrated product life
cycle data management

for strategic E&R
decision support

The integration of product life cycle management software with
product sustainability data can give companies a
comprehensive decision support platform for product
management and business model strategy that takes into
account environmental practices [16].

Manufacturing
Systems

The manufacturing
systems domain includes

all processes and
machinery used to

manufacture the product.

3
Operation parameters

optimization to improve
process E&R efficiency

The selection of operating parameters can have significant
impact on the E&R efficiency of a process. Examples include
setting the cutting conditions (cutting speed, feed rate, and
cutting depth) of a mill to reduce energy while maintaining
surface quality and tool life or setting the temperature, feed rate,
fuel supply, and combustion air of a melting furnace [17–19].
The complexity of this lever can vary significantly depending on
the amount of significant operating parameters in the processes.

4

Input materials
optimization (use less

materials or use
sustainable materials)

Optimizing input materials essentially consists of reducing the
amount of resource intensive or environmentally harmful
inputs, either by using fewer inputs in general or by replacing
inputs with more sustainable ones. In discrete machining
processes, resources, such as lubricants, compressed air, and
processes gases, are consumed and have substantial
environmental impact. Duflou et al. list several approaches to
reduce lubricant consumption or to use environmentally benign
lubricants [20]. Compared to discrete manufacturing, process
industries typically deal with higher volumes and variety of
input materials. Here, this lever can play a very significant role.
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Table 2. Cont.

Manufacturing
Domain Domain Description ID Energy and Resource

(E&R) Efficiency Lever Lever Description

Manufacturing
Systems

The manufacturing
systems domain includes

all processes and
machinery used to

manufacture the product.

5 E&R consumption
monitoring

As Abele et al. point out, monitoring energy and resource
consumption data can play a large role in the discovery of
significant energy users, identification energy-relevant
parameters, and improving the personnel’s overall awareness of
energy and resource consumption [21]. Consumption
monitoring is often a prerequisite for more advanced
data-driven E&R efficiency approaches, as this provides the
data basis on which the analyses can be performed.

6
Waste heat

utilization/energy
recovery systems

Waste heat utilization is an important lever in heat-intensive
industries, such as the cement, refractory, glass, steel, and other
metallurgy industries. It is estimated that 20 to 50% of industrial
energy input is lost as waste heat in the form of hot exhaust
gases, cooling water, and heat lost from hot equipment surfaces
and heated products, according to the US Office of Energy
Efficiency and Renewable Energy [22]. Forni et al. list a variety
of methods for heat recovery in different processes. They
highlight the challenge that investments to enable this lever
typically have very high capital costs [23].

7
Quality control for

wasted material
and scrap

This lever includes reduction in and prevention of waste (see
waste hierarchy framework by Batayneth et al. [24]. The other
two dimensions, “re-use waste” and “recycle waste”, are
covered in the recycling lever in this table). Scrap reduction is
often a priority of lean and six sigma methods, such as DMAIC
(define, measure, analyze, improve, and control). Wasteful
processes, such as ones where unnecessary energy and
resources are consumed or large numbers of defects and rework
occur, are identified and improved. Technological approaches
include upgrading machinery so that less scrap is produced.
Singh et al. demonstrate a variety of these methods [25].
Improving quality control through technology as well as
processes is a way of reducing wasted material due to defects.

8
Energy product tags for

holistic value
chain improvements

As Garetti et al. point out, tracking the energy consumed to
produce individual products along the manufacturing process is
a valuable information basis for manufacturers, as well as
stakeholders along the entire value chain. With this
transparency at the product level, improvements in the energy
efficiency of the manufacturing process can be identified more
effectively than if energy consumption is only available at a
higher granularity level, such as the factory level. Beyond the
manufacturer, the energy performance across the value chain
can be increased as the transparency enables improved
coordination among stakeholders [16].

9
Advanced automation

and controls for process
precision and stability

Process precision and stability are desirable characteristics of
any manufacturing process since quality and throughput are
direct results. This lever is important for E&R especially in
combination with the operation parameters optimization lever;
even if the operating conditions and settings needed for
maximum E&R efficiency are known, improvements can only be
realized if the process can be controlled accordingly. Unplanned
downtime and other process instabilities are undesirable from
an E&R perspective since ramp-up and ramp-down usually
reduces efficiency [16].
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Table 2. Cont.

