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Abstract: Fault diagnosis and prognosis methods are the most useful tools for risk and reliability
analysis in food processing systems. Proactive diagnosis techniques such as failure mode and effect
analysis (FMEA) are important for detecting all probable failures and facilitating the risk analysis
process. However, significant uncertainties exist in the classical-FMEA when it comes to ranking the
risk priority numbers (RPNs) of failure modes. Such uncertainties may have an impact on the food
sector’s operational safety and maintenance decisions. To address these issues, this research provides
a unique FMEA framework for risk analysis within an edible oil purification facility that is based on
certain well-known intelligent models. Fuzzy inference systems (FIS), adaptive neuro-fuzzy inference
systems (ANFIS), and support vector machine (SVM) models are among those used. The findings of
the comparison of the proposed FMEA framework with the classical model revealed that intelligent
strategies were more effective in ranking the RPNs of failure modes. Based on the performance
criteria, it was discovered that the SVM algorithm classifies the failure modes more accurately and
with fewer errors., e.g., RMSE = 7.30 and MAPE = 13.19 with that of other intelligent techniques.
Hence, a sensitivity FMEA analysis based on the SVM algorithm was performed to put forward
suitable maintenance actions to upgrade the reliability and safety within food processing lines.

Keywords: fault diagnosis; risk analysis; risk priority number; support vector machine; food industry;
maintenance; sustainability; uncertainty

1. Introduction

With the increasing automation and development of smart technologies in modern
food industries, the higher guarantee of functional safety and reliability is poised to be
the major challenge towards sustainable food production [1–3]. In this context, the in-
telligent platforms provide the hardware and software solutions for process control and
safety management within many food manufacturing systems [4,5]. They attempt to rep-
resent the novel fault diagnostic and prognostic methods for risk predicting and analysis
processes [6,7]. One of the most essential parts of risk in analyzing system reliability and
safety is the risk analysis procedure [8–10]. In general, the novel methods are mainly
classified into the knowledge-based and data-driven approaches for risk and reliability
analysis and prediction under various situations [11–13].

In such circumstances, there are many types of knowledge-based approaches that refer
to fault diagnosis and risk analysis, such as fault tree analysis (FTA), hazard analysis, critical
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control points (HACCP), root cause analysis (RCA), etc. [14–16]. Among them, the failure
mode and effect analysis (FMEA) technique is widely used in numerous industries to assess
and mitigate the risk of unexpected failures [17]. Besides, it has been a well-established
procedure for upgrading the production quality and reducing the severity and occurrence
of failure using corrective tasks [18]. A complete FMEA dominated by experts’ knowledge
includes the following four main steps: identifying the failure modes, determining their
causes and effects, ranking the risk of failure modes, and finally suggesting the maintenance
activities for the high-risk failures [19]. A risk priority number (RPN) is frequently inserted
in a traditional FMEA to evaluate the risk level of a process, rank failures, and prioritize
maintenance operations [20]. The RPN value is calculated by multiplying the following
three risk parameters: occurrence (O), severity (S), and detection (D). They are ranked from
1 to 10 on a discrete ordinal scale. Ultimately, by arranging the RPNs in a descending order,
the most critical failures can be identified [21].

The classical-FMEA has been particularly effective in detecting system bottlenecks
and assessing the risk of failure modes in food production systems. They include the
possibility of having the same RPN values, failing to assess the relative importance of
risk parameters, and estimating the precise value of risk parameters incorrectly. Such
major fluctuations in the real situation may not only affect the accuracy of estimated
risks, but also the proposed maintenance and safety functions within food processing
systems [21–23]. The main objective of this study is to take such uncertainties into account,
particularly when ranking the RPNs of failure modes to supplement the current classical-
FMEA in the food sector. The key contribution is a new systematic FMEA framework
for risk analysis procedure based on certain well-known intelligent models to overcome
RPN issue classification within an edible oil purification plant. The intelligent techniques
include the fuzzy inference systems (FIS), adaptive neuro-fuzzy inference systems (ANFIS),
and support vector machine (SVM) models. The findings of the current study could help
managers to establish practical functional safety and maintenance programs in the edible
oil industry.

The remainder of this research is organized as follows: A description of the literature
linked to various types of FMEA in the food sector and its associated uncertainties in the risk
analysis process is included in the part “Literature review.” The “Research methodology”
section compares the traditional and intelligent-FMEA risk analysis methodologies to
come up with an upgraded fault diagnosis framework. The “Results and Discussion”
section contains the key comparison data of traditional and intelligent-FMEA risk analysis
approaches, as well as how to use the results to propose appropriate maintenance tasks.
Finally, the “conclusion” section is provided, along with further remarks and perspectives.

2. Literature Review

Over the years, various types of FMEA, such as process-FMEA (PFMEA), design-
FMEA (DFMEA), and total-FMEA (TFMEA) have been conducted within a wide range
of applications in food processing industries. Table 1 presents a summary review of the
applied FMEAs in the food sector. The PFMEA is known as the main practical solution
tool for analyzing various risks in food processing. For example, a PFMEA framework
was performed to recognize the main critical points and analyze the risk by determining
the RPN in the processing of potato chips. The results revealed that packaging, storage,
potato receiving, frying, and distribution were the main critical points with the highest
RPN, respectively [23]. In another study, a combined structure of PFMEA and ISO22000
was carried out on poultry slaughtering and manufacturing. In their work, the critical
failure modes with high risks were identified by determining the RPN. [24]. Following
this study, analyzing the risk of salmon processing has been conducted using PFMEA
and its conjunction with the ISO 22000. The research findings could be beneficial for
the manufacturers and their customers [25]. One of the FMEA applications is to control
the quality and safety of food products. For example, the high quality of products has
been a major challenge in the tea manufacturing industry. In this direction, a TFMEA
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model combined with the total quality management (TQM) technique was theoretically
explored [26]. Following this, a FMEA structure for risk management in the confectionery
industry has been designed to control system safety and quality [22]. In another work,
a practical safety improvement plan for dairy product manufacturing under PFMEA
analysis was suggested [27]. The results could be used by the manufacturers to produce
safer dairy products. Another practical aspect of FMEA methods is its application to
fault detection and optimization in food industries. For instance, the FMEA model was
dedicated to allowing precise identification of food safety in verified HACCP systems.
The incorporation of FMEA was verified to the procedure of the HACCP system in the
bakery industry for better food safety assurance and fault detection [28]. Furthermore,
a general structure of FMEA was suggested to detect the potential faults and their effects in
primary food processing [29].

