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Abstract: Thoughts travel faster and farther through cyberspace where people interact with one
another regardless of limitations in language, space, and time. Is a poll sufficient to measure people’s
opinions in this era of hyperconnectivity? This study introduces a deep learning method to measure
online public opinion. By analyzing Korean texts from Twitter, this study generates time-series data
on online sentiment toward the South Korean president, comparing it to traditional presidential
approval to demonstrate the independence of the masses’ online discourse. The study tests different
algorithms and deploys the model with high accuracy and advancement. The analysis suggests
that online public opinion represents a unique population as opposed to offline surveys. The study
model examines Korean texts generated by online users and automatically predicts their sentiments,
which translate into group attitudes by aggregation. The research method can extend to other studies,
including those on environmental and cultural issues, which have greater online presence. This
provides opportunities to examine the influences of social phenomenon, benefiting individuals
seeking to understand people in an online context. Moreover, it helps scholars in analyzing those
public opinions—online or offline—that are more important in their decision making to assess the
practicality of the methods.

Keywords: online public opinion; offline public opinion; polling; deep learning; BERT

1. Introduction

People’s preferences form the public’s collective sentiment and various political ele-
ments including elections, representation, and policymaking. Public opinion is a group
expression or consensus of people who share the same or similar interests [1] (MacDougall,
1952). Naturally, distinguishing interest groups in the realm of politics is challenging.
People can have more than one preference and be part of multiple interest groups simul-
taneously. Until today, polling has been the dominant method to assess public opinion.
Specifically, presidential approval is a good example of a polling estimate to measure public
opinion in politics.

Presidential approval is widely used among different countries to explain how much
public support an incumbent leader of a state commands. This popular measure has gained
importance and influence since Gallup asked the question, “Do you approve or disapprove
of the way the incumbent is handling his job as president?” in the 1930s [2]. It has become
one of the most essential indicators that explain the state of political affairs. News outlets
emphasize the ups and downs of presidential approval and discuss different reasons for
changes in the ratings. Meanwhile, the public pays attention to this performance measure.
Thus, presidential approval influences how people perceive the current state of politics.

Numerous pollsters may have significantly different results depending on their de-
tailed polling methods. The proportion of cellular phones in a sample is controversial, as it
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can alter polling results in a particular direction. Lack of response also raises doubts about
a poll’s representativeness. For example, in 2016, Donald Trump won the U.S. presidential
election despite all election surveys predicting a victory for Hillary Clinton. In South Ko-
rea’s general elections in 2020, the ruling party achieved a landslide victory by winning 180
out of 300 seats; similarly, no poll predictions came close to the actual outcome. Therefore,
the public’s doubt toward election polls and forecasts has increased since the election in
Korea. Understanding the aggregated will of the public is difficult and becomes even more
challenging with the rapid lifestyle changes in the era of hyperconnectivity.

Methods of gauging public opinion have not changed much in the real world, yet
the popularity of smartphones has changed how people live. Specifically, social network
services have influenced people’s communication behavior. As people increase their use of
mobile chats and social network services to communicate, responses to traditional voice
platforms, such as telephone surveys, decrease. Considering changes in communication, it
is critical to respond to the hyperconnected environment in the future by acknowledging
public opinion of the mass in cyberspace. The Internet’s pervasiveness in our everyday
lives affects politics. More politicians have been using online channels to engage with
the public. Former presidents Trump and Barack Obama have been using Twitter, and
South Korean politicians have mainly used YouTube for their political communication. The
Internet has become an essential element of not only political communication but also of
election campaigns. Obama’s and Mitt Romney’s presidential campaigns actively utilized
the Internet and social media in the 2012 U.S. presidential elections [3]. This trend has
continued to the recent presidential elections in the United States, including the Trump
campaigns in 2016 and 2020 [4]. Modern election campaigns vigorously appeal to their
supporters through various online services. Specifically, social networks have gained
significance as a medium to facilitate political movements. Online social outlets have aided
many public protests around the world, for instance, the Arabs’ prodemocracy movement
and the civil rights movement in the United States [5,6]. Although the Internet has deeply
penetrated the realm of politics, current measures of presidential approval do not include
online platforms.

This study aims to gauge online public opinion using textual data from the Internet,
specifically Twitter. It introduces a deep learning technique to measure online political
public opinion and explains whether the online public is independent from the offline one.
This adds peculiar values to existing studies. First, the applied deep learning technique
demonstrates a method to extract sentiments from user-generated texts. This is particularly
important for languages such as Korean, wherein words change their meanings and gram-
matical features based on their synthesis form. Second, the study extends the application of
the method to politics, specifically the evaluation of a government. Online public opinion
can provide complementary insight into the conventional offline presidential approval.
Third, measuring public opinion on various issues using online data requires much fewer
resources in terms of time, labor, and capital. This indicates a wealth of data available in
the future for research on public opinion by reducing the temporal and spatial limitations
of an offline political survey. Overall, the study involves explorative research regarding
the application of deep learning to political public opinion in an online environment to
facilitate more effective decision making.