Manufacturing
Domain Domain Description ID Energy and Resource

(E&R) Efficiency Lever Lever Description

Logistics

The logistics domain
consists of the logistics
within the plant (shop

floor and inventories) as
well as at the plant

boundaries (incoming
and outgoing).

10 E&R efficient
production scheduling

Gahm et al. differentiate between supply-and-demand-side
efficiency improvements through scheduling.
For supply side, scheduling is used to influence the provisioning
of energy. Examples of methods include time of use, critical
peak pricing, real-time pricing, and load curve penalties. For
demand side, scheduling is used to reduce the E&R demand.
Gahm et al. differentiate between non-processing demand (E&R
used without adding value to a product, such as energy
demand during idle times) and processing demand (E&R used
to directly transform inputs to desired outputs, such as heating
a material to transform it). Along the supply-and-demand sides,
Gahm et al. also differentiate whether the efficiency gains are
external (total E&R demand of the factory is reduced) or
internal (total E&R use stays the same, but temporal course of
the demand is changed to improve overall efficiency) [26].

11
Efficient shop floor
layout to minimize

transport and waiting

Improving shop floor layout can significantly improve the
energy consumption of material flow throughout the factory, as
well as reduce manufacturing energy consumption by reducing
waiting time in which machines are running idle. For example,
Fahad et al. demonstrate a reduction in energy for material flow
of over 50% [27].

12

In- and outbound
logistics timing to

optimize E&R efficiency
of production and
product delivery

The inbound and outbound logistics of a factory is a lever that
can be difficult to use, since multiple external stakeholders (such
as customers, suppliers, and logistics providers) are involved.
However, energy consumption of these activities can be
significant and can have potential for improvement. Wehner
lists several high-level approaches, such as avoiding peak
deliveries, pursuing efficient routing, and receiving fewer but
fuller delivery trucks [28].

Maintenance

The maintenance domain
includes all maintenance
activities within the plant
as well as outside of the

plant for in-use products.

13

Intelligent maintenance
to avoid downtime

and extend
equipment lifetime

Advanced maintenance technology, especially concepts such as
predictive maintenance, can have a variety of benefits that
improve the E&R efficiency of a manufacturing system.
Improved maintenance can extend equipment lifetime by doing
maintenance before irreparable damage occurs. Preemptive
maintenance can prevent malfunctions and help avoid
unexpected downtime, which usually wastes energy and
resource (especially in energy intensive processes). Intelligent
maintenance strategies can improve the overall asset
performance as well, by diagnosing issues that are reducing
efficiency. As Garetti et al. point out, advanced maintenance
strategies have clear economic benefits in addition to the
environmental ones described above [16].

14 Remote services to
avoid travel

Though most often a smaller component of a manufacturers
E&R footprint, travel to conduct after-sales maintenance in the
field is a lever that can save costs while also improving E&R
efficiency. When machines are equipped with sufficient sensors,
the collected data can allow for diagnosing and troubleshooting
faults and failures remotely. Virtual and augmented reality
solutions also are increasingly enabling effective remote
maintenance. These and further examples are listed by
Jasiulewicz-Kaczmarek in his review of maintenance
technologies for sustainable manufacturing [29].
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Table 2. Cont.

Manufacturing
Domain Domain Description ID Energy and Resource

(E&R) Efficiency Lever Lever Description

Plant Energy
and Re-

source Mgmt.

The plant E&R
management domain
includes the overall

facilitation of energy to the
plant, the usage by the

building, as well as
handling of manufactur-

ing byproducts.

15 Renewable
energy sources

Replacing non-renewable energy sources of a production
system with renewable ones does not necessarily improve the
E&R efficiency of the manufacturing system; however, it does
improve the GHG emissions of the system, which is one, if not
the primary, reason for increasing E&R efficiency. Renewable
energy can be sourced either by purchasing it from the grid or
by producing it locally on-site (i.e., decentral). As Schulz et al.
argue, the former is typically prohibitive to manufacturers
because premiums are currently charged in the market for
renewable energy. The latter is becoming increasingly attractive
to manufacturing companies due to rising energy prices and
advancements in technology [30]. Currently, however, this lever
is not widely adopted; even though over 50% of companies in
Germany utilize or plan to invest in self-generation, according
to the German Chamber of Commerce and Industry [31], less
than 10% of this self-generated energy is renewable [32]. If a
manufacturer produces renewable energy on-site and has
sufficient flexibility in its production system, the production
schedule can be adjusted based on current and expected energy
supplies (e.g., weather forecasts), similar to lever 10 [33].

