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Abstract: This research aims to apply optimization techniques using atom search optimization (ASO),
genetic programming (GP), and wind-driven optimization (WDO) with a reservoir simulation model
for searching optimal rule curves of a multi-reservoir system, using the objective function with
the minimum average quantity of release excess water. The multi-reservoir system consisted of
five reservoirs managed by a single reservoir that caused severe problems in Sakon Nakhon province,
Thailand, which was hit by floods in 2017. These included Huai Nam Bo Reservoir, the Upper Huai
Sai-1 Reservoir, the Upper Huai Sai-2 Reservoir, the Upper Huai Sai-3 Reservoir, and the Huai Sai
Khamin Reservoir. In this study, the monthly reservoir rule curves, the average monthly inflow to the
reservoirs during 2005–2020, the water demand of the reservoirs, hydrological data, and physical data
of the reservoirs were considered. In addition, the performance of the newly obtained rule curves was
evaluated by comparing the operation with a single reservoir and the operation with a multi-reservoir
network. The results showed situations of water shortage and water in terms of frequency, duration,
average water, and maximum water. The newly obtained rule curves from the multi-reservoir system
case showed an average water excess of 43.722 MCM/year, which was less than the optimal curves
from the single reservoir case, where the average water excess was 45.562 MCM/year. An analysis
of the downstream reservoir of the multi-reservoir system, which diverts water from the upstream
reservoirs, was performed. The results showed that the new optimal rule curves of ASO, GP, and
WDO operated as a multi-reservoir system performed better than when operated as a single reservoir.
Therefore, this research is suitable for sustainable water management without construction.

Keywords: multi-reservoir system; reservoir rule curves; atom search optimization; genetic
programming; wind-driven optimization

1. Introduction

Water management is a process for ensuring that sufficient water resources are avail-
able for efficient and equitable allocation and use of water for various purposes, and
includes addressing both quantity and quality issues [1,2]. As a result, water management
tools have been invented and developed. There are two approaches; to use the structure
or not to use it. Management tools using the structure method involve reserve reservoirs,
irrigation weirs, water diversion tunnels, ponds in the fields and gardens, etc. Management
tools, that involve not using structures include the application of computer programs for
decision support systems for planning and analyzing consumer water allocation data,
including flood and drought data [3,4]. Reservoir management is currently an important
part of water resource management in Thailand. Reservoirs are classified based on their
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intended use [5]. From one point of view, reservoirs can be classified into two categories:
single-purpose reservoirs and multipurpose reservoirs [6–8]. Reservoir classification based
on physical or management characteristics of the watershed is also possible. Single reser-
voir and multi-reservoir systems are the two types of reservoir systems that exist [9,10].
However, there are still difficulties because of the ongoing shifts in these temporal patterns
and the quantity of water required. The reservoir operation rules must be revised and the
water release policy must be adjusted in light of the water demand patterns to ensure the
sustainable functioning of water released from a water system’s dams and reservoirs [11,12],
and under climate change [13].

Reservoir operation rules are thus a crucial instrument for effective reservoir manage-
ment and provide increased confidence in water release decisions [14–16]. There is a risk of
reservoir failure, particularly during reservoir critical times, due to both excess water over-
flow and a lack of water supply to meet demand, resulting in water shortages. As a result,
guidelines are required to ensure that the reservoir operates as intended. Most reservoir
operating rules are in the form of rule curves. This consists of an Upper Rule Curve (URC)
and a Lower Rule Curve (LRC), which must control the water level and release the water
under the upper and lower boundaries during various time periods. They are extracted
using a combination of system simulation and optimization techniques [17–19]. Reservoir
operation is a critical component that must be designed during the project planning stage.
In terms of a multi-reservoir system operation, a multi-reservoir system’s joint reservoir
operation is more advantageous than operating a single reservoir by reducing the amount
of uncontrolled outflow from the system [20,21].