2. Literature Review
2.1. Measuring Public Opinion in Politics

Public opinion refers to the ideas, thoughts, expressions, interests, or beliefs of par-
ticular people who are part of broader society [1,7,8]. The researchers aim to understand
what people think. Polls have made it possible to represent the public’s aggregated attitude
and have added value to politics by providing technical and organized information to the
public, politicians, and researchers [1,9,10].

Polls measure the public opinion of a target population. In his work, MacDougall
(1952) clearly explained the boundaries of public opinion. Geographical distinctions define
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the scope of a public, which means multiple publics can exist in the world. Recent years
have seen more spatial separations as many different services have become available in
cyberspace. A person can have various interests and participate in different interest groups,
which, according to MacDougall [1], are equal to many participating publics. Difference
in thoughts is another reason why the public is not unique. Polling or surveys are the
dominant methods to gauge public opinion of the mass despite their shortcomings [11,12].
Berinsky [11] emphasizes that political scientists must be cautious about their choice of
sample and the questions to be asked, indicating the difficulties in creating a suitable
sample for a target population and extracting meaningful results through a proper question.
Koo [12] specifies the difficulty of having a representative sample in a political environment
in South Korea. His study demonstrates that young female voters are under-represented in
samples for an election prediction. Both authors highlight the transformative influence of
mobile phones and the Internet on people’s lifestyles as a reason for inaccurate samples.

Presidential approval has been the most popular aspect when gauging public opinion
in politics. Researchers have studied the subject since John Mueller’s seminal study in
1970. Reviews of presidential approval fall under two main branches: effect and cause. An
example of the former would be the influence of presidential approval on the president’s
policy proposals [13], public positioning [14], presence in the legislative body [15], and
legislation success. The latter branch, meanwhile, considers presidential approval as a
dependent variable and examines what influences public opinion. As Mueller wrote in his
book titled War, Presidents, and Public Opinion [16], for example, war is a driving factor for
presidential approval. Prolonged war and a high death count, especially among the U.S.
military, cause a decline in approval. This factor was confirmed in other studies (Gartner &
Segura, 1988; Ostrom & Simon, 1985). In addition, economic conditions significantly affect
presidential approval, as many studies have found [17–20].

2.2. Online Public Opinion and Its Methods

This study addresses the problem of an offline survey by measuring the mass opinion
available in cyberspace. It explores a way to extract group sentiments using user-generated
texts and a deep learning technique. Online public opinion literature has two branches. The
first is a group of studies investigating distinctive characteristics of online public opinions.
This category explains the extent to which the Internet represents the public. Duggan and
Brenner [21] reveal that social network platforms have different user compositions, which
leads to a distinctive level of general population representativeness. Moreover, this trait is
not specific to the online environment in the United States. Mellon and Prosser [22] argue
that British users of Twitter and Facebook share no similarities with the general population;
they differ in many factors including age, gender, and education level. Some studies argue
that in South Korea, social networks represent a particular group of people rather than the
general population [23,24]. In addition, scholars have attempted to analyze the political
traits of Twitter users. Cyberspace users demonstrate strong political engagement and
partisanship [25,26]. Online services can underrepresent specific groups such as women, as
well as certain political ideologies [26,27].

The other branch seeks to interpret political phenomena using online data. The most
considerable interest is in predicting election results using social media [28–30]. Related
studies analyze different signals to calculate the possibility of election result predictions.
Another area of interest in politics is the subject of issue saliency. Similar to presidential
approval literature, these studies illustrate particular themes influencing election results:
election debates [31,32] and economic status [33]. They all explain that these factors can
shape elections and presidential approval.

The above studies represent research interest in social media and its influence, yet they
do not completely understand the online public’s thoughts. The lack of research here is due
to the difficulty in collecting and processing massive volumes of unstructured data. If it
were possible to utilize such data, information from the Internet can be a great complement
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to existing measures of public opinion. There is a constant real-time inflow of information,
as people continuously communicate in the online environment.