Table 1. A summary of literature review for FMEA applications in food industries.

Ref. Year Plant/
Process

Fault Diagnosis-Based Model
Maintenance

ActivityFMEA Model Computational/
Intelligent Model

Sensitivity
Analysis

[23] 2007 Chips manufacturing plant Classical PFMEA - - -
[30] 2007 Corn curl manufacturing Classical PFMEA - - -

[25] 2008 Salmon processing
and packing Classical PFMEA - - -

[24] 2009 Poultry product processing Classical PFMEA - - -
[26] 2011 Tea processing plant Classical TFMEA - - -

[22] 2012 Confectionery
manufacturing Classical PFMEA - - -

[27] 2013 Dairy products
manufacturing Classical PFMEA - - -

[28] 2014 Bakery critical equipment Classical PFMEA - - -
[29] 2016 General study PFMEA Fuzzy set theory - -
[31] 2017 Vegetable processing PFMEA Fuzzy set theory - -

[32] 2018 Meat production
and processing PFMEA Fuzzy inference system - -

[33] 2019 General study Classical PFMEA - - -

Current study Edible oil industry PFMEA Fuzzy inference system,
ANFIS & SVM 3 3

A summary of the literature, the application of FMEAs in the food sector can be
divided into several topics such as analyzing the risks, finding the critical points, improving
the quality and safety, and selecting the maintenance activities. Despite the advantages
of classical-FMEAs in the food industry, they have been criticized for several flaws and
limitations that may affect proposed maintenance and safety decisions. The majority of
epistemic uncertainties are included in the new systematic FMEA framework to improve
the prior classical-FMEA in the food business. Intelligent approaches, on the other hand,
have been deemed a very valuable alternative to enhance the accuracy of classical-FMEA
for risk analysis under various uncertainties [34,35].

During the last few years, intelligent techniques such as support vector machine
(SVM), fuzzy inference systems (FIS) and, adaptive neuro-fuzzy inference systems (ANFIS)
have given great attention to modeling the FMEA and risk analysis processes. The FIS
model, for example, has been used in the field of FMEA due to its software programming-
based approach and its capacity to avoid cumbersome computations [19,36,37]. Currently,
a comprehensive survey on the FIS-FMEA model was conducted with various rules and
membership functions [MFs]. Based on the results, the combined MFs and model with
a 10-class of fuzzy numbers have a higher possibility to create the larger risk cluster of
failure modes [17]. Simşek and Ic [38] conducted an FMEA using a FIS model to evaluate
and eliminate potential failure modes in a ready-mixed concrete plant. Their findings
revealed that the fuzzy-rule-based system was effective in identifying and eliminating
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potential failure modes. Yucesan et al. [39] proposed a holistic FMEA approach based on a
fuzzy-based Bayesian network and the best–worst method to deal with uncertain failure
data. The proposed model might resolve the uncertainty in failure data and give a strong
probabilistic risk analysis logic to represent the dependency between failure events in a
manufacturing plant. The FUCOM and CoCoSo approaches were considered by Yousefi
et al. [40] to improve the classical-FMEA technique in an unpredictable setting. Furthermore,
Z-number theory was used to combine the ideas of reliability and uncertainty in evaluating
the weight of risk variables. In an actual case study, the Z-FUCOM-CoCoSo approach was
compared to the Fuzzy FMEA technique and a fuzzy variant of this approach. It was found
that the Z-FUCOM-CoCoSo approach could provide the most feasible separation among
failure modes when compared to traditional techniques. Rezaee et al. [41] presented a
hybrid approach based on the Linguistic FMEA, FIS, and fuzzy data envelopment model
to calculate a score for covering some RPN shortcomings and the prioritization of risks
within the chemical industry. The results demonstrated that the proposed approach was
very effective in prioritizing risks by taking uncertainty into account. In addition, to handle
the uncertainties of classical-FMEA in other literature, the hybrid perception of fuzzy
rule-based theories has been given a lot of attention [42–44].

On the other hand, the ANFIS model, with the benefits of both neural networks (NNs)
and FIS principles in a single framework, has been used to reinforce the FMEA capabilities
and manage the uncertainties in risk analysis [45–47]. For instance, an ANFIS model was
developed to improve risk management and manage the uncertainties in risk variables.
The proposed model was more convenient and efficient concerning risk management for
single and clustered station facilities in transportation systems [48]. Moreover, the SVM
algorithms constitute powerful regression and classification capabilities with that of FIS,
neural networks (NNs), or genetic algorithms (GAs). They generally suffer from the pres-
ence of multiple local minima, structure selection problems, and overfitting issues [49–51].
Meanwhile, the SVMs have been approved as validation methods for failure mode analyses,
fault detection as well as risk assessment in industrial fields [52–55].

Based on the literature, the performance comparison of such intelligent models in risk
analysis, especially in food processing systems has not been previously evaluated. Hence,
as the main motivation and innovation, we have contributed to proposing a new FMEA
framework by intelligent techniques and comparing their outcomes with the classical
model within food processing systems. In addition, given the need for monitoring the
complex processes in the food sector, the proposed framework was implemented in the
edible oil purification process. The outcomes were used to help the engineers to establish
convenient safety and maintenance programs. Therefore, the main objective of this study is
to propose a novel FMEA framework under intelligent techniques for analyzing the risks
of the edible oil purification process.

3. Materials and Methods

An improved fault diagnosis framework for risk analysis with three main steps is
shown in Figure 1. The first step includes process description such as main functions,
potential failure modes as well as failure effects for the edible oil purification process.
The main risk factors are defined in the second step using a knowledge-based approach,
and the factors are then used as the main inputs of diagnostic models such as classical and
intelligent-FMEAs. The multiplication and rule-based methods are used to determine the
interaction of risk factors. The final step is to estimate RPN and use sensitivity analysis to
investigate the impact of risk factors on RPN as well as suggest the convenient maintenance
activities for the failure modes with the highest RPN. The details of the first and second
steps are provided in the next sub-sections. The last one will be discussed in Section 4.
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Figure 1. The proposed framework of the FMEA model.

