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Abstract: The penetration of renewable energy sources has been intensified during the last decade to
tackle the climate crisis by providing clean energy. Among various renewable energy technologies,
wind turbines and photovoltaic systems have received increasing attention from investors. Generally,
electronic power converters are used to control renewable generations. The present study discusses
the power management of smart distribution networks enriched with wind and photovoltaic units.
The model aims to minimize the expected network operating cost of the system formulated as an
objective function regarding AC optimal power flow constraints. In addition, stochastic programming
based on unscented transformation is adopted to model the probable behavior of loads, renewable
generations, and energy market prices. The model employs a linear approximation model to burden
the complexity of the problem and achieve the optimum solution. The problem is tested to a 33-bus
system using the General Algebraic Modeling System (GAMS). The obtained results confirm the
proposed model’s potential in reducing energy costs, power losses, and voltage deviations compared
to conventional power flow studies. In the proposed scheme compared to network load distribution
studies, the active and reactive power losses, network energy costs, and voltage deviations are
improved by about 40.7%, 33%, 36%, and 74.7%, respectively.

Keywords: linear approximation; power scheduling; smart distribution network; renewable resources

1. Introduction
1.1. Motivation and Methodology

Due to the environmental effects of uncontrolled energy consumption, the applica-
tion of green technologies has been increasing progressively in place of the conventional
power plant as the main source of carbon emitters. The application of renewable energy
sources (RESs), e.g., wind systems (WS) and photovoltaic systems (PVs), has been receiving
significant attention to cope with both energy and climate change crises [1–3]. However,
increasing the penetration of these resources in the distribution network without active
management might cause power deviations in the system [4,5], leading to voltage devia-
tions in some buses due to voltage upsurge and dips in buses [6]. Such problems generally
occur due to incoordination and improper resource management, including active and
reactive power generated by RESs. Considering the economic and environmental benefits
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of RESs, the network operator tends to fulfill customers’ energy requirements through these
resources [7]. Although these resources are connected to the main grid via DC-AC and
AC-AC converters equipped with the insulated-gate bipolar transistor (IGBT) bridge tech-
nologies [8], the growing development would lead to voltage deviation (overvoltage) [9].
Nonetheless, if the reactive power of nondispatchable elements is appropriately managed,
the voltage profile can be controlled under the mentioned conditions. Thus, the proper
management of active and reactive powers generated by RESs could improve the operating
conditions of the distribution network [10,11].

In addition, operational problems typically have a low execution time; hence, these types
of problems require low computational time [6,9]. To this aim, implementing a simple and
linear model for the proposed network operation problem and modeling the uncertainties
based on the methods with a low number of scenarios can achieve a low computational
time [6]. Therefore, in order to achieve the mentioned goals (i.e., to improve the operation
status and computational time of the network-connected RESs), simultaneous management
of active and reactive power of smart distribution network using RES is conducted. In this
design, it is assumed that DC-AC or AC-AC converters between the mentioned network
resources are able to control both active and reactive power at the same time. Therefore, it
is possible to obtain a favorable operation status in the distribution network by controlling
them, especially in comparison with load flow studies [6,9]. In addition, linearization of
the mentioned design and modeling uncertainties based on the Unscented Transformation
method are appropriate ways for achieving low computational time.

1.2. Background

The exploitation of RESs in the distribution network has been studied in various works.
So far, multiple studies have focused on deploying distributed generations (DG) in distri-
bution systems. In [12], three reactive power control methods, including constant reactive
power, constant power factor, and mixed methods, have been used to adjust the voltage
profile. In [13], local voltage and reactive power control are provided by PVs. Ref. [14]
examines the correlation between DGs and upstream networks using telecommunications.
In this case, if a resource cannot modify the network indicators at the connection point,
adjacent resources are used to deal with it. In [15], the optimal location of PVs is determined
with the aim of minimizing network losses based on the daily load curve. The schedul-
ing of a networked microgrid highly penetrated with RESs and mobile storage–electric
vehicles (EVs) is discussed [16]. The model schedules resources in the day-ahead market
and participates in real-time to minimize unbalances. The study adopts a two-layer energy
management system (EMS) to manage microgrids, divided into single or aggregated micro-
grids. The first layer aims to minimize microgrids costs, while the second layer attempts to
provide the minimum operating and risk costs. The model minimizes the day-ahead and
real-time operational costs by adopting the second layer of the proposed EMS.