Online data is fundamentally different from traditional survey data. The former does
not follow the existing structure, which consists of a question and an answer [4]. Unlike in a
survey, useful information is scattered and hidden under big data, which refer to both a vast
amount of data and a multivalent process facilitating the combination of heterogeneous
data and the extraction of valuable information for use [34]. Therefore, techniques for
handling big data should be different from the ones used in traditional research. There
are mainly two approaches to extract the aggregated attitudes of people who use online
data: the counting method and sentiment analysis [4]. The first method involves the simple
counting of texts with a particular pattern yielding mixed results. Some studies have
illustrated the successful prediction of elections [30,35], while others have explained that
counting does not reveal much predictive power [36].

The other approach is sentiment analysis, which aims to understand emotion hidden
in a text through the use of a computer. The analysis tool takes raw text data, tokenizes
texts, and analyzes the processed words [37]. There are supervised and unsupervised
learning methods available for sentiment analysis. The supervised method uses training
data, which contain predetermined emotions regardless of a subject domain, and eventually
builds a model predicting uncategorized text data. Neural networks introduce substantial
improvements in natural language processing, which leads to better sentiment classification.
Bidirectional Encoder Representations from Transformers (BERT), a pre-trained neural
network, exhibits considerably higher performance than other sentiment classification
tools [38]. The unsupervised method, meanwhile, utilizes already established lexicon or
dictionary and sentiment categories. Many studies on online communication have incor-
porated unsupervised learning methods [38–42]. Table 1 summarizes the aforementioned
methods, which support extracting sentiment from online texts.

Table 1. Summary of sentiment analysis methods.

Type Strength Weakness

Counting Method

- Simplicity
- Easy to apply
- No advanced technology

required

- Low and unstable
accuracy

Sentiment Analysis
Unsupervised Learning

- High and stable accuracy
with a proper dictionary

- No advanced technology
required

- Domain-specific approach
- Difficulty in building a

lexicon dictionary
- Performance reliant on the

quality of a dictionary

Sentiment Analysis:
Supervised Learning

- Most recent and advanced
- Universality of a model
- Less data preprocessing

- Advanced technology
required

- Difficulty in building
relevant training data

This study performs sentiment analysis on Korean texts collected from Twitter through
a trained neural network. It focuses on presidential approval, the most popular measure of
public opinion in the political context, and highlights South Korea. The analysis aims to
answer two main questions:

Q1. How do we collect and process an extensive amount of unstructured data and user-
generated non-English texts to measure aggregated sentiment?

Q2. Does the measured online public opinion represent the population of a survey in
political context?
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3. Methods
3.1. Data

This study collects data from Twitter, a popular source for academic research because
it has sufficient users worldwide and researchers can access good-quality raw data from it.
Unlike other social services such as Facebook, it has an official gateway to retrieve users’
text with a greater amount of subsidiary information including language, location, and
related texts. There is a limit of 280 characters to how much a user can write in a single
post; therefore, sentences are naturally a base unit for data translation. According to a
report from the Korea Information Society Development Institute [43], 14% of all SNS
users actively engaged on Twitter in 2018, of whom 12.4% were women and 15.5% were
men. Gender distribution on Twitter is relatively balanced compared to other SNS, such as
Facebook and Kakao Story This study uses collected data in two main parts: neural network
training and sentiment prediction. The only difference between these two processes is that
the former requires sentiment labels by human coders.

This study collects real-time livestreamed tweets in the Korean language filtered by
the keyword Moon Jae In, using Twitter’s application protocol interface (API). (The study
uses API version 1.0 for data collection. Twitter launched API version 2.0 in November
2021, which allows researchers full access to its archive. The study uses the first version
of the API for data collection). A computer continuously sends maximum requests to
the Twitter server every 15 min, and the server dispatches randomly aggregated batches
of tweets upon the request. This process generated a total of 7,253,878 tweets for 2019.
This dataset has two distinguishing qualities: one is that the collected texts are limited to
140 characters, and Twitter removes characters after the maximum length when it dispatches
the data. The other is that it contains many replied tweets; in this case, 628,040 texts are
retweets, a relayed text, comprising 7.25% of the entire dataset.

Neural network training needs data with relevant labels. The machine undergoes
supervised learning using data in a “text–sentiment” format. The trained network attempts
to replicate the classification similar to the training data, which are a subset consisting
of 10,000 tweets in the entire dataset. Five coders who have the same set of texts place
sentiment labels individually depending on the superficial interpretation of a text. A coder
decides on a sentiment from three categories: positive, negative, and neutral. The final
sentiment of a sentence becomes the mode of all five coders. If a text has multiple modes,
the final prediction considers the following tie-breaking rules: a text has a neutral sentiment
if two modes are bipolar. Any combination with the neutral indicates a direction among
the coded sentiments. This direction becomes the final label of the sentence. For example, if
there are two neutral and two positive coders, then the direction becomes positive, and the
final sentiment is also positive. Among the 10,000 coded tweets, 21.55% have a unanimous
opinion, and 85.58% have only one mode. Texts with bipolar modes are 1.53% of the total
training data. The training dataset has approximately twice more negative tweets (43.76%)
compared with the neutral and positive ones. The percentages of neutral and positive texts
are almost identical at 28.68% and 27.56%, respectively.