Optimization techniques, such as linear programming, non-linear programming, and
dynamic programming, are widely used in the field of water resource engineering to
solve problems and predictions. Currently, there are many applications of optimization
techniques to find the optimal rule curves such as dynamic programming and the other
optimization techniques derived from evolutionary theory [22–24]. They are effective tech-
niques to find solutions such as genetic algorithm [19,25], Flower Pollination Algorithm [26],
Tabu search [27,28], Honey-Bee Mating Optimization [29], Harris Hawks Optimization [30],
where researchers have applied these techniques in their searches for finding optimal
reservoir rule curves.

Nowadays, one of the alternative optimization techniques that can be adapted to find
appropriate value is a wind-driven optimization (WDO) technique. WDO is an evolution-
ary adaptive of the air parcel in the atmosphere, finding the best pressure to balance the
atmosphere [31]. This technique is a highly effective technique and is appropriate for search-
ing for optimal reservoir rule curves. Recently, genetic programming (GP) is an alternative
technique for the application of a variety of engineering. The numerical problem-solving
used GP for resizing the structure in order to find the optimal cross-section and the connec-
tion of the joints to achieve the minimum weight [32]. However, it is not commonly used
to find the optimal rule curves. Hence, it is an interesting technique that is introduced to
apply to a reservoir simulation model for solving rule curves optimization problems.

Another effective technique for finding optimal solutions is the atom search optimiza-
tion (ASO) technique. ASO is a heuristic algorithm that is inspired by basic molecular
dynamics. Based on the literature review conducted by the authors, the performance of
ASO has not been evaluated for solving reservoir operation problems. The ASO imitates
atom movement governed by reaction forces. Later, tests with various comparison func-
tions were run on hydrogeological parameter estimation solutions to verify qualitative and
quantitative validity. The findings demonstrate that ASO outperforms both traditional
and novel algorithms and which can be accounted as an alternative approach for solving
various engineering problems [33]. ASO has also been applied in electronic engineering
with the objective of improving ASO’s ability by combining it with other algorithms in
a hybrid method [34–37]. However, this method is not widely used, but it is another one
that quickly and efficiently converges on an answer that can be used to find reservoir
rule curves.
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Recent reservoir rule curve improvement studies are frequently carried out as single
reservoir management studies involving large-sized reservoirs with historical data span-
ning several years. However, it is currently more difficult to construct a reservoir for use as
a water management tool because of rules, laws, or permission to work on the construction
site [38]. As a result, certain problems were solved by constructing a network reservoir by
connecting several small reservoirs in the same sub-basin. If the multi-reservoir system is
managed by a single reservoir management method, this will cause the downstream reser-
voir to suffer from water shortage when the upper reservoir does not release water. If the
upstream reservoir drains too much water downstream, it will overflow the lower reservoir.
One example of a multi-reservoir system managed by a single reservoir causing severe
problems is the Sakon Nakhon province, Thailand which experienced flooding in 2017 [39].
This was due to the amount of water overflowing from the upper multi-reservoir systems.
It flowed into the Huai Sai Kamin reservoir situated downstream of the multi-reservoir
system, resulting in the being unable to drain the floodwaters in time, water overflowed
onto the soil dam, causing dam damage and flooding. Therefore, new techniques must be
studied in order to manage the multi-reservoir systems to reduce excess water flow.

The objective of this research is to examine optimal water management strategies. To
achieve optimal multi-reservoir system rule curves, the atom search optimization (ASO),
genetic programming (GP), and wind-driven optimization (WDO) are coupled to a reservoir
simulation model. The objective function of the optimization problem is designed to
minimize the average value of the excess released water, over the simulation period.
Following that, the efficiency of the achieved rule curves of the multi-reservoir system
is evaluated.

2. Materials and Methods
2.1. Study Area and Data Collection

A multi-reservoir system in the Nam Oon sub-basin of the Mekong River Basin, Sakon
Nakhon Province, Thailand is considered as the case study. The topography of the study
area is shown in Figure 1. The schematic diagram of the five-reservoir system is shown in
Figure 2 including the Huai Nam Bo reservoir, the Upper Huai Sai-1 reservoir, the Upper
Huai Sai-2 reservoir, the Upper Huai Sai-3 reservoir, and the Huai Sai Kamin reservoir. The
details of the physical characteristics of the reservoirs are shown in Table 1 consists of a type
of dam, the first year of operation, the catchment area, the height from the foundation,
the crest length, the normal storage capacity, the irrigation area, the spillway maximum
discharge capacity and the average annual inflow.