The application of EVs in a robust framework for optimal power management in
distribution systems is utilized in [17], where energy costs are minimized concurrently.
Furthermore, deterministic uncertainty sets are used to model uncertain parameters, in-
cluding loads, EVs energy requirements, and EVs charger capacity and charging rates. The
model adopts duality theory to turn the min-max model into a max model. The authors
in [18] propose a robust optimization scheduling model to control the robustness level in
an energy hub integrated with power-to-X technologies. An EMS is adopted [19] to reduce
carbon emissions and costs associated with installations, repair, and operating costs of DGs
and energy storage systems in an islanded hybrid system. The authors in [20] present an
approach for the combined optimization of natural gas and electricity optimal power flow
in a networked microgrid environment. Ref. [21] presents a novel EMS applied to a smart
distribution system, where virtual power plants (VPPs) engage in energy and reserve mar-
kets. The profit of VPPs is maximized through the first layer of EMS, while the coordination
of the VPP operator and power sources is handled in the second layer. The model can
minimize the distribution system’s energy loss and voltage deviations by coordinating VPP
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and distribution system operators. The objective function is linearized and constrained by
AC power flow equations. The authors in [20] propose an optimized operation model for
energy hubs. To provide flexibility to energy hubs with RESs, various systems, including
combined heat and power (CHP), storage, and incentive-based responsible load, are utilized.
The objective function of the structured problem minimizes overall operating cost, as well as
costs pertaining to reliability and flexibility services. The constraints consist of the AC power
flow model and reliability levels in the energy hub system. The information-gap decision
theory (IGDT) as a robust framework for an EMS is modeled in [22]. The hub operator
manages the output electrical energy of the hub using RESs, storage system, and CHP. The
authors in [22] present the optimal operation of microgrids containing DGs and thermal
units by employing a novel EMS. The thermal load is supplied by CHP, boiler, and thermal
storage systems. The model’s goal is to minimize three terms, comprising cost, energy loss,
and voltage deviations. The paper adopts a multi-objective optimization approach and
employs the ε-constraint technique to solve the problem.

1.3. Contributions

The literature review indicates that active power modeling is regarded in most power-
related energy literature. Nonetheless, the control over active powers of nondispatchable
resources is dismissed in literature since such resources are attractive to be deployed due to
being eco-friendly with low operating costs. The increasing penetration of nondispatchable
resources can adversely impact grid performance indicators such as voltage profiles. In
most research, the use of energy storage devices along with renewable sources has been
suggested to tackle the mentioned challenge. Storage devices store excess generations
during off-peaks and inject them into the network in need. So, planning cost increases due
to the installation cost of storage devices. The use of IGBT bridges in DC-AC or AC-AC
converters could help overcome the problem by controlling the reactive power of these
nondispatchable resources. Thus, the concurrent control over both active and reactive
powers would improve the operating indicators effectively. On the other hand, renewable
generations are highly dependent on external factors. Scenario-based stochastic modeling
is commonly utilized to model the uncertain behavior of these resources, which is prone to
high complexity.

Therefore, to address the research gaps, this paper manages the active and reactive
power of the smart distribution network using renewable energy sources. This could reduce
the negative effects of renewable resources in the network by controlling their reactive
power. The proposed model also deals with various uncertainties, the modeling of which
with scenario-based stochastic programming will increase the computational time of the
problem. However, it should be noted that in the problems of power system operation,
the executive step is generally small, so low computational time is of great importance in
this type of problem [21,22]. It is considered as the next aim of the paper. It is, therefore,
desirable that the method of uncertainty modeling generates a lower number of scenarios.
Moreover, achieving simpler operating models such as its linearized model will be effective
in reducing the computational time of the problem.

To overcome the obstacles mentioned above, this paper presents active-reactive power
management of smart distribution networks (SDNs) penetrated with RESs, including
WSs and PVs. The objective is to minimize the expected operating cost of the network,
considering the technical constraints, e.g., the AC power flow and operating constraints
of resources. Herein, the first-order Taylor series are employed to linearize power flow
equations. In addition to this, the capacity constraints of resources, lines, and distribution
substations, which are circular planes, are approximated to a regular polygon plane to
achieve a linear model. The stochastic programming based on unscented transformation
(UT) is employed to model the uncertainty of load, energy price market, WS, and PV
active powers while mitigating the computational solving time of the problem. The novel
contributions of the paper include:
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• Simultaneous management of active and reactive power of smart distribution network
using RESs to compensate for the adverse impacts of these resources in the network
and improve network operational indicators,

• Modeling uncertainties of renewable power, energy prices, and load by UT approach to
achieve the least number of scenarios and burden the problem’s computational complexity.

• Developing a linear approximation problem using the first-order Taylor series and
approximating a circular plane to a regular polygon plane.