16 Optimized technical
building services (TBS)

When improving the E&R efficiency of a manufacturing system,
the building shell and technical infrastructure (commonly
referred to as TSB) in addition to the machinery can also play a
significant role. TBS are responsible for tasks, such as
temperature regulation (e.g., space and process heat),
ventilation and air conditioning (e.g., exhaust air purification,
air technology), power engineering (e.g., energy supply,
lighting), or water supply and treatment [34,35]. A U.S. Dept. of
Energy study found that on average over 45% of manufacturing
energy consumption was for TBS (process heating and cooling
and facilities) [36,37]. Posselt presents an extended energy value
stream modelling approach to identify all TBS energy
consumption points in a factory [38]. Of course, other methods,
in addition to ones described in some of the levers listed above,
can be used to improve the E&R efficiency of TBS. However, in
this framework, TBS is highlighted as a separate lever as it is
often taken for granted as an overhead cost and largely ignored in
efficiency initiatives, as Posselt argues.

17

Capture and controlled
disposal of waste,

hazardous substances,
and emissions

This lever addresses by-products of manufacturing processes,
which can be harmful to the environment. Examples include
dangerous industrial fluids that are used to stabilize or improve
manufacturing processes or to clean surfaces but generate
harmful emissions to the air or polluted water. A goal of good
resource efficiency should be the minimization of harmful
by-products. However, complete elimination is often
impossible, and thus an effective management of these
hazardous substances is an important lever for maximizing the
E&R efficiency of a manufacturing system. Garetti et al.
highlight the importance of this lever and call for research on
the development of production methods, ICT solutions, and
recuperation technologies to enable this lever [16].

Recycling

The recycling domain
consists of activities aimed

toward incorporating
used products and

materials back into the
production process.

18 Remanufacturing

This lever includes the recycling and reuse of waste material
(see waste hierarchy by Batayneth [24]). As Garetti points out,
remanufacturing is becoming an increasingly relevant lever, as
growing regulations in many countries are beginning to dictate
the implementation of remanufacturing. The optimization of
remanufacturing processes is an opportunity to not only reduce
the natural and material resource usage of a manufacturing
system but can also reduce costs while maintaining quality [16].
Singh et al. provide a literature overview of various recycling
approaches, such as mixing used plastics, steel, or ceramics into
cement concrete to strengthen it or using centrifugal separation
and vacuum pyrolysis for the retrieval of solder and organic
materials from used circuit boards [25].
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3. Pro-ML Situations
3.1. List of Pro-ML Manufacturing Situations

Now that a list of E&R efficiency levers has been established, the next step is to establish
a generic list of manufacturing scenarios for which ML is well suited. The following six
scenarios are created, drawing in part on the high-level list by Wuest et al. [39]:

1. High dimensional data: Problems and datasets with many features, i.e., the data to be
analyzed has high variety.

2. Highly dynamic data: When conditions are continuously changing and the system
requires adaptation, i.e., the data to be analyzed has high velocity.

3. Complex interactions: When output quality and quantity have high variability due
to complex interactions of production parameters and these interactions need to be
interpreted, i.e., when the system to be analyzed contains complex interactions.

4. Correlation not explanation: When process and parameter correlations need to be
determined but not necessarily explained or fundamentally understood, i.e., if the
goal is to identify and model patterns in a dataset, rather than to create an explicit
formula or deterministic model.

5. Difficult to capture features: When interesting process or product features cannot
feasibly be captured with conventional sensors principles, i.e., when process can only
be observed visually or acoustically, and further processing is needed in order to gain
useful insights.

6. Self-learning: When existing data are to be analyzed without specific requirements or
instructions, i.e., when the analysis should learn on its own.