Table 1. The Physical Characteristics of the System’s Reservoirs.

Characteristics Huai Nam Bo Upper Huai Sai-1 Upper Huai Sai-2 Upper Huai Sai-3 Huai Sai Kamin

Type of dam Earth dam Earth dam Earth dam Earth dam Earth dam

First year of operation 1964 1991 1986 1985 1956

Catchment area (km2) 9.87 6.63 5.6 0.6 29.00

Height from foundation (m) 17 13.5 12.9 8 8.30

Crest length (m) 950 575 690 450 1300

Normal storage capacity (MCM) 2.2 2.1 2.1 0.21 3.18

Irrigation area (km2) 4.8 6.4 6.08 1.12 6.40

Spillway discharge capacity (m3/s) 15 25 21.3 1.9 85.50

Average annual inflow (MCM) 9.04 2.38 1.54 0.40 45.77
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In this study, the meteorological data including the average monthly rainfall, the
effective rainfall, the monthly evaporation, were continuously measured by the Thai
Meteorlogical Department (TMD). The data on irrigation water requirements and the
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average monthly inflows into the multi-reservoir system, the data from the Royal Irrigation
Department (RID) is shown in Table 2, a period of 16 years from 2005 to 2020 was selected
as the baseline period.

Table 2. Average monthly inflows into the Multi-Reservoir System (2005 to 2020).

Reservoir
Average Monthly Inflow (MCM/Month)

January February March April May June July August September October November December

Huai Nam
Bo 0.130 0.128 0.215 0.151 0.282 1.008 1.777 1.643 1.857 1.452 0.266 0.137

Upper
Huaisai-1 0.044 0.047 0.052 0.047 0.147 0.250 0.360 0.425 0.479 0.408 0.074 0.051

Upper
Huaisai-2 0.087 0.038 0.045 0.038 0.086 0.167 0.315 0.286 0.197 0.159 0.083 0.043

Upper
Huaisai-3 0.002 0.002 0.004 0.006 0.075 0.124 0.055 0.070 0.060 0.182 0.008 0.005

Huai Sai
Kamin 0.878 0.683 0.779 0.374 0.555 2.415 8.161 11.654 12.053 6.321 1.401 0.499

2.2. The Proposed Computational Approach

Generally, a reservoir system comprises available water that flows into the reservoir
and a single or multiple purposes downstream the reservoir which should be supplied.
The reservoirs are usually operated under water usage criteria and reservoir rule curves
with weekly, monthly, or annual data for long-term performance. The reservoir rule curves
have been found to offer the most equitable solution to all operational problems. In this
study, a modified reservoir operation model is constructed on the concept of water balance,
and it can be used to simulate reservoir operation effectively.

This conceptual approach is extended for multi-reservoir systems with more com-
plexities. The reservoir operation policies are defined based on the monthly rule curves of
individual reservoirs and the principles of the water balance equation embedded within
the reservoir simulation model. Meanwhile, the single reservoirs are operated under the
standard operating policy [13,27] as expressed in Equation (1).

Wν,τ = Sν,τ + Qν,τ − Rν,τ − Eτ (1)

where Wν,τ is the available water during year υ and period τ (τ = 1 to 12, representing
January to December); Sν,τ is the stored water at the end of month τ during year υ; Qν,τ is
monthly reservoir inflow during year υ and period τ; Rν,τ is the released water from the
reservoir during year υ and period τ; and Eτ is the average value of evaporation loss.

After operation for all months along the considered inflow period, all monthly releases
of water from the reservoir are used to calculate the objective function in the searching
procedure. Results of each objective function are recorded and used in the optimization
(i.e., ASO, GP, and WDO) models until satisfying the stopping criteria and so, the optimal
rule curves are obtained as the final results. The detail of the objective function calculation
is described in the next section.