3.1. First Step: Process Description

This study focuses on an edible oil purification facility and its processes in Iran to apply
the proposed intelligent framework. Investigating the operational risk of such a process
would provide a great opportunity to achieve higher reliability and safety guarantee.
Figure 2 depicts the fundamental procedure for purifying the following two types of
edible oils: liquid and solid. The basic stages of edible oil purification are neutralization,
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decolorization, winterization, deodorization, hydrogenation, and bleaching, as illustrated
in Figure 2.
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3.1.1. Neutralization Process

A process of neutralization or alkaline purification is shown in Figure 3 in which
sodium hydroxide is used to react with free fatty acid to produce soap. To ensure the
removal of soap and liquids, the outlet oil enters into the exchanger and is heated to 80 ◦C
and then enters into a mixer where water is added to allow the soap to be completely
discharged. Finally, the oil is inserted into a dryer to completely remove its moisture
contents. The most important equipment for neutralization operations include separators,
centrifugal pumps, heaters, mixers, hydraulic-pneumatic valves, vacuum dryers, and their
attached pipes and fittings. So, the importance of their proper maintenance program for
safe operation and high reliability is inevitable.
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Figure 3. A schematic of the neutralization process: storage oil tank (1), exchanger (2), mixer (3),
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3.1.2. Discoloration Process

According to Figure 4, the color of the oil is reduced through decolorized soil and
some particles of oil-based paint are removed. The decolorized soil is dissolved in oil or
colloidal, and attractive colored particles are separated from the oil by a press. In general,
decolorization is a physical absorption activity that removes pigments and impurities from
the oil by absorption. The non-continuous [batch] system is used to decolorize the liquid
oil, which has a larger volume and stronger stirrers than the solid oil tank, and the shelf life
of the oil is much longer. After this step, the oil is transferred into the winterization process.
The most important equipment in this phase includes hydraulic-pneumatic valves, pumps,
mixing tanks, electrical systems, etc.
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Figure 4. A schematic of the discoloration process: storage oil tank (1), exchanger (2), mixer (3),
pulverizing tank (4), filtering tank (5), discoloration oil tank (6).

3.1.3. Winterize Process

During the winterizing process, the discolored oil is stored for 24 h at a relatively low
temperature, usually, 9 ◦C, to remove all possible solids that freeze the oil. These solids
include high-melting glycerides and waxes. Thereafter, the high-pressure oil is pressed into
the crystallized tanks with the help of air pressure to remove all solids from the oil, after
which the pure oil is transferred into the deodorizing process of oil by filtrate operation
Figure 5.

3.1.4. Deodorizing Process

Figure 6 shows a deodorizing process of oil in which the undesirable odor of oil is
caused by ketones, lactones as well as free fatty acids. For removing these, first, the high-
pressure oil is sprayed from the bottom into the odorless tower, which is used simultane-
ously to heat, steam, and vacuum to prevent oxidation and hydrolysis of the oil. The main
purpose is to decrease the oil acid content to the standard level. After that, the oil enters to
exchanger until it reaches a temperature of 30 to 40 ◦C. Then, turns into another exchanger
until the oil temperature finally reaches 14 or 12 ◦C.
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3.1.5. Potential Failures and Their Effects

In an edible oil purification plant in Iran, functional failures, causes, and their effects
were discovered. To survey such items, a group of FMEA experts totally between 4 to
6 members is needed [21,56,57]. In this study, we have received the knowledge and
experiences of four experts [two process engineers and two mechanical and electrical
engineers], who were related and engaged in the whole process in edible oil-producing.
So, based on the expert’s knowledge and experiences, 67 failure modes of the process
were derived. These failures are mainly caused by pumps, separators, chillers, boilers,
dryers, compressors, valves, converters, mixers, electronic circuits, pipes, filters, tanks,
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and vacuum systems. Ultimately, this obtained information was used for estimating risk
factors and RPN value.

3.2. Second Step: Knowledge-Based Approach

In this step, first, the risk parameters, e.g., S, O, and D are defined by the FMEA expert
team and then the FIS structure, ANFIS, and SVM models based on FMEA models for risk
analysis were programmed by MATLAB vR2020b (Math works Inc., Natick, MA, USA).

3.2.1. Risk Parameters Definition

The FMEA is a well-known risk analysis tool that is frequently used by RPN to assess
the risk level of a process, rate failures, and prioritize maintenance actions [20]. To calculate
the RPN value, a discrete ordinal scale of 1-10 is used to multiply three crisp values of
the risk characteristics, namely occurrence (O), severity (S), and detection (D). Finally,
the most critical failures can be found by sorting the RPNs in ascending order [21]. In the
classical-FMEA, the risk parameters can be divided into five-linguistic terms including
remote (R), low (L), moderate (M), high (H), and very high (VH). This attitude will help
the FMEA team to prioritize the failure mods and their effects [58–60]. The linguistic scale
of the risk characteristics and their fuzzy numbers in three class levels (3,5, and 10) for
the present investigation was also provided by Soltanali et al. [17] in the FIS structure.
The FMEA expert team also provided the necessary information on the severity of the
failure and the inability to detect it. Finally, the failures were prioritized using the fuzzy
risk numbers.

3.2.2. FIS Structure

FIS is a well-known intelligent risk analysis technique. Figure 7 depicts the FIS
structure. The FIS environment is built in the first step using key elements including “and
method,” “or method,” “implication method,” and “aggregate method.” The membership
function of the input variables “risk parameters” was constructed in the second stage.
The third step is to create the membership function for the output variable “FIS-RPN.”
Finally, the output control rules were defined. The Mamdani approach, which has been
frequently utilized by others to build FIS boundaries which is used to evaluate the rules in
the rule base [61]. The fuzzy logic system theory can be stated formally as Dağsuyu et al. [19]
and Kumru and Kumru [37]. X be a nonempty set. A fuzzy set A in X is characterized by
its membership function, i.e., µA : X → [0, 1] and µA (x) is interpreted as the degree of
membership of element x in the fuzzy set A for each x ∈ X. It is clear that A is completely
determined by a set of tuples A = ([u, µA [u])/u ∈ X). Frequently, A (x) is used instead of
µA (x). The family of all fuzzy sets in X is denoted by F(x). If X = ( x1, x2, . . . , xn ) is a
finite set and A is a fuzzy set in X, the following notation can be used:

A =
µ1
x1

+
µ2
x2

+ . . . +
µn
xn

(1)

where the term µi/xi, i = 1,.., n signifies that µi is the grade of membership of xi in A and
the plus sign represents the union.