1.4. Paper Layouts

The layout of the paper is summarized as follows. Section 2 develops nonlinear and
stochastic modeling of the proposed scheme. Section 3 describes the linear approximation
model. Section 4 deals with numerical results, and conclusions are presented in Section 5.

2. Stochastic Scheduling of RESs in SDN
2.1. Power Management of RESs

The active and reactive power management problem of an SDN penetrated with
renewable resources is modeled in this study. The objective is to minimize the expected
energy cost regarding the technical network constraints as follows:

min ∑
v∈ϕs

∑
t∈ϕt

πvλo,vPGre f ,o,v (1)

Subject to:

PGi,o,v + PWi,o,v + PVi,o,v − PDi,o,v = ∑
κ∈ϕb

ALi,κ PLi,κ,o,v ∀i, o, v (2)

QGi,o,v + QWi,o,v + QVi,o,v −QDi,o,v = ∑
κ∈ϕb

ALi,κQLi,κ,o,v ∀i, o, v (3)

PLi,κ,o,v = gi,κ(Vi,o,v)
2 −Vi,o,vVκ,o,v ·{

gi,κ cos
(
θi,o,v − θj,o,v

)
− bi,κ sin(θi,o,v − θκ,o,v)

}
∀i, κ, o, v

(4)

QLi,κ,o,v = −bi,κ(Vi,o,v)
2 + Vi,o,vVκ,o,v ·{

bi,κ cos
(
θi,o,v − θj,o,v

)
+ gi,κ sin(θi,o,v − θκ,o,v)

}
∀i, κ, o, v

(5)

θi,o,v = 0 ∀i = re f , o, v (6)

Vmin
i ≤ Vi,o,v ≤ Vmax

i ∀i, o, v (7)

(PLi,κ,o,v)
2 + (QLi,κ,o,v)

2 ≤
(
SLmax

i,κ
)2 ∀i, κ, o, v (8)

(PGi,o,v)
2 + (QGi,o,v)

2 ≤ (SGmax
i )2 ∀i = re f , o, v (9)

PVi,o,v = PSi,o,v + PLVi,o,v ∀i, o, v (10)

PLVi,o,v = η
pv
i PVi,o,v + η

qv
i |QVi,o,v | ∀i, o, v (11)

(PVi,o,v)
2 + (QVi,o,v)

2 ≤ (SVmax
i )2 ∀i, o, v (12)

PWi,o,v = Wi,o,v + PLWi,o,v ∀i, o, v (13)

PLWi,o,v = η
pw
i PWi,o,v + η

qw
i |QWi,o,v | ∀i, o, v (14)

(PWi,o,v)
2 + (QWi,o,v)

2 ≤ (SWmax
i ) ∀i, o, v (15)
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Equation (1) describes the objective function of the problem aiming to minimize the
expected network operating cost. The cost is the product of the power received from the net-
work and the price of energy [23]. Equations (2)–(6) pertain to power flow Equations [24–28],
respectively, denoting the active and reactive power balances in each bus, the active and reac-
tive power flow in each line, and the voltage angle of the reference bus. PG and QG represent
the active and reactive power of the upstream network injected into the medium voltage
(MV) distribution network. The distribution network is assumed to be interconnected to the
upstream transmission network at the reference bus. Therefore, PG and QG have non-zero
values for the reference bus and equate to zero for other buses. The voltage magnitude of
the distribution network should be within its boundaries to prevent equipment insulation
damage against overvoltage and network shut down against intense voltage drop as modeled
in Equation (7). The branch flow limits of the distribution and transmission networks are
formulated in Equations (8) and (9), respectively [29,30].

The operating model of RESs (WS and PV) are presented in (10)–(15). The PV output
is modeled in Equation (10) while considering the power loss stemming from the DC-AC
inverter unit as formulated in Equation (11). The apparent power of the PV unit needs
to be within its boundaries as Equation (12). The same constraints are imposed on WS
generations, as shown in Equations (13)–(15)

2.2. Uncertainty Modeling

In the problem described in Equation (1)–(15), active and reactive loads, renewable
generations, energy prices are uncertain. Utilizing a Monte-Carlo simulation to model
uncertain behavior of parameters might cause the model to be intractable [4,9]. Thus,
the application of a UT approach can be effective in mitigating the complexity of such a
large-scale problem [31]. The method generally uses the 2n + 1 model, where n represents
the number of uncertainty parameters, and 2n + 1 represents the number of scenarios.
Therefore, the number of extracted scenarios equals 11 in the proposed model, including
five uncertain parameters. More specific details of the UT method can be fetched from [31].