2.3. Atom Search Optimization Algorithm for Finding Operation Rule Curves

The ASO was created and coupled to the reservoir simulation model. The ASO was
developed using the same principles as the previously studied. The procedure started
by creating an initial population of rule curves (X), boundary search, objective function,
and stopping criteria. Then the population of initial rule curves were sent to the reservoir
simulation model one by one, for operating the reservoir by considering input data and
physical information of the reservoir. The time series of monthly releases were calculated
using initial rule curves along the simulation period. Then, all monthly releases were
used to calculate the objective function and to evaluate the set of initial rule curves for
accepting the first iteration. Next, the newly accepted rule curves were used to replace the
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initial population. This procedure was repeated until the newly accepted rule curves were
appropriate and the stopping criteria were satisfied as shown in Figure 3.
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The minimum average quantity of excess released water per year (U) is used as the
objective function of the optimization problem subject to the constraints on the simulation
model, where water must be allocated to suit the water needs and not cause water shortages.
These values were then taken as the values of the reservoir rule curves in the simulation
study model and calculated monthly water discharge volumes in this the rule curves as in
the following:

Min U (Xi) =

(
1
n

n

∑
v=1

Spv

)
(2)

if Rτ > Dτ ; Then Spv = ∑12
τ=1(Rτ − Dτ) Else Spv = 0 (3)

where n is the maximum number of simulated years, Dτ is the water demand of month τ,
Spv is the quantity of excess released water during years υ (a year, in which released water
is higher than the water demand), and i is the iteration number.
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2.4. Genetic Programming for Finding Operation Rule Curves

The process of GP starts with a random initial population of a computer program.
An individual program present in the population refers to a parse tree, which is generated
by the combination of its functions (nodes) and terminals (leaves) that are defined in
a function set and terminal set, appropriate to the problem, respectively. A function set
may consist of basic arithmetic operators, mathematical functions, conditional operators,
Boolean operators, iterative functions and any user-defined functions or operators, while
a terminal set contains the arguments for the functions. Once the initial population has been
created, the next step is repeatedly replacing the current population with a new population
(or new generation) by means of applying genetic operators (reproduction, crossover and
mutation) probabilistically until the best fitness of the population has reached the desired
level, or the maximum number of generations has been reached. The genetic operators
applied in a GP are the basic GA operators. Reproduction is the process of copying the
selected individual program to the new population. The crossover operation creates a new
offspring program for the new population (see Figure 4).
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2.5. Wind-Driven Optimization for Finding Operation Rule Curves

The proposed approach to connect WDO optimization algorithm with the reservoir
simulation model is presented as follows: the WDO starts with a set of initial population
{X1, X2, ..., Xn} that is created randomly within the feasible space. The feasible space is
assumed between the dead storage capacity and the normal storage water level of the
considered reservoir. There are 24 decision variables. For this study, each decision variable
represents the monthly rule curves in the reservoirs, which are defined as the upper bound
and the lower bound (rule curves variables for both upper and lower) for each reservoir.
The feasible solution of the iteration is represented as Xi = [xi1, xi2, ..., xi24]. The application
of WDO and reservoir simulation models for searching the rule curves is described in
Figure 5 as a computational flowchart.
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2.6. Rule Curve Performance Assessment

Various operating scenarios were simulated to evaluate the performance of the ob-
tained rule curves. As the amount of inflows to the considered system is much greater than
the storage capacity, minimization of the excess releases is so important to the system man-
agers. Therefore, the performance of the operation rule curves was determined from the
excess water content of the rule curves comparing a single reservoir and a multi-reservoir
system. The minimum average overflow forms the objective function and was separately
considered as follows.

1. The performance of the proposed model was evaluated with historical inflow data
for 2005–2020 and monthly synthetic inflow data across 1000 incident sets with the
standard operating rule of release criteria.

2. A comparison of the performance of the rule curve obtained by the ASO with the
current rule curves, genetic programming (GP) and wind-driven optimization (WDO)
using the least mean excess water content.

3. The water situation when considering the amount of water discharged from the
Upper Huai Sai-1 reservoir, the Upper Huai Sai-2 reservoir and the Upper Huai Sai-3
reservoir when combined flows are limited by the capacity of the Huai Sai Weir (that
can drain the maximum 3.5 MCM/months) before flowing into the Huai Sai Kamin
reservoir was evaluated.