Each item is expanded upon below:

1. High dimensional data: Problems and datasets with many features, i.e., the data to be
analyzed have high variety.

Strictly speaking, high dimensionality occurs when the number of features or param-
eters is larger than the number of observations. In the context of this research, the more
general case of having relatively many (typically multiple dozens or more) features is
considered being of high dimensionality, regardless of the number of samples. Cherkassky
demonstrates the ability of SVM to regularize and cope with high dimensionality [40].
Amini explains the need for high-dimensionality processing in the context of manufac-
turing statistical process monitoring [41]. This type of process monitoring can be used
in several of the E&R efficiency levers, whenever process parameter data across multiple
processes need to be analyzed for E&R optimization. For example, a typical food produc-
tion process is compound feed production. These processes can encompass more than
100 different ingredients and additives, along with dozens of machine parameters, such as
temperatures and processing speeds. E&R optimization problems in this context clearly
deal with high dimensionality.

2. Highly dynamic data: When conditions are continuously changing and the system
requires adaptation, i.e., the data to be analyzed has high velocity.

Monostori explains the applications of ML to address the complexity, changes, and
uncertainty in manufacturing systems. Manufacturing systems are continuously growing in
complexity. Especially since the fourth industrial revolution of the early 2000s, digitalization
of manufacturing has enabled more complex systems to be created, also manifesting in
more complex products and processes [42]. If equipped with sensors, these systems create
quite complex and ever-changing data, which ML is well suited to analyze. An example of
a scenario with highly dynamic data would be a manufacturing system in which sensor
readings, images from quality inspection, product specifications from an ERP system, as
well as the current production plan from an MES are all to be analyzed to improve the E&R
efficiency while maintaining quality and delivery times. In this scenario, there are various
types of data, as well as continuously changing conditions, e.g., new orders, machine
malfunctions, quality fluctuations, and different products being produced. Continuous
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or lifelong learning is a growing field of ML that addresses situations of dynamic data
in which it is necessary for a model to continuously retrain itself to remain relevant in a
changing system [43].

3. Complex interactions: When output quality and quantity have high variability due
to complex interactions of production parameters and these interactions need to be
interpreted, i.e., when the system to be analyzed contains complex interactions.

As previously mentioned, complexity of manufacturing systems is continuously grow-
ing. When analyzing complex manufacturing systems, it is often difficult to model the
relationship between inputs and outputs of the system with the goal of optimization. This
is especially true for processes in which the output has high variability dependent on
various production parameters. Many continuous production processes in which various
ingredients are processed, such as in chemicals or alloys production in which dozens of
ingredients must be combined at the different temperatures and times in precise quantities
in order to achieve the desired product characteristics, are a good example of such variable
processes. Here, ML techniques provide great value with their data-driven approaches to
find complex and non-linear relationships in large datasets. After modelling these complex
interactions, optimizations can be conducted.

Similarly, ML is well suited for when complex parameter relationships need to be
simplified in order to be interpretable for practitioners. Shang gives an overview of need
for interpretability of big data in manufacturing and how ML can help with explainable AI.
Especially in the context of manufacturing, model interpretation is important, for example,
to enable engineers and operators to better perform root cause analysis after the detection
of a potential fault [44] or when quality engineers need to analyze production defects [45].

4. Correlation not explanation: When process and parameter correlations need to be
determined but not necessarily explained or fundamentally understood, i.e., if the
goal is to identify and model patterns in a dataset, rather than to create an explicit
formula or deterministic model.

Principle component analysis, decision trees, and many other ML techniques are used
to identify correlations among input variables (e.g., manufacturing process parameters) and
outputs variables (e.g., manufacturing product characteristics). As Bzdok highlights, ML
focuses on making predictions based on large amounts of data, while statistics traditionally
focuses on inference and deriving an explicit model to explain a phenomenon based on
carefully controlled experimental data [6]. A good example would be a manufacturer
wanting to know how to adjust their operating parameters in order to minimize energy
consumption but not needing to know why each parameter effects the energy consumption
as it does, or a manufacturer wanting accurate predictions when their machines require
preemptive maintenance but not necessarily why.

5. Difficult to capture data: When interesting process or product features cannot feasibly
be captured with conventional sensors principles, i.e., when processes can only be
observed visually or acoustically, and further processing is needed in order to gain
useful insights.