Consider y = f (x) as the uncertain nonlinear stochastic problem, where y ∈ Rr indicates
the vector of uncertain outputs containing r elements, and x ∈ Rn denotes the vector of
uncertain inputs with covariance and the mean values of σx and µx. The non-symmetrical
entries provide the covariance of many uncertain variables, while the matrix σx symmetrical
entries give the variance of uncertain parameters. The UT method is utilized for finding
the mean and covariance output variables µy and σy [31]:

- Step 1: 2n + 1 samples are taken from the input uncertain data:
x0 = µx (16)

xv = µx +

√
n

1−W0 σx ∀v = 1, 2, . . . , n (17)

xv = µx −
√

n
1−W0 σx ∀v = 1, 2, . . . , n (18)

In the above equations, W0 represents the weight of the mean value µx.

- Step 2: The weighting coefficient of each sample point are evaluated:

W0 = W0 (19)

Wv =
1−W0

2n
∀v = 1, 2, . . . , n (20)

Wv+n =
1−W0

2n
∀v + n = n + 1, n + 2, . . . , 2n (21)

n

∑
v=1

Wv = 1 (22)
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- Step 3: 2n + 1 points are sampled to the nonlinear function to find output samples
based on (23).

yv = f (xv) (23)

- Step 4: The mean µy and covariance σy are evaluated values of the output variable ν:

µy =
n

∑
v=1

Wvνv (24)

σy =
n

∑
v=1

Wv

(
νv − µy

)
−
(
νv − µy

)T (25)

3. Linear Model of the Scheme

As can be seen in the previous section, Equations (4), (6), (8), (9), (11), (12), (14) and
(15) are nonlinear. In addition to the nonlinearities in the problem, Equations (4) and (5)
are also non-convex. Hence, the model presented in the previous section is formulated as
a non-convex nonlinear programming (NLP). Accordingly, considering the large scalability
of the distribution network, the model would be intractable and cannot reach the optimal
local solution due to the non-convex property of the problem [25,26,32]. It is also possible
for meta-heuristic algorithms to reach the optimal solution in distribution networks, but the
computational time would be high [33]. However, it should be noted that execution time is
low in operational problems, so low computational time is of particular importance [21,22].
In addition, the proposed problem is non-convex, so different solvers obtain different
solutions, and a unique solution could not be obtained [23,24]. Therefore, the current study
develops a linear model of the proposed Section 2 problem to overcome the obstacle. Linear
solvers can obtain a unique solution in low computational time. The linearization process
is as follows.

3.1. Linear Formulation for Power Flow Model

Equations (4) and (5) are nonlinear. However, the following conditions are generally
met in the distribution network:

• At the beginning and end of a distribution line, the voltage angle is less than 6◦ (0.105 rad) [34].
• The bus voltage magnitudes can be presumed 1 per unit (p.u.) if it varies from 0.9 to

1.05 p.u.

Given the above assumptions, the bus voltages can be written as 1 + ∆V, where ∆V is
lower than 1. Moreover, cos(θi − θκ) and sin(θi − θκ) would be 1 and (θi − θκ), respectively.
The values of ∆V2, ∆V × (θi − θκ), and ∆Vi × ∆Vκ are negligible, so they are disregarded in
the model. Thus, Equations (4) and (5) are modified as Equations (26) and (27), respectively.
Besides, the term “voltage deviation” is adopted in the model (28) so as to alter (7).

PLi,κ,o,v = gi,κ(∆Vi,o,v − ∆Vκ,o,v) + bi,κ(θi,o,v − θκ,o,v) ∀i, κ, o, v (26)

QLi,κ,o,v = −gi,κ(θi,o,v − θκ,o,v)− bi,κ(∆Vi,o,v − ∆Vκ,o,v) ∀i, κ, o, v (27)

Vmin
i − 1 ≤ ∆Vi,o,v ≤ Vmax

i − 1 ∀i, o, v (28)

3.2. Linear Approximation of Circular Equations

As discussed above, Equations (8), (9), (12) and (15) are nonlinear. The equations
represent the circle inequality, where the range of changes in active and reactive powers are
within a circle with a radius of maximum apparent power. To determine the linear equations
corresponding to the circular plane, Equation (29) is used as illustrated figuratively in
Figure 1 [34,35]. Thus, a circular plane is developed by sharing several square planes. The
linear expression of the circular plane is as (30) according to Figure 1.

p2 + q2 ≤ s2 (29)
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p ≤ s o, p ≥ −s o, q ≤ s & q ≥ −s (30)

Figure 1. Linearization method of the circular plane.