In this work, we looked at many types of membership functions such as Trim, Trapmf,
Pimf, and Gaussmf, Gauss2mf, Gbellmf, Psigmf, and Dsigmf to produce fuzzy numbers
using linguistic terms and fuzzy numbers for the risk parameters in the 10-class. Experts in
the edible oil purification process determined the required rules such as 3, 5, and 10-class,
appropriately, 27, 125, and 1000 rules. We used five defuzzification algorithms in the
FIS environment’s last stage to analyze the aggregating process and calculate the explicit
RPN values.
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3.2.3. ANFIS Network

Another intelligent approach used for risk analysis was the ANFIS network. During
the training phase, it corrects the settings of each node to find the rules regulating the
interactions between the input and output [62]. A fuzzify layer (first layer), a product layer
(second layer), a normalized layer (third layer), a defuzzifier layer (fourth layer), and a
total output layer (fifth layer) make up AN-FIS, as shown in Figure 8.
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If three membership functions are assumed for three risk inputs S, O and D then the
ANFIS is called first-order TSK. The ith rule is given as:

Rule i: If (S is A i), (O is B i) and (D is C i) then (yi = piS + piO + piD + ri), i = 1, 2, 3, . . . , n (2)

where n is the number of rules and ri, qi, and pi are parameters whose optimum values are
determined in the training phase. In the first layer, the membership degree of membership
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function (µ) is calculated for the linguistic variables Ai, Bi, and Ci (µAi(S), µBi(O), µCi(D)).
In the present study, the Gaussian membership function for the variables Ai, Bi, and Ci was
used. For example, for Ai we have:

µAi(S) = exp

(
−1

2

(
S− ci

ai

)2
)

(3)

where ai and ci are the membership function’s form-determining parameters. During the
training phase, their optimum levels were adjusted. The product layer is the second layer,
and its output can be calculated as follows:

cwi = µAi(S)µBi(O) µCi(D) (4)

The normalized layer is the third layer, and it calculates the ratio of each weight to the
total weight as follows:

wi =
wi

n
∑

i=1
wi

(5)

The fourth layer contains adaptive nodes, whose output may be calculated using
following equation, where wi is the ith rule’s normalized firing strength.

wiyi = wi(piS + piO + piD + ri) (6)

The output layer (fifth layer) adds up all received signals and outputs them as the
output compared to their corresponding input:

y =
n

∑
i=1

wiyi (7)

3.2.4. SVM Algorithm

In addition, the feasibility of using an SVM algorithm for risk analysis was investigated
in this work (Figure 9). This model is founded on statistical learning theory and employs
supervised learning techniques such as neural networks. The model’s suppression of the
over-learning problem is one of its features. It seeks to find a function, f(x), for the training
set with the largest allowable bias, so that higher biases are made undesirable [63]:

f (x) =
N

∑
i=1

(αi − α∗i )K(xi, x) + b (8)

where αi and α∗i are the Lagrange multipliers, and K(xi, x) is the kernel function. In this
work, we evaluated the Gaussian kernel function as follows:

K(xi, x) = x′i x (9)

K(xi, x) =
(
1 + x′i x

)p, p = 2, 3 (10)

K(xi, x) = exp
(
−γ|xi − x|2

)
(11)

Two essential parameters in the SVM algorithm are the regularization parameter and
the size of the error-insensitive zone (ε), both of which are typically determined using
tri-al-and-error techniques.
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3.2.5. Performance Criteria

Some metrics, such as mean absolute percentage error (MAPE), root mean square
error (RMSE), efficiency (EF), and coefficient of variation (CV), are used in the literature
to evaluate the performance of intelligent models for risk analysis [64,65]. These are
their definitions:

MAPE =
1
n

n

∑
j=1

∣∣∣∣∣dj − pj

dj

∣∣∣∣∣× 100 (12)

RMSE =

√
∑n

j=1 (dj − pj)
2

n
(13)

EF =

n
∑

j=1
(dj − d)2 −

n
∑

j=1
(pj − dj)

2

n
∑

j=1
(dj − d)2

(14)

CV =
σ

µ
× 100 (15)

where dj is the ith value of the desired (actual) output for the jth pattern; pj is the predicted
(fitted) output for the jth pattern, µ is the mean value and σ is the standard deviation.

4. Results
4.1. Classical FMEA Result

The results of the classical-FMEA model for three risk parameters and RPN values,
based on experts’ judgment, for an edible oil purification process, are addressed in Table 2.
One of the model’s drawbacks is its inability to rank the failure types in a unique and
non-repetitive manner, as shown in Table 3. As a result, detecting high-risk failure modes
and assigning appropriate maintenance duties is challenging. For example, (1st and 2nd),
(5th and 10th) failure modes, and so on, all have the same RPNs and ranks, according
to the first expert’s assessment. According to the second expert, the failure modes are
ranked in the same order for the (6th, 8th, and 9th), (4th and 25th), and so on. This issue
can also be seen by third and fourth experts, resulting in a fundamental flaw in the risk
analysis process.
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Table 2. The classical FMEA result of S, O, D, RPN values.

SystemFM
Expert 1 Expert 2 Expert 3 Expert 4

S O D RPN S O D RPN S O D RPN S O D RPN

Ta
nk

s 1 4 2 4 32 3 1 5 15 3 2 4 24 4 3 4 48
2 4 2 4 32 5 1 5 25 3 4 4 48 5 2 4 40
3 8 6 7 336 10 7 8 560 6 5 7 210 7 5 6 210
4 2 2 4 16 5 3 2 30 2 2 2 8 3 2 5 30

Pu
m

ps

5 10 6 8 480 10 4 8 320 8 7 8 448 9 6 8 432
6 10 4 8 320 10 5 8 400 8 7 8 448 9 6 8 432
7 10 10 5 500 10 8 2 160 8 8 2 128 8 9 3 216
8 10 5 2 100 10 8 5 400 8 6 4 192 9 7 2 126

Se
pa

ra
to

rs

9 10 5 8 400 10 5 8 400 10 5 8 400 10 6 9 540
10 10 6 8 480 10 6 6 360 10 4 6 240 8 5 4 160
11 10 3 8 240 7 1 5 35 10 1 6 60 8 2 5 80
12 10 5 5 250 10 8 3 240 10 4 5 200 9 6 5 270
13 10 5 8 400 9 3 8 216 10 4 8 320 8 4 7 224

Fi
lt

er
s 14 10 3 4 120 10 3 5 150 10 6 3 180 9 7 3 189

15 10 7 5 350 10 5 5 250 10 5 3 150 9 6 2 108
16 10 2 1 20 10 4 1 40 9 4 3 108 9 3 2 54

C
hi

lle
rs

17 10 3 2 60 8 4 5 160 8 3 8 192 9 3 7 189
18 10 3 7 210 9 5 7 315 8 5 7 280 9 3 8 216
19 10 6 9 540 9 5 10 450 9 3 8 216 8 4 8 256
20 8 4 4 128 10 7 5 350 10 8 4 320 9 4 4 144