There are processes in which not all important information can easily be measured
and interpreted. Albeit, audio and visual sensors have long been used in manufacturing;
however, the interpretation of the audio and image data is a task that posed a challenge
before the adoption of ML. A common scenario is when unsorted heterogeneous objects
need to be assessed, and the most straightforward way is a visual assessment. For example,
trash moving on an assembly belt at a waste processing facility needs to identified for dif-
ferent recycling processes [46]. Image recognition is a strength of deep learning algorithms
and can be used in such situations to classify objects on various features, such as size, color,
composition, quality, etc. A second human sense can also be leveraged by AI, namely
hearing. A typical scenario for this application is a manufacturing process with rotating
parts where the seasoned operator can hear if there is a problem. This important quality
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check can be performed by an AI processing acoustic or vibration signals, thus identifying
anomalies through classification.

6. Self-learning: When existing data are to be analyzed without specific requirements or
instructions, i.e., when the analysis should learn on its own.

A fundamental branch of ML is unsupervised learning, of which self-learning is the
essence. Unsupervised learning consists of ML models that recognize or “learn” patterns
from data without the need for a person to label the data that the models are fed [47,48].
However, it should be noted that more manufacturing scenarios and use cases require
supervised learning as opposed to unsupervised [49].

In their state of the art review of ML for self-adaptive systems, Saputri and Lee give an
overview of the ML techniques for creating self-adaptive systems, which include Bayesian
theory, clustering, decision trees, fuzzy learning, genetic algorithms, and neural networks,
to name a few [50]. Especially the field of deep learning, which is based on layering
neural networks, has rapidly gained attention in the past few years due to its aptitude for
self-learning patterns and requiring less feature engineering [51].

A typical example of a situation in which self-learning is needed in manufacturing is
for anomaly detection. Various production runs can be fed into an unsupervised learning
algorithm, which will then automatically group production runs and reveal outliers.

4. Results—Situations in Which ML Can Improve Manufacturing Energy and
Resource Efficiency
4.1. Methodology Explanation

Now that a comprehensive list of levers for improving manufacturing E&R efficiency
has been established in Section 2 and the situations in which ML is well suited have been
defined in Section 3, these two schemes can be combined to identify the E&R efficiency
levers for which ML is well suited. This is performed by overlaying the two schemes to
create a matrix, with the E&R efficiency levers as rows and the ML situations as columns.
Next, for each lever, the authors evaluated which ML situations can be present when
dealing with the lever. This was achieved by considering what type of data and what
analysis requirements can be expected when dealing with each lever and considering if
any of these correspond to a pro-ML situation. The analysis was based on experiments and
case studies found in the literature. For each situation for which studies confirm that the
corresponding pro-ML situation is present and that ML is an appropriate approach, a point
was allocated to the lever. See Table A1 in Appendix A for details on the literature used in
the evaluation. Repeating this for all levers resulted in a tally in which the levers with the
most ML-relevant situations were identified. The matrix resulting from this evaluation is
presented in the following section.

4.2. Results and Discussion

The results of the analysis, shown in Table 3, reveal three levers to be the strongest
contenders for applying ML: Lever 3—operation parameters optimization, lever 4—input
materials optimization, and lever 13—intelligent maintenance. When dealing with these
levers, five or even all six of the ML conditions are likely to occur. Within the logistics
domain, lever 10—production scheduling and lever 12—in- and outbound logistics opti-
mization show a strong fit for applying ML. The top five scoring levers are grouped and
detailed in the following three subsections. Apart from lever 7—quality control and lever
1—E&R efficient design, which have a medium score, the remaining levers have a score of
zero or one, indicating that ML is likely not well-suited for these levers. The manufacturing
conditions for ML, which appeared most often in the E&R efficiency levers, are 1—high
dimensional data, 2—highly dynamic data, and 4—correlation not explanation.
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Table 3. Identification of E&R levers with most conditions for ML.