3.2. Methods

Unsupervised and supervised models can perform sentiment classification as ex-
plained in the literature review. This study tests supervised machine learning models
including convolutional neural network (CNN), recurrent neural network (RNN), and
BERT, as they perform relatively better than the unsupervised model and the traditional
logistic regression-based supervised model [38]. The deep learning approach suits the
Korean language better than lexicon-based unsupervised models for several reasons. First,
Korean does not have a well-defined lexicon dictionary for sentiment analysis. The study
attempts to apply sentiment analysis to Korean politics, which indicates that lexicon data
for the unsupervised model should fit political context in South Korea. Second, morpholog-
ical analysis is difficult for Korean as it is an agglutinative language (wherein a word can
change its meaning depending on its neighboring affix).



Sustainability 2022, 14, 4113 6 of 16

The study considers embedding type, embedding size, and a neural network to
perform supervised learning, specifically deep learning. Embedding is a process for con-
verting words to vectors, which a computer can understand. This conversion is performed
in different ways; the study uses Word2Vec and FastText. Embedding size refers to the
dimensionality of embedding vectors and is a factor associated with the resolution of natu-
ral language complexity. This study uses embedding sizes of 100, 200, and 300 (BERT is a
pre-trained model that includes its own unique embedding type and dimension). A neural
network is a supervised deep learning algorithm that serves as a simple replication of the
human brain. The study tests three main neural networks: CNN, RNN, and BERT [44–48].
(The study applies the gated recurrent unit (GRU) through RNN and implements modified
BERT by adding linear layers at the end. For the detailed explanation of all neural networks
used in the test, LeCun [47] explains CNN, Cho et al. [44] introduce GRU algorithm of
RNN, and Vaswani et al. [48] illustrate BERT). The BERT model is a pre-trained algorithm,
and this study uses KoBERT, which is pre-trained through Korean texts [49]. (The KoBERT
GitHub page [49] contains the parameter information about the model and its code. The
study applies transfer learning process to KoBERT model to perform a political sentiment
classification on Korean Twitter texts). Finally, this study tests both two- and three-category
classification; this means that the network distinguishes either between positive and nega-
tive or between positive, neutral, and negative. When the network is trained to perform
two-category classification, unclassified tweets become neutral ones. In summary, there
are three embeddings with three-dimension sizes and three neural networks with two
classification options. Combinations of these factors can yield different accuracy level of
the trained model.

Herein, two embedding types, three embedding dimensions, three neural networks,
and two groups of classification category lead to the total of 26 combinations to test. (The
study uses Python to pre-process Twitter data and PyTorch to construct neural networks.
The embedding process uses the Gensim package through Python). The test result applies
the most appropriate logic to the machine and obtains daily sentiments from all tweets
collected in 2019. Table 2 includes accuracy figures for all parameter combinations.

Supervised learning requires three datasets: training, validation, and test. This study
divides the entire dataset into three ratios: 75%, 12.5%, and 12.5%. The most substantial
portion is for the training of the network. The other sets are for validation and testing,
which measure the system’s feasibility during and at the end of the training. The validation
process occurs at points during training using a pre-assigned portion of data to check
whether an algorithm is properly learning from data. The test set is used to examine the
final performance of a trained model; therefore, it remains untouched until the completion
of algorithm training. The accuracy score, which refers to the percentage of correctly
predicted data, is from the test set and determines the performance of the analysis method.

According to the accuracy scores in Table 2, the networks accomplish better results
in the two-category classification task; that is, reducing a classification category improves
accuracy in all combinations. The study sets the threshold probability to 0.7 to determine
whether a tweet reveals a sentiment. The BERT model yields the best result in the three-
category task with 84.92% accuracy on the test set. For two-category classification, the
best network is RNN with Word2Vec, 300-dimension, at 94.26%. The BERT model exhibits
94.18% accuracy, which is 0.08% lower than the RNN model (Other performance measure-
ments of the applied BERT model including precision, recall, and F1 score are 0.919, 0.924,
and 0.922, respectively. The hyperparameter settings for the deployed BERT model are
12 layers, 768 hidden layers, and 12 self-attention heads.). A larger embedding dimension
size does not guarantee better performance. For example, CNN with an embedding size
of 200 tends to have higher accuracy except for the combination of RNN, FastText, and
100-dimension in the two-category classification task. Between Word2Vec and FastTrack,
it is impossible to conclude whether a particular embedding is better for this sentiment
classification project. Word2Vec is a better match for CNN, while FastTrack generally yields
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better results with RNN. Overall, there is no outstanding branch in terms of accuracy, which
varies depending on different component mixes.