M
ix

er
s 21 1 9 5 45 10 4 7 280 10 5 7 350 10 6 6 360

22 2 7 4 56 8 4 7 224 7 3 3 63 8 7 2 112
23 3 6 5 90 5 1 7 35 5 1 7 35 8 7 6 336
24 4 9 4 144 10 4 2 80 10 5 3 150 8 6 5 240

D
ry

er
s

25 7 3 1 21 10 3 1 30 8 2 3 48 8 2 2 32
26 7 3 3 63 8 3 1 24 8 2 3 48 9 2 2 36
27 7 3 5 105 9 5 5 225 6 4 3 72 7 3 2 42
28 7 3 2 42 10 3 1 30 5 4 1 20 8 2 1 16
29 5 3 1 15 5 3 1 15 6 2 1 12 5 3 1 15
30 6 3 3 54 10 5 3 150 6 2 2 24 7 4 2 56
31 6 2 1 12 10 1 1 10 6 2 1 12 8 2 1 16
32 5 3 3 45 5 1 1 5 6 4 2 48 5 3 2 30

Bo
ile

rs

33 4 1 1 4 10 3 1 30 10 3 2 60 8 2 1 16
34 4 1 1 4 5 3 1 15 10 3 2 60 5 1 3 15
35 10 3 1 30 10 3 1 30 10 3 2 60 10 2 4 80
36 7 2 2 28 10 3 5 150 10 3 2 60 8 5 4 160
37 7 2 4 56 5 1 2 10 7 3 3 63 8 3 3 72
38 9 4 3 108 5 2 5 50 7 3 4 84 4 2 4 32
39 8 3 4 96 10 4 5 200 8 3 4 96 10 4 5 200
40 10 5 3 150 10 7 5 350 8 5 4 160 10 7 4 280
41 2 2 1 4 2 1 1 2 5 3 2 30 2 1 3 6
42 10 6 2 120 10 7 1 70 10 7 1 70 10 7 2 140
43 10 4 2 80 10 3 1 30 10 3 1 30 10 5 1 50

C
om

pr
es

so
rs

44 10 2 1 20 9 3 1 27 9 3 1 27 9 2 2 36
45 10 2 8 160 10 3 8 240 10 3 6 180 10 3 5 150
46 8 3 1 24 10 3 4 120 9 3 3 81 8 2 2 32
47 6 2 3 36 8 5 3 120 8 6 1 48 7 6 2 84
48 6 1 2 12 8 1 1 8 6 4 1 24 7 5 3 105
49 8 3 4 96 8 5 4 160 8 4 2 64 9 3 4 108
50 7 6 6 252 10 5 8 400 9 4 6 216 8 5 6 240
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Table 2. Cont.

SystemFM
Expert 1 Expert 2 Expert 3 Expert 4

S O D RPN S O D RPN S O D RPN S O D RPN

V
ac

uu
m

sy
st

em

51 6 4 2 48 10 5 2 100 9 7 1 63 6 6 3 108
52 7 5 3 105 10 7 4 280 9 8 2 144 7 7 3 147
53 6 1 3 18 5 2 1 10 6 3 2 36 6 2 1 12
54 10 3 3 90 10 5 4 200 8 8 2 128 8 6 3 144
55 10 4 1 40 10 5 1 50 9 8 2 144 9 4 2 72
56 8 6 4 192 10 5 3 150 9 8 2 144 8 6 2 96
57 8 5 5 200 10 5 5 250 9 8 4 288 8 6 4 192

Ex
ch

an
ge

rs 58 10 10 1 100 10 7 1 70 9 8 1 72 9 7 2 126

59 10 6 5 300 10 5 7 350 7 4 3 84 8 6 5 240

Pi
pe

s 60 3 3 1 9 3 5 1 15 2 8 3 48 2 6 4 48
61 3 3 1 9 5 7 4 140 2 8 4 64 2 6 4 48

PL
C

s 62 9 7 7 441 9 8 6 432 9 5 8 360 9 5 5 225
63 8 5 7 280 9 6 6 324 10 6 8 480 9 7 6 378

V
al

ve
s 64 8 5 2 80 10 5 1 50 8 4 3 96 5 3 2 24

65 8 5 4 160 8 5 4 160 8 5 4 160 5 4 7 140
66 5 8 2 80 5 8 2 80 5 8 3 120 8 3 3 72
67 8 4 2 64 8 4 2 64 8 4 3 96 4 3 2 24

Table 3. The same RPN value issue of classical FMEA.

FM RPN
Expert 1 FM RPN

Expert 2 FM RPN
Expert 3 FM RPN

Expert 4

(6, 8, 9, 50) 400 (6, 8, 9, 50) 400 (5, 6) 448 (5, 6) 432
(20, 50, 40, 59) 350 (20, 40, 59) 350 (13, 20) 320 (24, 50, 59) 240
(21, 52, 15, 57) 280 (52, 21) 280 (19, 50) 216 (7, 18) 216

(15, 57) 250 (15, 57) 250 (8, 17) 192 (14, 17) 189
(12, 45) 240 (12, 45) 240 (14, 45) 180 (10, 36) 160
(39, 45) 200 (39, 54) 200 (40, 65) 160 (20, 54) 144

(7, 17, 49, 65) 160 (17, 49, 56) 160 (15, 24) 150 (42, 65) 140
(38, 55, 64) 50 (14, 30, 36, 56) 150 (52, 55, 56) 144 (15, 49, 51) 108

(11, 23) 35 (46, 47) 120 (7, 54) 128 (11, 35) 80
(4, 25, 28, 33, 35,

43) 30 (24, 66) 80 (39, 64) 96 (37, 55, 66) 72

(42, 58) 70 (38, 59) 84 (1, 60, 61) 48
(1, 29, 34, 60) 15 (27, 58) 72 (26, 44) 36

(31, 37, 53) 10 (49, 61) 64 (25, 38, 46) 32
(22, 37, 51) 63 (4, 32) 30

(11, 33, 34, 35, 36) 60 (28, 31, 33) 16
(2, 25, 26, 32, 47, 60) 48 (29, 34) 15

(41, 43) 30
(1, 30, 48) 24

(29, 31) 12

Using the geometric average method (GAM) to prioritize high-risk failures is one
of the most common strategies to solve this issue in traditional FMEA. Figure 10 shows
the results of the conventional RPN based on GAM-FMEA from the expert’s assessment.
Although this method has been able to address some of the shortcomings of the classical-
FMEA (67 failure modes categorized into 59 classes), several of the failure modes still have
the same RPN and rank values. The 4th and 33rd, 32nd and 60th, 1st and 44h failure modes,
etc. are in the same classes. Therefore, to solve this outcome of classical and GAM- FMEAs,
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we have examined the potential of the intelligent models based on FMEA for classifying
the failure modes during the risk analysis process.
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4.2. Intelligent- FMEA Results