Manufacturing
Domain ID

Energy and Resource (E&R)
Efficiency Lever

Conditions for Machine Learning

1. High
Dimensional Data 1

2. Highly
Dynamic Data 2

3. Complex
Interactions 3

4. Correlation Not
Explanation 4

5. Difficult to
Capture Features 5 6. Self-Learning 6 Count

1 E&R efficient design (optimized for
production, use, or end-of-life) x x x 3

Product Design
2 Integrated product life cycle data management

for strategic E&R decision support 0

3 Operation parameters optimization to
improve process E&R efficiency x x x x x 5

4 Input materials optimization (use less
materials or use sustainable materials) x x x x x 5

5 E&R consumption monitoring x 1

6 Waste heat utilization/energy
recovery systems 0

7 Quality control for wasted material and scrap x x x x 4

8 Energy product tags for holistic value
chain improvements x 1

Manufacturing
Systems

9 Advanced automation and controls for
process precision and stability x 1

10 E&R efficient production scheduling x x x x 4

11 Efficient shop floor layout to minimize
transport and waiting x 1

Logistics

12
In- and outbound logistics timing to
optimize E&R efficiency of production and
product delivery

x x x x 4

13 Intelligent maintenance to avoid downtime
and extend equipment lifetime x x x x x x 6

Maintenance
14 Remote services to avoid travel 0
15 Renewable energy sources x 1
16 Optimizing technical building services (TBS) 0Plant Energy

and Resource
Mgmt. 17 Capture and controlled disposal of waste,

hazardous substances, and emissions 0

Recycling 18 Remanufacturing 0
1 Datasets with many features; 2 continuously changing conditions requiring continuous model adaptation; 3 output quality and quantity have high variability due to complex
interactions of production parameters; 4 process and parameter correlations to be determined, not fundamentally explained; 5 when interesting process or product features cannot
feasibly be captured with conventional sensors principles; 6 data to be analyzed without specific instructions. Darker color indicates a higher count.
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4.2.1. Operation Parameters and Input Material Optimization

The reasons for using ML for optimization of operating parameters and input material
are very similar, as are the appropriate optimization methods. Thus, these two levers are
evaluated together.

The increasing complexity of manufacturing systems, mentioned in Section 3.1, can
be observed in the production processes of many companies. The growing complexity
of processes can result in an increasing number of adjustable operating parameters and
input materials. If data on parameters and inputs are captured, conditions of high variety
and velocity data, as well as complex interactions among the parameters, occur. The
first step to optimize process parameters and input, for example, for E&R efficiency, is to
understand the causality. Where in the past knowledge- or experience-based methods may
have sufficed to understand causalities and optimize these processes, today, this is often
only feasible with data-based methods [52].

ML also presents an opportunity for real-time optimization of dynamic, i.e., continu-
ously changing, processes. Degot reports examples of using ML to simulate E&R initiatives
to identify optimization roadmaps and to then use ML in the real-time optimization of E&R
intensive processes [53].

4.2.2. Intelligent Maintenance

Intelligent or predictive maintenance, with the objective of extending machine life
and improving functionality by predicting and preventing failure, does not necessarily
require ML. A basic set of informal mathematical rules that dictate when a machine may
need maintenance can be effective. However, if the model is to be reliable, a significant
amount of testing and fine-tuning is typically needed. This is where ML can provide a major
advantage in time and effort savings. ML algorithms can ingest large diverse amounts of
operating data from the machinery and independently derive correlations between certain
operating conditions and failures. Given sufficient data, this result in sophisticated models
that can accurately predict failures and enable successful predictive maintenance.

One of the most common applications of machine learning is for data classification,
and fault classification is one of the key steps in achieving predictive maintenance [54,55].
ML classifiers have shown excellent accuracy in identifying machinery operating states
foreshadowing failure. Cinar et al., in their literature review for ML in predictive mainte-
nance, identify random forest specifically as the most extensively applied ML technique
for predictive maintenance. Applications can be found for common industrial machinery
across most industries [55]. It should be noted that most ML classification algorithms
fall under the category of supervised learning. Thus, to train, they require labeled data
covering all failure states. This need for labeled training data can be a challenge [55]. To
address the challenge, recent research has been on incorporating unsupervised learning
neural networks in the creation of predictive maintenance models [56,57]. These do not
require labeled data to learn, although they typically require significantly larger sets of
training data than classical algorithms.

4.2.3. Production Scheduling and In- and Outbound Logistics Optimization

The sequencing of manufacturing tasks, as well as in- and outbound logistics, can
quickly become a complicated endeavor as the manufacturing system grows in complexity.
Optimizing schedules and logistics to minimize E&R consumption is an even more complex
task. Additionally, when unexpected changes occur in the system, real-time rescheduling is
so complex that many companies just reschedule periodically rather than reactively [58].