Table 2. Accuracy of all tested models.

Order Classification Embedding
Type

Embedding
Dimension

Neural Network
Model Accuracy

1 3 Word2Vec 100 CNN 82.64
2 3 Word2Vec 200 CNN 84.40
3 3 Word2Vec 300 CNN 84.08
4 3 Word2Vec 100 RNN 82.48
5 3 Word2Vec 200 RNN 80.56
6 3 Word2Vec 300 RNN 77.20
7 3 FastText 100 CNN 78.96
8 3 FastText 200 CNN 80.56
9 3 FastText 300 CNN 80.40

10 3 FastText 100 RNN 81.92
11 3 FastText 200 RNN 79.84
12 3 FastText 300 RNN 83.04
13 3 BERT - BERT 84.92
14 2 Word2Vec 100 CNN 91.94
15 2 Word2Vec 200 CNN 93.38
16 2 Word2Vec 300 CNN 92.84
17 2 Word2Vec 100 RNN 91.72
18 2 Word2Vec 200 RNN 91.72
19 2 Word2Vec 300 RNN 94.26
10 2 FastText 100 CNN 90.95
21 2 FastText 200 CNN 90.62
22 2 FastText 300 CNN 91.50
23 2 FastText 100 RNN 92.16
24 2 FastText 200 RNN 91.50
25 2 FastText 300 RNN 92.20
26 2 BERT - BERT 94.18

This study analyzes the sentiment of all collected tweets in 2019 using the BERT model
customized for two-category classification. Among the tested branches, BERT yields high
accuracy scores for all given tasks with relatively stable performance. BERT is the most
advanced neural network among the systems tested in the analysis, and it is designed to
handle complex sequential data such as natural languages [38]. It is also pre-trained in
such a way that it does not require extra components such as embedding. It is the more
straightforward system to deploy in this sentiment classification task compared to the
others. Overall, the study includes a sequential process to extract online public opinion.
First, a machine automatically collects user-generated texts, Twitter for this study, on a
particular subject for a given period. Second, human coders determine sentiments of
sample texts without cooperation, and majority rule decides a final sentiment label of a
text. Third, the labeled data train a deep learning model to build a sentiment classifier. The
study tests different algorithms with various factors, including embedding type and size,
and deploys the modified KoBERT model to analyze user-generated Korean texts within a
political context. Finally, all collected online texts become the online public opinion of a
certain subject in aggregation. The study statistically compares the online sentiment and
offline public opinion on a similar issue to examine the uniqueness of online public opinion.