In this subsection, the ability of three intelligent models such as FIS, ANFIS, and SVM-
based FMEA to create a maximum class of risks for the edible oil purification process
are examined. The results of the FIS-FMEA model based on three fuzzy scale classes are
provided in Table 4. First, among the several defuzzification strategies, the centroid method
was chosen as having the most potential for producing a maximum fuzzy number class.
Various MFs combinations for the three-risk metrics and FIS-RPN (FRPN) of three classes
were investigated as a result of this. The CV factor was used as the primary performance
criterion to select the optimal combined MFs from 4096 combinations. The average CVs in
all MFs for the three, five, and ten classes were 60.70, 53.64, and 50.76, respectively. It means
that the 3-class with a high CV can provide maximum risk class numbers while avoiding
repetitive clustering. As highlighted, two combinations of MFs in 3-class (27-rule) have
greater potential to create 67 class numbers for 67 failure modes than other classes.

Table 4. The optimal MFs combination for risk clustering based on the FIS-FMEA model.

Number of
Classes

Number of
Rules S O D FRPN CV (%) Number of

Cluster

3-class (27)
Psigmf Gauss2mf Dsigmf Trimf 58.30 67
Dsigmf Gauss2mf Dsigmf Trimf 58.30 67
Trapmf Dsigmf Gaussmf Dsigmf 56.94 66

5-class (125)
Trimf Gauss2mf Psigmf Trimf 56.77 66
Trimf Gauss2mf Psigmf Trapmf 56.77 66
Trimf Gauss2mf Psigmf Gaussmf 56.77 66

10-class (1000)
Trimf Gbellmf Gaussmf Gbellmf 56.42 64

Trapmf Gbellmf Gaussmf Gbellmf 56.42 64
Gauss2mf Gaussmf Gaussmf Trapmf 57.44 64

In the next step, the ability of the ANFIS-FMEA model for risk clustering of failure
modes in the oil purification process was investigated in Table 5. For this purpose, the de-
fault values of the ANFIS network such as influential radius (IR), squash factor (SF), accept
ratio (AR), and reject ratio (RR) in ANFIS are assumed as 0.5, 1.25, 0.5, and 0.15, respectively.



Sustainability 2022, 14, 1083 16 of 22

Additionally, in this study, two optimization methods such as hybrid and backpropagation
were used for parameter training of membership functions. Following this, the perfor-
mance of the ANFIS-FMEA model for risk clustering, under some well-known performance
criteria, was evaluated. As seen, although most of the ANFIS optimization methods can
create maximum risk clusters (67 failure modes in 67 clusters) in different fuzzy number
classes, the hybrid model considering 5-class (125-rule) and 30 number epochs has been
very successful in predicting the actual valves with the lowest errors (RMSE = 4.01 and
MAPE = 4.25). To get better insight, Figure 11 shows that the total values of RMSE and
MAPE (%) for the hybrid model with 5-class are lower than other fuzzy number classes
and ANFIS models.

Table 5. The optimal performance criteria for risk clustering based on the ANFIS-FMEA model.

Optimization
Method

Number
of

Class

Number
of

Rule

Number
of

Epoch

RMSE MAPE (%) EF (%) Number
of

ClusterTrain Test Total Train Test Total Train Test Total

H
yb

ri
d

m
od

el

3-
cl

as
s (27) 10 5.84 5.75 7.08 11.85 12.15 13.09 99.00 99.00 99.00 67

(27) 20 4.79 4.57 6.27 10.60 10.01 11.88 99.00 99.00 99.00 67
(27) 30 3.84 3.23 5.19 8.43 6.92 9.30 99.00 99.00 99.00 67

5-
cl

as
s (125) 10 3.92 4.31 6.03 6.08 7.19 6.19 99.00 99.00 99.00 67

(125) 20 3.14 3.69 5.08 4.60 8.27 5.30 99.00 99.00 99.00 67
(125) 30 2.11 3.02 4.01 1.81 7.78 4.25 99.00 99.00 99.00 67

10
-c

la
ss (1000) 10 1.35 3.80 6.33 2.62 8.16 6.49 99.00 99.00 99.00 67

(1000) 20 1.08 3.61 6.57 1.98 8.05 6.13 99.00 99.00 99.00 67
(1000) 30 0.91 3.29 5.51 1.61 7.75 4.81 99.00 99.00 99.00 67

Ba
ck

pr
op

ag
at

io
n

3-
cl

as
s (27) 10 7.50 7.13 8.95 8.80 19.46 16.29 99.00 99.00 99.00 67

(27) 20 6.45 8.61 9.03 7.71 20.25 15.19 99.00 99.00 99.00 67
(27) 30 6.03 9.21 9.20 7.23 21.09 15.10 99.00 99.00 99.00 67

5-
cl

as
s (125) 10 7.39 7.40 7.56 9.53 16.23 9.71 99.00 99.00 99.00 67

(125) 20 5.32 6.61 6.48 7.11 15.01 8.00 99.00 99.00 99.00 67
(125) 30 4.72 6.80 6.37 6.20 14.92 7.42 99.00 99.00 99.00 67

10
-c

la
ss (1000) 10 2.66 2.55 4.91 6.76 2.99 6.15 99.00 99.00 99.00 67

(1000) 20 2.57 2.69 4.88 6.49 3.13 5.97 99.00 99.00 99.00 67
(1000) 30 2.49 2.82 4.86 6.22 3.24 5.80 99.00 99.00 99.00 67
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Furthermore, the results of the SVM-FMEA algorithm as another intelligent model
for risk analysis and to create the maximum risk clustering are presented in Table 6.
As observed, the SVM algorithms such as sequential minimal optimization (SMO) and
iterative single data algorithm (ISDA) can classify the 67 failure modes into 67 risk clusters.
However, the ISDA algorithm using the polynomial-kernel function has higher accuracy
to predict the actual values. In other words, this algorithm has been very effective in
classifying the failure modes with the lowest errors (RMSE = 7.30 and MAPE = 13.19) and
the highest performance (EF: 99%).

Table 6. The optimal performance criteria for risk clustering based on the SVM-FMEA model.