3. Results
3.1. The Multi-Reservoir Rule Curves Search

The ASO, GP, and WDO were used to find the rule curves of the multi-reservoir
system; the optimal rule curves were obtained. These obtained rule curves were plotted in
order to compare them with the existing rule curves of the system for both single-reservoir
and multi-reservoir system cases. LRC-existing for the lower rule curve; URC-existing for
the upper rule curve; S-LRC-ASO, S-LRC-GP, and S-LRC-WDO for the lower rule curve
of single reservoir consideration using ASO, GP, and WDO, respectively; S-URC-ASO,
S-URC-GP, and S-URC-WDO for the upper rule curve of single reservoir consideration
using ASO, GP, and WDO, respectively; M-LRC-ASO, M-LRC-GP, and M-LRC-WDO for the
lower rule curve of multi-reservoir consideration using ASO, GP, and WDO, respectively;
M-URC-ASO, M-URC-GP, and M-URC-WDO for the upper rule curve of multi-reservoir
consideration using ASO, GP, and WDO, respectively. Figure 6 depicts the Huai Sai Kamin
reservoir rule curve results.
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The proposed ASO model is another search optima technique, and the results were
near optimality and were close to the results of the other search techniques based on the
same condition according to the previous studies [40,41]. However, the efficiency of each
technique has been investigated in many studies.

3.2. Assessment of the Amount of Inflow into the Huai Sai Kamin Reservoir Obtained from the
Newly Obtained Rule Curves

Assessment of the amount of water flowing into the Huai Sai Kamin reservoir (down-
stream of the system) from the drainage of the Upper Huai Sai-1 reservoir, the Upper Huai
Sai-2 reservoir, and the Upper Huai Sai-3 reservoir found that the amount of water dis-
charged from using the rule curves of the water data in 2017, resulted in an overflow in the
area of the Huai Sai Weir as shown in Figure 2. This is consistent with the actual situation
in 2017 as shown in Table 3 and Figure 7. It can be seen that the RC-existing rule curves ex-
ceeded the stream capacity in August and September. The amount of water flowing through
the Huai Sai Weir was 4.175 MCM/month (modeled) and 4.741 MCM/month (actual).



Sustainability 2022, 14, 16205 10 of 14

The S-RC-ASO (Single Reservoir rule curves created by ASO) rule curves exceeded stream
capacity in August and September. The amount of water flowing through the Huai Sai Weir
was 3.835 MCM/month (modeled) and 4.716 MCM/month (actual). The S-RC-GP (Single
Reservoir rule curves created by GP) rule curve exceeded stream capacity in August and
September. The amount of water flowing through the Huai Sai weir was 3.759 MCM/month
(modeled) and 4.866 MCM/month (actual). The S-RC-WDO (Single Reservoir rule curves
created by WDO) rule curves exceeded stream capacity in August and September. The
amount of water flowing through the Huai Sai weir was 3.840 MCM/month (modeled) and
4.816 MCM/month (actual). The rule curves M-RC-ASO (Muti-Reservoir rule curves cre-
ated by ASO) exceeded stream capacity in September. The amount of water flowing through
the Huai Sai weir was 4.726 MCM/month. The rule curves M-RC-GP (Muti-Reservoir rule
curves created by GP) exceeded the dam capacity in September. The amount of water flow-
ing through the Huai Sai weir was 4.751 MCM/month and the rule curves M-RC-WDO
(Muti-Reservoir rule curves created by WDO) exceeded the dam capacity in September.
The amount of water flowing through the Huai Sai weir was 4.732 MCM/month.

Table 3. The Amount of Inflow into The Huai Sai Kamin Reservoir from Search Techniques with
ASO, GP, and WDO between Single Reservoir Case and Multi-Reservoir System Case.