4. Analysis

The present study utilizes supervised deep learning to extract public opinion from
the collected tweets. The trained neural network processes Twitter texts and generates
sentiment predictions. As explained in the previous section, the BERT model performs
sentiment analysis on user-generated Korean texts. Before entering the network, the data
requires cleanup. This preprocessing stage includes removing unnecessary words, punc-
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tuations, and special characters that offer no information to help determine user attitude.
The modified BERT model calculates the probability of whether a tweet’s sentiment leans
toward a positive or a negative feeling. Figure 1 presents the time-series graph of daily
aggregated sentiment in 2019, which shows 190 days with more negative sentiments and
175 days with greater positive sentiments. This trend reveals an extremely high volatility,
making it difficult to acknowledge a potential pattern.
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Figures 2 and 3 show the weekly and monthly transformations of the predicted
sentiments, respectively. The graphs reveal that volatility significantly decreases from the
daily measurement. While the online public had a positive feeling in the first half of 2019,
the general sentiment changed in the second half. There were more positive events in
the first half of the year, which included the third summit meeting between South and
North Korea on 18 September 2018. This hopeful ambience generated by the consistent
engagement between the two nations continued to 2019. Meanwhile, the leaders of the
United States and North Korea again had a surprise meeting at the Joint Security Area
of Pannumjeom briefly after the G20 meeting in 2019. This series of foreign affair events
created a positive sentiment among the online public. In addition, in 2019, the 100th year of
Samiljeol, Independence Movement Day, was commemorated, the movie Parasite won an
Oscar, and one of the South Korean national soccer teams placed second in the U20 World
Cup in the first half of that year.
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However, the second half of 2019 began with Japan’s export regulations on semicon-
ductor materials, which Japanese companies sell to South Korea. In August, South Korean
President Moon Jae In appointed university professor Guk Cho as minister of the Justice
Department, which caused massive outrage over suspicions that his family might abuse
his social authority. In December, the government laid stringent regulations on the real
estate market. In addition, the National Assembly passed a law to create an independent
investigation agency targeting high-ranked public officers. Indeed, the events in the second
half of 2019 are more controversial than the ones in the first half. Specifically, the online
public’s attitude toward the president was significantly shaped by the bickering over issues
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involving the former minister of justice and the installation of an investigative body for top
government officers.
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How do these online sentiment trends relate to traditionally measured public opinion?
The analysis examines correlations between online and offline measures of presidential
approval. Two polling agencies, Gallup and Realmeter, regularly report presidential
approval in South Korea to the public. Figure 4 presents the presidential approval ratings
measured online and offline. Neither polling agency has everyday values pertaining
to presidential approval. Realmeter has sufficient daily polls compared to daily online
sentiment values. The graph compares the online sentiment and Realmeter’s daily poll.
Both illustrated trends show high volatility.
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Table 3 shows correlations between daily online and offline values. Between the online
trend and Realmeter’s poll, correlation coefficients are 0.16 for negative sentiment and 0.13
for positive sentiment. Although these correlations are close to zero for the whole of 2019,
certain periods exhibit a similar pattern, such as the window between January and February,
in which public attitudes of both environments display common paths. Positive feeling
increases at the end of January and February. Positive sentiment significantly decreases at
the beginning of March but substantially increases at the end of June. According to the poll,
this rapid increase in positive sentiment also happens online.



Sustainability 2022, 14, 4113 10 of 16

Table 3. Correlation between online sentiments and Realmeter’s daily poll.

Online Sentiment

Positive Negative

Realmeter Daily Poll 0.127
(0.342)

0.164
(0.273)

Standard errors in parentheses.

Online and offline data have fundamental differences. Polls have a finite number
of people in a sample, whereas online collections do not restrict the number of tweets a
machine can collect. The total number of texts is different for each day, which naturally
increases volatility. Polls conduct surveys on multiple days to generate more stable values.
For example, Realmeter and Gallup use 3-day average values (Gallup also uses a 2-day
average value instead of a 3-day figure when the survey period includes a holiday). To
compare sentiment values between online and offline data, the study converts daily online
sentiments into weekly ones by averaging the online values on dates when offline polls are
available. Figure 5 illustrates the weekly trends in public opinion on the president. Polls
from the two agencies have an almost identical graph, but the online trend is different from
the offline one.
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Weekly sentiments have much less noise compared to the daily graphs. Table 4 shows
the correlations among these graphs. For the positive and negative sentiments, the real-time
tweets and the Realmeter poll have correlations of 0.19 and 0.28, respectively. The weekly
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data has higher coefficients than the daily data, indicating that volatility reduction only
improves the correlation with very limited level.

Table 4. Correlation between datasets and the Realmeter and Gallup weekly polls.

Online Sentiment

Positive Negative

Realmeter’s Weekly Poll 0.193
(0.607)

0.278
(0.449)

Gallup’s Weekly Poll −0.100
(74.233)

0.066
(58.458)

Standard errors in parentheses.

Between online and Gallup data, the coefficients are lower, −0.1 for the positive
sentiment and 0.07 for the negative sentiment, and they exhibit no relation.

Polls ask people direct questions on a particular issue. Meanwhile, online data have
no voluntary control; a machine simply collects available data from the Internet that fit
the scope of a subject. This fundamental difference may lead to a low level of correlation
between online and offline sentiments. The analysis examines two more comparisons to
understand how these online and offline public opinions are different. Online sentiments
can represent offline public opinion with time differences. Simply put, the way people
think in the real world can manifest in the online world sooner or later. The study measures
the correlations of both online and offline data with time adjustments. Table 5 illustrates
the relation between the two types of public opinion with various time differences.

Table 5. Correlation between the polls and online data with time adjustments.

Realmeter Gallup

Positive Negative Positive Negative

Online
Sentiments

t − 1 0.196
(0.655)

0.298
(0.477)

0.304
(0.006)

0.366
(0.005)

t − 2 0.194
(0.679)

0.307
(0.494)

0.310
(0.006)

0.386
(0.005)

t − 3 0.154
(0.664)

0.273
(0.484)

0.050
(0.007)

0.110
(0.005)

t + 1 0.180
(0.579)

0.288
(0.420)

0.040
(0.005)

0.103
(0.004)

t + 2 0.135
(0.593)

0.236
(0.429)

0.127
(0.006)

0.143
(0.006)

t + 3 0.026
(0.643)

0.162
(0.484)

0.212
(0.006)

0.254
(0.005)

Standard errors in parentheses.