According to Figure 1, Equation (30) is prone to a significant linearization error, which
can be lessened by increasing the number of square plates with a different angle from the
horizontal axis. Thus, the circle’s circumference is divided into equal parts (∆ω), initially.
The line equation is then calculated for each ς ∆ω, where ς represents the counter of the
line segment. Eventually, the value of the Equation obtained for the line is less than or
equal to the circle’s radius (s). In this case, the linear approximation equation related to the
circular plane can be written as (31):

q cos(ς× ∆ω) + p sin(ς× ∆ω) ≤ s ς ∈ ϕς = {0, 1, . . . , nς − 1} (31)

where nς is equal to the number of linear parts. For instance, if we use 180 square planes to
linearize a circular plane, then nς is equal to 180 and ∆ω is 2◦. In this case, the planes q ≤ s
and p ≤ s correspond to ς = 0 and ς = 45, respectively. Thus, according to the above
explanations, the linear approximations of Equations (8), (9), (12) and (15) are:

cos(ς× ∆ω)× PLi,κ,o,v + sin(ς× ∆ω)×QLi,κ,o,v ≤ SLmax
i,κ ∀i, κ, o, v, ς (32)

cos(ς× ∆ω)× PGi,o,v + sin(ς× ∆ω)×QGi,o,v ≤ SGmax
i ∀i = re f , o, v, ς (33)

cos(ς× ∆ω)× PVi,o,v + sin(ς× ∆ω)×QVi,o,v ≤ SVmax
i ∀i, o, v, ς (34)

cos(ς× ∆ω)× PWi,o,v + sin(ς× ∆ω)×QWi,o,v ≤ SWmax
i ∀i, o, v, ς (35)

3.3. The Linear Correlation of the Losses Associated with Wind and Aggregated PV Units

Equations (11) and (14) are nonlinear due to the inclusion of the absolute magnitude
of the reactive power of these elements. Regarding the reactive power part, the reactive
power of the proposed systems is capacitive or negative owing to inductive loads. Thus,
the linear model of Equations (11) and (14) will be reformulated as Equations (36) and (37).
As discussed, the reactive power is negative, which has a direct impact on increasing the
losses. Thus, the negative coefficient of the reactive power appears in the loss equations:

PLVi,o,v = η
pv
i PVi,o,v − η

qv
i QVi,o,v ∀i, o, v (36)

PLWi,o,v = η
pw
i PWi,o,v − η

qw
i QWi,o,v ∀i, o, v (37)
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All in all, the proposed linear problem (LP) will be:

min ∑
v∈ϕs

∑
t∈ϕt

πvλo,vPGre f ,o,v (38)

Subject to:
Constraints (2), (3), (6), (10), (13), (26)–(28) and (32)–(37).

4. Numerical Results and Discussion
4.1. Data

The 33-bus distribution network is used to test the problem and is shown in [36]. The
branch data for the 33-bus network is retrieved from [36]. It is worth mentioning that the
base power and voltage are 1 MVA and 12.66 kV. The voltage magnitudes of buses are
presumed to be within the range of 0.9 p.u. and 1.05 p.u. The peak demand of the system
is fetched from [36]. The 33-bus distribution network’s required data are represented in
Figure 2. Herein, we assume two wind units with the capacity of 800 kVA are located
at buses 15 and 30. Herein, the PV units in each bus are controlled in an aggregated
framework, and the capacity of each PV system is set at 5 kVA.

Figure 2. System’s data; (a) load factor [9], (b) energy price [9], (c) PV active power [19], (d) wind
system active power [19], (e) PVs number in each bus.

4.2. Results

The following three cases are studied:

• Case A: power management of SDN in the presence of wind units.
• Case B: power management of SDN in the presence of PV units.
• Case C: power management of SDN penetrated with wind and PV units.
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It is worth mentioning that the problem is solved for both the NLP and LP models
for the cases above. The problem was solved by CONOPT/CPLEX solvers of the General
Algebraic Modeling System (GAMS) software [37–39].

• Case A

In this case, active and reactive power management of SDNs penetrated with wind
units is analyzed. Figures 3–5 illustrate the results, including active and reactive power
curves of wind units, apparent power curve, active and reactive network losses, voltage
profile at peak period (20:00), and daily voltage curve of Bus 18. According to Figure 2a,
the active power requirement of the grid is mainly provided by wind units due to its low
operating costs. Additionally, according to Figure 3b, wind units have a high potential of
constantly producing reactive power, which could remarkably reduce voltage deviations
and network losses. As shown, the active and reactive power provided by wind units is
similar in both NLP and LP models, which is stemmed from the unequal circular constraint
for the wind unit approximated with a high number of planes (180 planes).

Figure 3. Expected daily curve: (a) active power, (b) reactive power in case A.