Rule Curves
Volume of Inflow through Huai Sai Weir (MCM/Month)

January February March April May June July August September October November December

Single
Reservoir

RC-
Existing 0.000 0.000 0.392 0.626 0.959 1.962 2.668 4.175 4.741 1.342 0.559 0.223

S-RC-
ASO 0.005 0.004 0.238 0.383 0.585 1.862 2.806 3.835 4.716 1.332 0.509 0.135

S-RC-
GP 0.005 0.000 0.238 0.395 0.747 1.712 2.766 3.759 4.866 1.202 0.559 0.135

S-RC-
WDO 0.005 0.004 0.238 0.380 0.590 1.860 2.786 3.840 4.816 1.232 0.539 0.135

Multi
Reservoir

M-RC-
ASO 0.005 0.000 0.238 0.383 0.581 1.192 2.026 3.409 4.726 1.572 0.619 0.135

M-RC-
GP 0.005 0.000 0.238 0.395 0.581 1.192 2.066 3.445 4.751 1.512 0.579 0.135

M-RC-
WDO 0.005 0.000 0.238 0.385 0.581 1.162 2.03 3.412 4.732 1.552 0.609 0.135
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In summary, in situations of the total overflow flowing through the Huai Sai Weir using
the M-RC-ASO, M-RC-GP, and M-RC-WDO rule curves, the reservoir network model was
considered by the objective function of the minimum average overflow. The time interval
and total overflow flowing through the Huai Sai weir can be reduced more than in the RC-
existing rule curves and the rule curves considering single reservoir S-RC-ASO, S-RC-GP,
and S-RC-WDO. They can reduce overflow times better than single reservoir considerations.
It may be concluded that the ASO approach, like the GP and WDO procedures, is useful in
finding networked reservoir rule curves.

3.3. Performance of Optimal Rule Curves in Monthly Historical and Synthetic Inflow Data across
1000 Incident Sets

The evaluation of the performance of the rule curves of the Huai Sai Kamin reservoir,
which is the reservoir located downstream of the multi-reservoir system, was based on
the development with ASO, GP, and WDO, both in the single reservoir case and the multi-
reservoir system cases. The results of evaluating the efficiency of the rule curves in the
case of using monthly historical inflow data are shown in Table 4. It was found that the
efficiency of the rule curves of the Huai Sai Kamin reservoir, considered as a single reservoir
using ASO (S-RC-ASO), GP (S-RC-GP) and WDO (S-RC-WDO), had average excess water
of 45.602 MCM/year 45.562 MCM/year and 45.588 MCM/year, respectively, which is
less than the RC-existing rule curve with average excess water of 45.788 MCM/year. The
efficiency of the rule curves of the Huai Sai Kamin reservoir, which was considered a multi-
reservoir system model using ASO (M-RC-ASO), GP (M-RC-GP), and WDO (S-RC-WDO),
showed that the rule curves M-RC-ASO, M-RC-GP, and M-RC-WDO were found. The
average excess water was 43.828 MCM/year, 43.722 MCM/year, and 43.822 MCM/year,
respectively, which was less excess water than the original rule curves and the rule curves
that were considered as a single reservoir with an average of 4.28–4.51%.

Table 4. Situations of Excess Release of The Huai Sai Kamin Reservoir Considering Monthly Historical
Data between Single Reservoir Case and Multi-Reservoir System Case.

Criteria for
Consideration Rule Curves

Frequency Magnitude of Excess Release Water
(MCM/Year) Duration (Year)

(Times/Year) Average Maximum Average Maximum

Single
Reservoir

RC-existing 1 45.788 90.945 16 16
S-RC-ASO 1 45.602 90.550 16 16
S-RC-GP 1 45.562 90.408 16 16

S-RC-WDO 1 45.588 90.502 16 16

Multi Reservoir

RC-existing 1 45.788 90.945 16 16
M-RC-ASO 1 43.828 88.345 16 16
M-RC-GP 1 43.722 88.794 16 16