Solver
Algo-
rithm

Kernel
Function

RMSE MAPE (%) EF (%) Number
of

ClusterTrain Test Total Train Test Total Train Test Total

SM
O

al
go

ri
th

m Gaussian 9.61 23.44 15.13 15.91 54.03 27.29 99.00 95.00 98.00 67

Linear 28.25 41.37 32.72 41.91 124 66.42 0.94 0.85 0.92 67

Rbf 9.65 23.70 15.26 15.94 55.52 27.67 99.00 95.00 98.00 67

Polynomial 9.43 18.18 12.69 14.05 68.91 30.43 99.00 97.00 99.00 67

IS
D

A
al

go
ri

th
m Gaussian 8.36 21.00 13.44 17.08 30.73 21.16 99.00 96.00 99.00 67

Linear 98.83 99.95 99.16 167.3 161.0 165.4 0.26 0.12 0.22 67

Rbf 7.77 19.48 12.47 15.37 26.18 18.60 99.00 99.00 99.00 67

Polynomial 7.30 7.31 7.30 14.04 11.17 13.19 99.00 99.00 99.00 67

4.3. Comparison Results

Figure 12 shows a comparison between the intelligent models such as FIS (Figure 12a),
ANFIS (Figure 12b) and SVM (Figure 12c), and classical-FMEAs to identify the best model
for raking the failures in an edible oil purification plant. As shown, the rank value of
the SVM algorithm overlaps fairly well with the rank value of the classic model for most
failure modes with that of other intelligent models. The error indices such as MAPE for FIS,
ANFIS, and SVM were obtained as 21%, 4.64%, and 3.02%, respectively, and the values for
RMSE were equal to 5.73, 2.85, and 1.12, respectively, to predict the classical rank value.
Hence, it can be concluded that the SVM-FMEA model has a great potential for ranking all
failure modes accurately with the lowest errors compared to other intelligent models. In the
following, through the feedback of such model, a sensitivity analysis of risk parameters
and alternatively the appropriate maintenance tasks were surveyed.

4.4. Sensitivity Analysis

To study the impact of risk parameters (S, O, D) on SVM-RPN in the edible oil pu-
rification process, a sensitivity analysis was performed. For example, in risk parameters,
the S index represents the severity of the failure on the equipment or its impact on the
entire process. The O index represents the chance of failure occurrence, and the D index
represents how likely it is to identify the occurred failures. Figure 13 depicts the findings of
the sensitivity analysis as surface plots. As shown in Figure 13a, the S index has a higher
impact on the risk parameter than the O index because the slope change of SVM-RPN due
to changes in the S (46◦) index is greater than that due to changes in the O (18◦) index.
It means that the D index is the meaningful factor on the risk changes in the edible oil
purification process. As a consequence, to improve the possibility of detecting the failures
and to reduce the probability of failures, fault diagnosis tools and warning signs could be
suggested for the edible oil purification process.
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Figure 12. The comparison of failure mode ranking values between (a) classical-FMEA and Fuzzy
model, (b) classical-FMEA and ANFIS model, and (c) classical-FMEA and SVM model.

4.5. Maintenance Activity

In this section, based on the best intelligent-FMEA model, the appropriate maintenance
activities for the edible oil purification process were provided. Based on the results,
the failure of bearings in separators and the failure of vanes and shafts in pumps were
identified with the highest RPN values, e.g., 421, 409 and 391 as well as primary ranks,
e.g., 1, 2 and 3, respectively. Because bearings are critical to achieving high operational
dependability in separators, adopting robust inspection procedures and non-destructive
tests weekly could be recommended. Furthermore, the majority of the operations in the
purification process are associated with centrifugal pumps for moving fluids such as
water and oils. As a result, appropriate maintenance chores such as monthly services
such as checking lubricant levels and bearing operating temperature, vibration analysis
of shafts, and changing the vanes and axis of shafts could be performed from quarterly
to monthly. The failure of hydro-pneumatic valves and sensors in chillers, as well as the
failure of programmable logic controller (PLC) circuits, were ranked as the second class
and RPNs, respectively. The failure of O-rings and seals in hydro-pneumatic systems is
the main cause of leakages due to the high pressure in the process. As a result, the key
maintenance tasks may include increasing the frequency of O-ring and seal replacements
from monthly to twice-weekly, utilizing higher-quality materials. The majority of sensors’
failures in chillers are caused by excessive usage or function. As a result, a monthly
replacement could be appointed. Meanwhile, different capability tests and well-timed
inspections for PLCs, and timely replacement of the cables and wires could be taken before
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an irreparable fault occurs. As a result, the aforementioned maintenance operations would
assist engineers in detecting and preventing unforeseen problems, resulting in increased
safety and dependability in the edible oil purification process.
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5. Conclusions

This paper aimed to improve an intelligent-FMEA model for analyzing the risk and
comparing the outcomes with the classical-FMEA, in the edible oil industries. To overcome
the classical FMEA drawbacks, some well-known intelligent models such as FIS structure,
ANFIS, and SVM models were carried out for risk analysis. To evaluate the accuracy
prediction, the CV (%) factor for FIS structure, and some performance criteria such as
RMSE, MAPE (%), and EF (%) for ANFIS and SVM models, were performed. Additionally,
to determine the risk parameters and RPNs for the failure modes in the edible oil purifi-
cation process, a knowledge-based approach was adapted. The results revealed that the
3-class (27-rule) in the FIS structure, and the 5-class (125-rule) in the hybrid-ANFIS network
have high potential to create maximum risk number cluster of failure modes. Moreover,
the results of the SVM algorithm indicated the ISDA algorithm using polynomial-kernel
function has higher accuracy to predict the actual values and classify the failure modes.
Based on the performance indicators, the SVM-FMEA algorithm has a great potential for
ranking all failure modes accurately with the lowest errors compared to other intelligent
models. According to the results of the 3-D sensitivity study, the detection index is more
successful on SVM-RPN variation than on occurrence and severity. Finally, the authorita-
tive control for the equipment with the highest risk within the edible oil purification was
recommended through maintenance and inspection activities. In this study, knowledge-
based methods for diagnosing failures and risk assessment were proposed due to a lack
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of sufficient and reliable operational data. As a result, future research can be expanded to
evaluate and improve the accuracy of the proposed approach by establishing a trustworthy
database in edible oil purification plants. Furthermore, the use of other hybrid models with
data-driven based methods to automate risk monitoring within food processing systems
can be recommended.
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44. Ivančan, J.; Lisjak, D. New FMEA Risks Ranking Approach Utilizing Four Fuzzy Logic Systems. Machines 2021, 9, 292. [CrossRef]
45. Sethukkarasi, R.; Ganapathy, S.; Yogesh, P.; Kannan, A. An intelligent neuro fuzzy temporal knowledge representation model for

mining temporal patterns. J. Intell. Fuzzy Syst. 2014, 26, 1167–1178. [CrossRef]
46. Priya, P.I.; Ghosh, D.K.; Kannan, A.; Ganapathy, S. Behaviour analysis model for social networks using genetic weighted fuzzy

c-means clustering and neuro-fuzzy classifier. Int. J. Soft Comput. 2014, 9, 138–142.
47. Boran, S.; Gökler, S.H. A Novel FMEA Model Using Hybrid ANFIS–Taguchi Method. Arabian J. Sci. Eng. 2020, 45, 2131–2144.