Between Realmeter data and online sentiments, most improvements occur 1 and
2 days before the target date, t − 1 and t − 2. The correlation increases by 0.02 and
0.03 points for negative sentiments, respectively, and 0.003 and 0.001 points for positive
ones, respectively. The Gallup correlation increases with time adjustments. Two days before
the target date, t − 2, reveals the largest difference in correlations. The Realmeter and Gallup
results illustrate that online sentiment influences the formation of offline public opinion;
however, the relationships are not strong. The comparison between time-adjusted online
sentiments and offline polls also confirms that the two public opinions are independent of
each other regardless of time.

Public opinion from Twitter can represent specific groups in terms of age, gender,
and political ideology. To test this possibility, this study uses subgroup information from
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the polls and correlates the online opinions to these subgroups. Table 6 shows the corre-
lation coefficients for the different age groups. Focusing on the relation between online
sentiments and Realmeter, people in their 30s have the highest correlations at 0.185 and
0.233 for positive and negative sentiments, respectively. Meanwhile, those over 60 also
have statistically significant coefficients compared with other age groups at 0.21 and 0.176,
respectively. The 60-plus age group stands out in their correlations with the Gallup poll at
0.282 and 0.369, respectively.

Table 6. Correlation between datasets and the polls on different age groups.

Realmeter Gallup

Positive Negative Positive Negative

Online
Sentiments

20 0.100
(0.326)

0.240
(0.271)

0.266
(0.348)

0.071
(0.395)

30 0.185
(0.338)

0.233
(0.321)

0.167
(0.402)

0.123
(0.379)

40 0.116
(0.501)

0.212
(0.428)

0.030
(0.406)

0.065
(0.392)

50 0.014
(0.393)

0.156
(0.368)

−0.012
(0.379)

0.048
(0.331)

60+ 0.210
(0.488)

0.176
(0.258)

0.282
(0.340)

0.369
(0.256)

Standard errors in parentheses.

The general notion is that the younger generation actively uses SNS, yet this result
reveals a different story: older people may also passionately express their thoughts on
political issues through SNS. Gender reveals an intriguing result as well. The online
sentiments are closely related to Realmeter for males and Gallup for females. Table 7 shows
the detailed results for different gender groups.

Table 7. Correlation between datasets and the polls on gender.

Realmeter Gallup

Positive Negative Positive Negative

Online
Sentiments

Male 0.302
(0.562)

0.411
(0.484)

0.191
(0.606)

0.195
(0.499)

Female 0.063
(0.479)

0.156
(0.343)

0.320
(0.509)

0.283
(0.455)

Standard errors in parentheses.

With regard to Realmeter, online sentiment has the highest correlation with the male
group: 0.302 for positive and 0.411 for negative. These are significantly higher than the other
values except for Gallup’s online sentiments among females: 0.32 and 0.283, respectively.
The correlation values for these gender groups are notably higher than for the other possible
combinations.

Table 8 shows the correlation coefficients between online attitudes and political ideolo-
gies. There are three political ideology groups in South Korea: conservative, progressive,
and neutral.

The neutral group from the Realmeter poll has outstanding values compared with
the others: 0.310 for positive and 0.327 for negative. Other political ideology groups in the
same poll do not reveal any relations to online sentiments. Gallup’s conservative group
shows some correlation, but this is lower than the simple one-to-one comparison.
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Table 8. Correlation between datasets and polls on political ideology.

Realmeter Gallup

Positive Negative Positive Negative

Online
Sentiments

Conservative −0.127
(0.559)

0.015
(0.466)

0.135
(0.408)

0.198
(0.322)

Neutral 0.310
(0.317)

0.327
(0.280)

0.094
(0.432)

0.160
(0.371)

Progressive −0.263
(0.247)

−0.060
(0.373)

0.152
(0.479)

0.059
(0.492)

Standard errors in parentheses.

The analysis shows that online sentiments do not correlate to offline polls. Public
opinion extracted from Twitter provides a different and independent trend compared to
existing measures of presidential approval. In a small time-window, online and offline
sentiments may be similar, but they are not closely related for longer time frames. Trans-
forming online sentiments closer to the polls by reducing volatility increases the correlation
in a limited manner. In addition, shifting online sentiments before and after the given
date of the polls does not significantly increase the correlation. The time differential yields
mixed results between Gallup and Realmeter. Online presidential approval is not a subset
of offline ratings. All combinations of online and offline public opinion have only weak
correlations in terms of gender, age, and political ideology. The analysis consistently indi-
cates that presidential approval measured from Twitter is not substantially associated with
offline polls. The results imply that public opinions online can represent the independent
population as opposed to offline surveys.