Figure 4 demonstrates the apparent daily power and active and reactive losses. As
shown in Figure 4a, the graph of changes in apparent power is similar to the load pro-
file shown in Figure 2a. Furthermore, the apparent power of the network in the presence
of wind units is much lower than that of the case without wind unit’s penetration since
a large volume of demand is met by the wind unit. Moreover, according to Figures 4b and 6c,
active and reactive power losses are reduced, which stem from local generations by wind units
reducing the tension on congested transmission and distribution networks. In other words,



Sustainability 2022, 14, 4273 10 of 21

the power loss of the system would be reduced. Additionally, note that in the LP model, due
to the linearization of active and reactive power flow equations, the active and reactive losses
of the network will be zero [40]. Since the network loss rate is about 3% of the total network
load, it can be concluded that the computational error of the LP model would be about 3%.
For instance, in Figure 4a, the apparent power at peak load time (20:00) for the NLP model is
around 3 p.u. It is around 2.9 p.u. for the LP model. Therefore, the computational power error
in the LP model compared to the NLP model is around 3% (3/(2.9–3)).

Figure 4. Expected daily curve: (a) apparent power, (b) active power loss, (c) reactive power loss in
case A.



Sustainability 2022, 14, 4273 11 of 21

Figure 5. (a) expected voltage profile of buses at hour 20, (b) expected daily voltage curve of Bus 18 in
case A.

Figure 5 depicts the voltage profile of the network at the peak period (hour 20) and
the daily voltage curve of Bus 18. According to Figure 5a, the highest voltage drop occurs
without the presence of the wind unit. In contrast, the voltage drop rate is significantly
reduced with the penetration of wind units. It is worth pointing out that the voltage
magnitude of bus 18 is lower than other buses because Bus 18 has the longest distance from
the reference bus than the rest of the buses. Hence, the line impedance and the loading
are high. Additionally, the results advocate that the daily voltage magnitude would be
improved with the penetration of wind units, as shown in Figure 5b. Furthermore, it can
be seen that the maximum error for LP and NLP model in Figure 5 is minor. Thus, the LP
model leads to a minute computational error for bus voltages.

• Case B

In this case, active and reactive power management of the SDN in the presence of PV
systems is investigated. Figure 6 depicts the expected daily curve for active and reactive
power of PVs. As can be seen, the PV unit provides a major share of the SDN active
demands with low operational costs. Furthermore, considerable reactive power is fed into
the main grid; so that the bus voltages approach one per unit. The PV inverter could also
control the reactive power at night via switching. It can also be perceived that the results
of both linear and nonlinear models are similar due to the precise approximation of the
circular plane, which stems from using many sides.

Figures 7 and 8 provide the apparent power, active and reactive power loss, and net-
work voltage profile. As shown from Figure 7a, PVs’ active and reactive power production
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results in apparent power mitigation in the network during 9:00–00:00 h in both LP and
NLP models, compared to case A. However, there is an increase in the apparent power of
the network in this case due to the high injection of reactive power by PVs into the grid in
comparison to case A. Similar trends for active and reactive losses are realized in this case.
From Figure 8, it can be advocated that the PV consideration in the SDN flattens the voltage
profile of the network. Last, the voltage difference of NLP and LP models is tangible in this
case, with a maximum error of 0.5%.

Figure 6. Expected daily curve of, (a) active power, (b) reactive power in Case B.

• Case C

In this case, active and reactive power management of the SDN in the presence of
both wind and PV systems is explored. Herein, nonlinear (Equations (1)–(15)) and linear
(Equations (38) and Constraints) equations are regarded in the model. The daily active
and reactive power curves generated by wind and PV units are presented in Figures 9
and 10, respectively. As can be seen, a large share of the active demand is provided by
renewable resources so as to minimize the system’s operating cost in case C. However, the
reactive power is lower than in previous cases, resulting in lower power losses. The results
pertained to the power losses, and the voltage profile of case C is shown in Figures 11
and 12. As shown in Figure 11, the local renewable penetrations would reduce the apparent
power received from the upstream network and reduce the active and reactive losses of
the network compared to case A. Moreover, the voltage profile is smoother in this case
compared to case A.

The results also advocate that the power losses in the LP model are zero as in previous
cases, so the computational error for the active and reactive power of the network is around
3%. The calculation error of the voltage magnitude is about 0.5%.
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Figure 7. Expected daily curve of, (a) apparent power, (b) active power loss, (c) reactive power loss
in case B.