Production scheduling problems are NP-hard, meaning it is infeasible to use optimal
solvers for larger real-world applications. Metaheuristic approaches to find close to optimal
solutions in polynomial time have been shown to be an effective solution in recent years [59].
Metaheuristic algorithms generate large amounts of data in the optimization process. The
classification capabilities of ML algorithms can help analyze this data to extract useful
knowledge, improving the performance of metaheuristics, in terms of convergence speed,
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solution quality, and robustness, as Talbi explains [60]. In their literature review, Takeda
Berger et al. find that artificial neural networks, regression, tree-based models, and genetic
algorithms are the most commonly applied ML algorithms for scheduling optimization [61].

Additionally, to improved optimization, ML also enables improved forecasting. Being
able to forecast lead times or customer demand can allow manufacturers to better plan
their inbound and outbound logistics, as well as their production schedule. Knoll et al.
highlight the challenge frequently changing supply chain information poses to efficiently
planning inbound logistics processes. They propose a method combining ML models with
business knowledge of inbound logistics to create predictions [62].

4.2.4. Comparison with Existing Studies

As mentioned in Section 1.3, Current State of Research, the authors found no studies
that make a systematic evaluation on the applicability of ML for E&R efficient manufac-
turing. Thus, a direct comparison of the results of this study with previous studies is
difficult. The one study the authors found, which at least classifies common ML appli-
cations in sustainable manufacturing, is that of Jamwal et al. in their literature review
of ML applications for sustainable manufacturing. Jamwal et al. identify the following
application areas of ML: job shop/energy aware scheduling, product quality prediction,
process parameters optimization, and condition monitoring/tool life prediction. These
align well with the highest scoring levers defined by the authors of this study. The main
differences in results are the high granularity used in this study to differentiate different
application areas (e.g., planning and scheduling is separated into production scheduling,
shop floor layout, and logistics).

5. Conclusions
5.1. Summary

To recapitulate, this work attempts to systematically differentiate the situations in
which ML is an appropriate method to improve manufacturing E&R efficiency. This is
achieved by first defining a list of 17 generic levers for improving manufacturing E&R
efficiency, including the domains of product design, the manufacturing system, logistics
within the plant and at its boundaries, maintenance activities, the manufacturing facility,
and recycling. Next, a generic list of six manufacturing data scenarios for which ML is es-
pecially well suited as the method of choice for analyzing the data is created. The scenarios
consist of those in which data have high dimensionality, data are highly dynamic, complex
non-linear relationships exist within the system, process and parameter correlations need to
be determined but not explained, data are difficult to capture, and data need to be analyzed
without external instructions. Next, each E&R efficiency lever is critically examined as to
whether any of the pro-ML scenarios could typically be expected when applying the lever.
This results in a score of ML suitability for each lever. The three levers shown to be the
strongest contenders for applying ML to are lever 3—operation parameters optimization,
lever 4—input materials optimization, and lever 13—intelligent maintenance.

5.2. Implications of the Study

Upon review, the authors conclude that the results of this study have made a contri-
bution to the field of sustainable manufacturing by addressing the previously mentioned
research gap of a lack of studies on when ML is and is not a suitable approach for E&R
efficient manufacturing. Using a systematic approach, this paper is the first of its kind to
derive an industry generic overview of the most common manufacturing E&R efficiency
levers, differentiated by which ones ML is better suited for. This provides a scientifically
founded frame within which further investigations into the applicability of ML and other
analyses for various E&R efficient manufacturing approaches can be made in a structured
manner. Additionally, the matrix method used in this paper could also be applied for
assessing the applicability of ML in other domains. From a practical perspective, the results
of the study can be used by manufacturing practitioners and researchers in data-driven
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energy efficiency projects, firstly, to gain an overview of different potential levers and,
secondly, to make an initial assessment if ML could be an appropriate approach for the
levers of interest.