M-RC-WDO 1 43.822 88.455 16 16

The evaluation of the performance of the rule curves of the Huai Sai Kamin reservoir with
monthly synthetic inflow data is presented in Table 5. It was found that the efficiency of the
rule curves of the Huai Sai Kamin reservoir considered as a single reservoir using ASO (S-RC-
ASO), GP (S-RC-GP), and WDO (S-RC-WDO) yielded results consistent with the assessment
in Section 3.2. The S-RC-ASO, S-RC-GP, and S-RC-WDO rule curves had average excess water
of 45.536 ± 3.869 MCM/year, 45.495 ± 3.868 MCM/year, and 45.533 ± 3.869 MCM/year,
respectively, which were less than the RC-existing rule curves with an average overflow
of 45.639 ± 3.769 MCM/year. Examining the efficiency of the rule curves of the Huai Sai
Kamin reservoir considering the multi-reservoir system model, revealed that the rule curves
M-RC-ASO, M-RC-GP, and M-RC-WDO also showed results consistent with the assessment
in 3.2, i.e., the average excess water was 43.833 ± 3.697 MCM/year, 43.673±3.798 MCM/year,
and 43.734 ± 3.705 MCM/year, respectively.
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Table 5. Situations of Excess Release of The Huai Sai Kamin Reservoir Considering Monthly Synthetic
Inflow between Single Reservoir Case and Multi-Reservoir System Case.

Criteria for
Consideration Rule Curves

Frequency Magnitude of Excess Release Water
(MCM/Year) Duration (Year)

(Times/Year) Average Maximum Average Maximum

Single Reservoir

RC-existing µ 1 45.639 75.388 16 16
σ 0 3.769 10.006 0 0

S-RC-ASO
µ 1 45.536 74.834 16 16
σ 0 3.869 9.569 0 0

S-RC-GP
µ 1 45.495 74.793 16 16
σ 0 3.868 9.569 0 0

S-RC-WDO
µ 1 45.533 74.828 16 16
σ 0 3.869 9.569 0 0

Multi Reservoir

RC-existing µ 1 45.639 75.388 16 16
σ 0 3.769 10.006 0 0

M-RC-ASO
µ 1 43.833 72.389 16 16
σ 0 3.697 9.286 0 0

M-RC-GP
µ 1 43.673 72.893 16 16
σ 0 3.798 9.939 0 0

M-RC-WDO
µ 1 43.734 72.445 16 16
σ 0 3.705 9.546 0 0

µ, Mean; σ, standard deviation.

The M-RC-ASO, M-RC-GP, and M-RC-WDO rule curves derived from multi-reservoir
system considerations had a good performance and are suitable for normal water events,
according to these findings. The average overflow can be reduced more effectively than
the active rule curves and the rule curves derived from a single reservoir consideration
at present.

4. Conclusions

This study applied atom search optimization (ASO), genetic programming (GP), and
wind-driven optimization (WDO) connecting with the reservoir simulation system and
the minimal average excess water per year was used as the objective function for finding
optimal rule curves of the multi-reservoir system. The optimal rule curves of the multi-
reservoir system were searched when considering a single reservoir system and when
considering the multi-reservoir system. The upper and lower rule curves of ASO were
discovered to be similar to GP and WDO methods. The results showed that the rule curves
considering the multi-reservoir system model can reduce the amount of water flowing into
the last, downstream reservoir of the Huai Sai Kamin reservoir. As a result, the overflow
of the water stream around the Huai Sai Weir from the overflow period of 2 months
for the original rule curves and the rule curves considered as a multi-reservoir system
remaining overflow period of 1 month only. It can reduce overflow times better than single
reservoir considerations.

The efficiency of the rule curves of the multi-reservoir system was also evaluated.
Efficiency was estimated using the average overflow from the Huai Sai Kamin Reservoir
downstream of the multi-reservoir system. It was found that the rule curves of the multi-
reservoir system were more effective in reducing the average overflow of the lowest
reservoirs than those of the single reservoirs. In addition, the rule curves of the multi-
reservoir system can control the overall drainage of the upper reservoir with effects that
exceed the capacity of the downstream reservoir. It can reduce overflow times better than
considering single reservoirs.
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However, there are also constructions for water management, such as the water gate,
that work as a network in the basin as well as the reservoir network, and which are used
to control water in the river for drought and flood management. There is a relationship
between the drain water of the upstream gate to the drainage rate of the downstream water
gate. The optimization technic is therefore another interesting approach to apply in river
management in the future.
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