5. Conclusions

This study investigates a method for measuring aggregated sentiment in cyberspace
and explores the characteristics of online sentiments by comparing them to offline polls. It
uses supervised deep learning to extract user attitudes from text and translates measured
sentiments into the public opinion of people online. The study emphasizes that the deep
learning model processes non-English user-generated data for sentiment analysis and its
application to politics. Presidential approval is the most popular and the most studied
public opinion in the field of political science. Many studies have been conducted to
understand its effects and determinants [50]. The present study analyzes presidential
approval by comparing and contrasting online ratings with offline ones. Evaluating online
public opinion involves three stages: first, a machine collects footprints of people from the
Internet. The massive amount of online textual data necessitates the use of a computer.
Second, human coders label a text with the appropriate attitude. This process allows
a machine to learn how to determine sentiments like a person. Third, deep learning
algorithms study human-coded text–sentiment pairs and determine sentiments for all
collected texts. The study calculates accuracy for all combinations using CNN, RNN, and
BERT with different embedding types and sizes.

This study finds that the best-fitting algorithm is the modified BERT model, from
which aggregated online sentiment is obtained. The trained algorithm yields a sentiment
prediction accuracy of 94.18%, which is better than the rate at which the coders unani-
mously determine sentiment for the prepared datasets (78.45%). This method illustrates
the possibility of collecting and translating unstructured data into a suitable form to use in
political science research. With proper data processing, a computer algorithm can extract
sentiment from plain text. Text–sentiment becomes a group attitude—in other words,
public opinion—when they are aggregated accordingly.

In addition, the study finds that online sentiments are different from offline polls.
Specifically, online sentiments toward a president do not correlate with conventional presi-
dential approval ratings. Online public opinion is much more volatile and instantaneous
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than offline. Weekly and monthly transformations, which are types of noise reduction, im-
prove correlation in a limited manner. Although certain time adjustments slightly increase
correlation, the results for polling agencies are mixed. Age and gender groups in offline
polls are not significantly highly correlated with online sentiment. The minor increase in
correlation depending on a comparison pair does not imply that online public opinion is a
subset of offline polls.

This study demonstrates that one may measure groups’ aggregated attitudes using
unstructured data from the Internet with the help of deep learning. It also explains that
public opinions from both online and offline environments are fundamentally different
through various correlation analyses. Online sentiments exist parallel to public opinion as
measured by polls. As people’s engagement with the Internet continuously increases, they
leave more clues about their thoughts and behaviors. Using these online traces has some
implications that can broaden our understanding of people and society.

This study has several limitations and possible improvements for future research must
be highlighted. First, the study only used user-generated Twitter texts. While this has
advantages, for instance, easy access via API and abundance of subsidiary information
except an actual text, it is one of many online platforms where online users reside. Therefore,
a mixture of different online services may deliver online public opinion similar to that of
offline. In addition, including other online channels will allow researchers to perform a
comparative analysis of mass opinions from these different services. Second, the study
includes Twitter texts from 2019. Considering the volatile political environment, future
research can incorporate data from a longer period. Moreover, it is possible to divide an
entire time into periods and analyze the differences between online and offline public
opinion to measure the potential influence between the two mass sentiments. Third, this
study explores the application of the method to analyze a political context, specifically
presidential approval. It is possible to measure different issues such as gender and economy
from cyberspace and illustrate characteristics of online public opinion through quantitative
and qualitative research. Finally, public opinion studies attempt to discover important
dependent and independent variables. Therefore, future research can investigate political
factors influencing the mass online opinion and political outcomes affected by online public
opinion including Twitter sentiments. This study can be considered as explorative research
if deep learning techniques can complement political science by processing and generating
relevant information from non-English unstructured data. Therefore, future research is
necessary to improve the method for measuring online public opinion and understand its
qualities to provide materials for more effective decision making.

The study focuses on how to measure online public opinion on a specific subject: the
president of South Korea. This method can expand to various studies including those on
environmental and cultural issues, which have greater online presence. It complements
traditional polling by providing an abundance of data and greater anonymity, which help
researchers better understand people’s aggregated thoughts. Future research can test the
feasibility of the method on various subjects and propose modifications depending on the
peculiarity of an issue. Furthermore, scholars must analyze which public opinion—online
or offline—is more important in decision-making processes to assess the practicality of
the methods.
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