• Comparison of case studies

In this section, the operating indicators such as active and reactive power losses during
peak interval (hour 20), energy cost, and maximum voltage deviation for power flow
studies of various case studies are tabulated in Table 1. In case studies considering the
presence of a fixed capacitor bank, it is usually assumed that they are located at buses
15, 18, 28, and 33 with a capacity of 0.3 MVAr, and the reactive power is always injected
into the network. In this case, a term +QCi,o,v (QC, representing the reactive power of
the capacitor bank) is placed to the left of Equation (3), and its value is equal to 0.3 in all
simulation hours and scenarios in the mentioned buses. In the case studies using a switched
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capacitor bank, it is assumed that they are located on buses 15, 18, 28, and 33, and their
capacity is 0.3 MVAr with five steps. As mentioned before, the term +QCi,o,v is added to
the left of Equation (3). The constraint QCi,o,v = Q0× xCi,o,v ∀i, o, v, xC ∈ {1, 2, 3, 4, 5} is
also added to problem (38), where xC represents the integer variable corresponding to the
operating step of the switched capacitive bank. Q0 is the reactive power per step, which is
equal to 0.06 MVAr (0.3/5).

Figure 8. (a) Expected voltage profile at hour 20, (b) expected daily voltage curve of Bus 18 in case B.

Figure 9. Cont.
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Figure 9. Expected daily curve of, (a) active power, (b) reactive power for all wind systems in case C.

Figure 10. Expected daily curve of, (a) active power, (b) reactive power for all PVs in case C.

As is given in Table 1, the proposed LP model fails to calculate active and reactive
power losses. However, the deviation of energy costs and maximum voltages in the LP
model is intangible compared to the NLP model. More importantly, according to Table 1,
the computational time is minute compared to the NLP model. Thus, the computational
error can be neglected in return for the fast convergence of the LP model. Additionally,
it can be seen that wind turbine penetration would reduce active power losses during
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peak hours. In contrast, when PV units are penetrated in the SDN, there is little effect
on lowering active power losses in the system. Nonetheless, lower reactive power losses
would be realized with PV units’ penetration. All things considered, the energy cost,
reactive power, and computation time of the system reduce altogether remarkably with PV
and WS penetrations.

Figure 11. Expected daily curve of, (a) apparent power, (b) active power loss, (c) reactive power loss
in case C.
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Figure 12. (a) Expected voltage profile at hour 20, (b) expected daily voltage curve of Bus 18 in case C.

The proposed design in the presence of wind and photovoltaic systems has been able
to reduce active power losses by about 40.7% (0.221 (0.131–0.221)) compared to network
load flow. Reactive power losses are reduced by about 33%, energy costs are reduced by
36%, and voltage deviations are reduced by about 74.7%. In addition, Table 1 presents the
comparison results of computational time for the uncertainty modeling by UT and scenario-
based stochastic programming (SBSP). In SBSP, a combination of Monte Carlo simulation
(MCS) and Kantorovich simulation methods are used. MCS first generates a large number of
scenarios (here 1000 scenarios). In each scenario, the number of uncertainties is determined
based on their mean value and standard deviation, and then the probability of each selected
amount of load and energy price is calculated from the normal probability distribution
function. The probability of the power output of the wind system (photovoltaic system)
is determined by the Weibull (Beta) probability distribution function. Afterward, the
probability of each scenario is equal to the product of the probability of load, energy price,
and renewable power. As a scenario reduction method, Kantorovich selects a certain
number (here 50 scenarios) of the generated scenarios and applies them to the problem,
so that their probability of occurrence is high and they are close to each other. Based on
Table 1, it can be seen that the computational time of UT is less than the SBSP method.

It is noteworthy that according to Table 1, the RESs without reactive power control
have less ability to improve operational indicators than the case with reactive power control.
Of course, in this section, three cases are considered to control the reactive power, (1) the
reactive power of the network is controlled by a fixed capacitor bank, (2) the reactive
power of the network is controlled by a switched capacitor bank, (3) the reactive power
of the network is controlled by the RESs. In case one, only a fixed value of reactive power
is injected into the network; in case two, the change of reactive power injected into the
network is stepwise, because the control of reactive power by the switched capacitor bank
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is reduced. In case three, however, the injectable reactive power changes continuously, as
shown in Figures 9b and 10b. According to Table 1, it can be seen that continuous control
of reactive power has better results in improving the operational indicators such as power
losses, voltage deviation, and energy cost.

Table 1. Value of Operation Indices in Different Case Studies.

Parameter
Power Loss (p.u.) at

Hour 20:00 Energy Cost ($) Maximum Voltage
Deviation (p.u.)