[CrossRef]
48. Alawad, H.; An, M.; Kaewunruen, S. Utilizing an Adaptive Neuro-Fuzzy Inference System [ANFIS] for overcrowding level risk

assessment in railway stations. Appl. Sci. 2020, 10, 5156. [CrossRef]
49. Ganapathy, S.; Yogesh, P.; Kannan, A. Intelligent agent-based intrusion detection system using enhanced multiclass SVM. Comput.

Intell. Neurosci. 2012, 2012, 9. [CrossRef]
50. Vijilious, M.L.; Ganapathy, S.; Bharathi, V.S.; Kannan, A. A Novel Biometric Authentication using Contourlet Transform and

Enhanced MSVM. Eur. J. Sci. Res. 2011, 65, 370–376.
51. Efe, M.O. A comparison of ANFIS, MLP and SVM in identification of chemical processes. In Proceedings of the 2009 IEEE Control

Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009; pp. 689–694.
52. Okabe, T.; Otsuka, Y. Proposal of a Validation Method of Failure Mode Analyses based on the Stress-Strength Model with a

Support Vector Machine. Reliab. Eng. Syst. Saf. 2021, 205, 107247. [CrossRef]
53. Yin, G.; Zhang, Y.T.; Li, Z.N.; Ren, G.Q.; Fan, H.B. Online fault diagnosis method based on incremental support vector data

description and extreme learning machine with incremental output structure. Neurocomputing 2014, 128, 224–231. [CrossRef]
54. Mangeli, M.; Shahraki, A.; Saljooghi, F.H. Improvement of risk assessment in the FMEA using nonlinear model, revised fuzzy

TOPSIS, and support vector machine. Int. J. Ind. Ergon. 2019, 69, 209–216. [CrossRef]
55. Ayodeji, A.; Liu, Y.K. Support vector ensemble for incipient fault diagnosis in nuclear plant components. Nucl. Eng. Technol. 2018,

50, 1306–1313. [CrossRef]
56. Soltanali, H.; Khojastehpour, M.; Farinha, J.T.; de Almeida e Pais, J.E. An Integrated Fuzzy Fault Tree Model with Bayesian

Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing. Energies 2021, 14, 7758.
[CrossRef]

57. Farinha, J.M.T. Asset Maintenance Engineering Methodologies; CRC Press: Boca Raton, FL, USA, 2018.
58. Guimarães, A.C.; Lapa, C.M. Fuzzy inference to risk assessment on nuclear engineering systems. Appl. Soft Comput. 2007, 7,

17–28. [CrossRef]
59. Preyssl, C. Safety risk assessment and management—The ESA approach. Reliab. Eng. Syst. Saf. 1995, 49, 303–309. [CrossRef]
60. Yazdi, M.; Soltanali, H. Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int. J.

Interact. Des. Manuf. (IJIDeM) 2019, 13, 193–210. [CrossRef]
61. Chanamool, N.; Naenna, T. Fuzzy FMEA application to improve decision-making process in an emergency department. Appl.

Soft Comput. 2016, 43, 441–453. [CrossRef]
62. Gerek, I.H. House selling price assessment using two different adaptive neuro-fuzzy techniques. Autom. Constr. 2014, 41, 33–39.

[CrossRef]
63. Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Remaining useful life estimation based on nonlinear feature reduction and

support vector regression. Eng. Appl. Artif. Intell. 2013, 26, 1751–1760. [CrossRef]
64. Soltanali, H.; Nikkhah, A.; Rohani, A. Energy audit of Iranian kiwifruit production using intelligent systems. Energy 2017, 139,

646–654. [CrossRef]
65. Kutyłowska, M. Neural network approach for failure rate prediction. Eng. Fail. Anal. 2015, 47, 41–48. [CrossRef]

http://doi.org/10.1016/j.matcom.2020.06.024
http://doi.org/10.1007/s40747-021-00279-z
http://doi.org/10.1016/j.asoc.2021.107902
http://doi.org/10.1007/s00477-019-01754-3
http://doi.org/10.1016/j.jlp.2021.104616
http://doi.org/10.1080/00036846.2021.1935696
http://doi.org/10.3390/machines9110292
http://doi.org/10.3233/IFS-130803
http://doi.org/10.1007/s13369-019-04071-7
http://doi.org/10.3390/app10155156
http://doi.org/10.1155/2012/850259
http://doi.org/10.1016/j.ress.2020.107247
http://doi.org/10.1016/j.neucom.2013.01.061
http://doi.org/10.1016/j.ergon.2018.11.004
http://doi.org/10.1016/j.net.2018.07.013
http://doi.org/10.3390/en14227758
http://doi.org/10.1016/j.asoc.2005.06.002
http://doi.org/10.1016/0951-8320(95)00047-6
http://doi.org/10.1007/s12008-018-0504-6
http://doi.org/10.1016/j.asoc.2016.01.007
http://doi.org/10.1016/j.autcon.2014.02.002
http://doi.org/10.1016/j.engappai.2013.02.006
http://doi.org/10.1016/j.energy.2017.08.010
http://doi.org/10.1016/j.engfailanal.2014.10.007

	Introduction 
	Literature Review 
	Materials and Methods 
	First Step: Process Description 
	Neutralization Process 
	Discoloration Process 
	Winterize Process 
	Deodorizing Process 
	Potential Failures and Their Effects 

	Second Step: Knowledge-Based Approach 
	Risk Parameters Definition 
	FIS Structure 
	ANFIS Network 
	SVM Algorithm 
	Performance Criteria 


	Results 
	Classical FMEA Result 
	Intelligent- FMEA Results 
	Comparison Results 
	Sensitivity Analysis 
	Maintenance Activity 

	Conclusions 
	References