5.3. Limitations

A limitation of this work is that it takes place on a relatively high conceptual level;
generalizations are made in order to achieve generic and more broadly applicable insights
regarding the question of when to use ML for manufacturing E&R efficiency. Thus, there
are surely further, albeit less common, levers for E&R efficiency, as well as manufacturing
data scenarios for which ML is well suited. Increasing the coverage of this study as such,
however, goes beyond its scope. A further limitation is in the evaluation; to be completely
thorough, a full-scale literature review could be conducted for each lever to obtain an
exhaustive view of the studies confirming the applicability of ML for each lever. The
result would provide more empirical evidence for the validity of the conclusions made in
Table 1, which, while also based on past studies, did not come from an exhaustive list of the
literature. Going beyond the literature, experiments could be performed to systematically
test each lever by comparing ML and non-ML approaches for the same scenario. The
authors plan to perform this for selected scenarios in the future.

5.4. Future Research Activities

During the course of this work, the authors have identified several related areas of
further research, two of which they have started pursuing.

Firstly, the topic of comparing the trade-off between effort and return for different analysis
methods. Now that levers for which ML is best suited have been identified, the next step
that the authors have started is to compare the performance of ML with non-ML methods.
Specifically, the trade-off between using different approaches is being investigated. For
example, when optimizing production parameters to improve E&R efficiency, it is likely
that ML methods achieve the best efficiency gains. However, it is possible that under
certain conditions, non-ML methods could achieve close to as good results, while requiring
less data science expertise and analysis effort. This will require investigating what the
effort or barriers to ML are compared to non-ML methods and compare this with the added
value ML provides in the pro-ML E&R efficiency scenarios identified in this work. The
authors plan to investigate this empirically for the above-identified levers, for various
manufacturing scenarios with real-world data.

Secondly, the topic of determining the amount and type of required data for analysis. A
common response in data science projects to the question “how much data are needed?”
is either an ambiguous “it depends . . . ” or a simple “the more the better”. While these
responses are true, they are vague and not actionable. The authors have also been asked
this question many times by companies, especially those with limited experience in ML,
and have had to provide the same unsatisfying response as above. Thus, a future research
goal of the authors is to derive generalizable insights on which data and how much data
are needed for gaining insights in certain E&R efficiency scenarios. The authors plan to
complete this in the course of the investigation described above by varying the amount of
data made available to the analysis and seeing which situations and which analysis methods
and how much data are needed to obtain usable results. This is related to the previous
research topic, since one of the most common barriers to ML is insufficient data. Thus,
answering this question will aid in the assessment of the required effort when weighing
whether ML methods are better suited than non-ML methods.

Thirdly, this work so far has focused on identifying when ML is well suited. For the
situations in which it is not well suited, the logical question follows: specifically, what
non-ML analysis is better suited? Arguably, even more so than for ML analyses, there are a
wide variety of non-ML analyses available for improving manufacturing E&R efficiency.
Practitioners would be greatly helped if guidance could be provided here.
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Appendix A

Table A1. Overview of the literature used to determine the ML applicability score for each E&R lever.

Manufacturing
Domain

ID
Energy and Resource (E&R)

Efficiency Lever

Conditions for
Machine Learning Literature Used

for Count
Count

1 E&R efficient design (optimized for
production, use, or end-of-life) 3 [10,63–65]

Product Design
2

Integrated product life cycle data
management for strategic E&R
decision support

0

3 Operation parameters optimization to
improve process E&R efficiency 5 [53,63]

4 Input materials optimization (use less
materials or use sustainable materials) 5 [46,52]

5 E&R consumption monitoring 1 [54,66]

6 Waste heat utilization/energy
recovery systems 0

7 Quality control for wasted material and scrap 4 [39,54,67,68]

8 Energy product tags for holistic value chain
improvements 1 [69]

Manufacturing
Systems

9 Advanced automation and controls for
process precision and stability 1 [70]

10 E&R efficient production scheduling 4 [61,71]

11 Efficient shop floor layout to minimize
transport and waiting 1 [72]

Logistics

12
In- and outbound logistics timing to optimize
E&R efficiency of production and
product delivery

4 [73]

13 Intelligent maintenance to avoid downtime
and extend equipment lifetime 6 [54,55,74]

Maintenance
14 Remote services to avoid travel 0
15 Renewable energy sources 1 [75]
16 Optimized technical building services (TBS) 0Plant Energy and

Resource Mgmt.
17 Capture and controlled disposal of waste,

hazardous substances, and emissions 0

Recycling 18 Remanufacturing 0
Darker color indicates a higher count.
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