Calculation Time (s)
Active Reactive

Model LP NLP LP NLP LP NLP LP NLP LP NLP

Uncertainty Model UT UT SBSP UT SBSP

SDN without renewable penetration 0 0.221 0 0.130 3197 3225 0.0866 0.087 0.3 0.51 35 52

SDN with WS penetration (without
reactive power control) 0 0.178 0 0.121 2438 2465 0.0546 0.054 1.28 1.61 125 159

SDN with WS penetration (with
reactive power control) 0 0.135 0 0.96 2436 2463 0.0328 0.033 1.4 1.73 145 178

SDN with PV penetration (without
reactive power control) 0 0.214 0 0.126 2835 2862 0.0723 0.072 1.5 1.88 155 190

SDN with PV penetration (with
reactive power control) 0 0.206 0 0.102 2832 2859 0.0457 0.046 1.6 1.97 167 201

SDN with WS and PV penetration
(without reactive power control) 0 0.172 0 0.119 2039 2066 0.0506 0.050 1.9 2.35 203 256

SDN with WS and PV (without
reactive power control) and fixed

capacitor bank penetration
0 0.163 0 0.112 2038 2065 0.0427 0.042 2.1 2.49 211 265

SDN with WS and PV (without
reactive power control) and switched

capacitor bank penetration
0 0.151 0 0.103 2037 2064 0.0356 0.035 2.9 3.43 254 302

SDN with WS and PV penetration
(with reactive power control) 0 0.131 0 0.87 2037 2064 0.0218 0.022 2.1 2.54 219 272

5. Conclusions

The paper presented the problem of active and reactive power management of SDNs
penetrated with wind units and aggregated PV systems. The units were equipped with
power electronics converters to control the active and reactive powers. In the proposed
model, the objective function aimed to minimize the expected operating cost of the system
subjected to the AC power flow equations and the operating model of WSs and PVs.
Moreover, the unscented transformation method was employed to model uncertainties
associated with load, wind and PV power, and power prices. Then, a linear model was
developed to burden the complexity of the nonlinear models. Lastly, the obtained numerical
results indicated that the linear model had a lower computational error than the nonlinear
model, around 3% and 0.5%, respectively, for active and reactive power of the network
and voltage magnitude. Since the linear model’s convergence was faster than that of
the nonlinear model, the obtained linear model was an appropriate approximation for
the nonlinear model in the proposed model. The computational time was reduced to
around 2 to 3 s, while the accurate model was around 200 to 250 s. Moreover, renewables
penetration not only provided low-cost power to consumers but also improved the voltage
of the system. On the whole, the proposed scheme simultaneously decreased active and
reactive power losses, energy costs, and voltage deviations, so that these indices were
reduced (improved) by around 40.7%, 33%, 36%, and 74.7%, respectively, in the proposed
scheme compared to network load flow studies.
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Nomenclature

Sets and Indices
i, κ Bus indices
ς Index of the linearization segment of the circular Equation
ref Slack bus
o Index of operation hour
$ Index of scenario
φb Set of buses
φς Set of linearization segment of the circular Equation
φt Set of time
φs Set of scenario
Constants
AL Coefficients matrix (i,j) is 1 if there is a line between buses i and j, and is zero otherwise
B Susceptance of the line (p.u.)
G Conductance of the line (p.u.)
nς Number of linearization segments of the circular Equation
PD Active load (p.u.)
PS Power of PV cells (p.u.)
QD Reactive load (p.u.)
SGmax Capacity of the upstream network (p.u.)
SLmax Line capacity (p.u.)
SVmax Capacity of the aggregated PV systems (p.u.)
SWmax Capacity of the wind unit (p.u.)
Vmax Upper voltage magnitude (p.u.)
Vmin Lower voltage magnitude (p.u.)
W Wind power (p.u.)
ηpv Active power factor in the loss equation of aggregated PV systems
ηpw Active power factor in the loss equation of wind unit
ηqv Reactive power factor in the loss equation of aggregated PV systems
ηqw Reactive power factor in the loss equation of wind unit
λ Price of energy ($/MWh)
π Occurrence probability of a scenario
∆ω Angle deviation (rad)
Variables
PG Active power injected by the upstream network (p.u.)
PL Active power flowing through the line (p.u.)
PLV Losses of the aggregated PV systems (p.u.)
PV Active power of the aggregated PV systems (p.u.)
PW Active power of the wind unit (p.u.)
PLW Losses of the wind unit (p.u.)
QG Reactive power injected by the upstream network (p.u.)
QL Reactive power flowing through the line (p.u.)
QV Reactive power of the aggregated PV systems (p.u.)
QW Reactive power of the wind unit (p.u.)
V Voltage magnitude (p.u.)
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∆V Voltage deviation (p.u.)
θ Voltage angle and/or power angle (rad)
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