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Abstract: The uplift capacity factor of cylindrical suction caisson in anisotropic and inhomogeneous
clays considering the adhesion factor at the interface is investigated in this paper. The finite element
limit analysis based on lower bound and upper bound analyses is used for analyzing purposes. The
anisotropic undrained shear model is employed to describe the anisotropic and inhomogeneous clay.
The impact of these dimensionless parameters on the ratio of inhomogeneity or strength gradient
ratio, the adhesion factor, the ratio of depth over diameter, and the ratio of anisotropic undrained
shear strengths on the uplift resistance and the collapse mechanisms of suction caisson foundations
are determined. The multivariate adaptive regression splines technique is employed to access the
sensitivity of all considered dimensionless parameters on the uplift capacity factor and to propose an
empirical design equation as an effective tool for predicting the uplift capacity factor. The results
presented in this paper can be guidance for the preliminary design of suction caissons in anisotropic
and non-homogeneous clays that are useful for engineering practitioners.

Keywords: uplift capacity; caisson; anisotropy; non-homogeneity; limit analysis; MARS

1. Introduction

Offshore geotechnical engineering is concerned with the design and construction of
foundations for structures in the sea (e.g., Mortlock et al. [1]; Mahmoodian [2]). One of
the favorite fixed-platform anchors is a suction caisson widely used to support floating
offshore platforms, such as oil platforms, offshore drilling rigs, offshore wind turbines,
and accommodation platforms to the seafloor at great depths. This suction caisson can
be described as an open-bottomed tube embedded in the marine sediment. To create the
negative pressure at the contact between the cap and skirt of the caisson and the soil, the
water at that contact area is pumped out from the inside of the caisson. An overview of
suction caissons can be found in Randolph and Gourvenec [3].

The field experiments on suction caissons were carried out by Andersen et al. [4] and
Dyvik et al. [5]. The centrifuge model tests were also employed by Clukey and Morrison [6],
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and Cauble [7], to study the behavior of suction caissons. By using several numerical
methods, several researchers perform the numerical investigation of the response of suction
caissons (e.g., Geer [8]; Bransby and Yun [9]; Gourvenec [10]; Gourvenec and Barnett [11];
Yun and Bransby [12]; Mana and Gourvenec [13]; Jin et al. [14]; Liu et al. [15]; Ukritchon
et al. [16]; Keawsawasvong and Ukritchon [17]; Ukritchon and Keawsawasvong [18]).
Among those researchers, Keawsawasvong and Ukritchon [17] and Ukritchon and Keaw-
sawasvong [18] used lower bound (LB) and upper bound (UB) finite element limit analyses
(FELA) (Sloan [19]), which are powerful numerical techniques to derive solutions of the
uplift capacity of suction caissons. Note that the FELA technique combines the theorem
of classical plasticity, the technique of numerical discretization using finite elements, and
mathematical optimization. The true solutions to stability problems can be obtained by
bracketing the lower bound (LB) and upper bound (UB) solutions.

Those previous works are limited to the cases of suction caissons in isotropic clays
obeying the Tresca failure criterion. Ladd [20] proposed that the anisotropic properties of
natural clays could have a significant effect on the capacity of foundations on anisotropic
clays in which the undrained shear strengths of anisotropic clays are directionally depen-
dent. The findings by Ladd [20] and Ladd and DeGroot [21] indicated that the strength of
anisotropic clays significantly depends on three unequal undrained strengths, including
the undrained strengths obtained from triaxial compression, triaxial extension, and direct
simple shear. Recently, by adopting the concept of the generalized Tresca criterion by
Krabbenhoft and Lyamin [22], Krabbenhoft et al. [23] proposed a novel failure criterion
well-known as the anisotropic undrained shear (AUS) failure criterion for anisotropic clays.
In their study, three undrained strengths were acquired from triaxial compression, triaxial
extension, and direct simple shear, and they are computed in this failure criterion.

New solutions for the uplift capacity of cylindrical suction caissons in anisotropic and
inhomogeneous clay with linearly increasing undrained shear strengths are presented in
this paper. To derive the uplift capacity solutions, the LB and UB FELA in conjunction with
the AUS failure criterion are employed. Note that several works using the FELA technique
and various failure criteria for anisotropic clays have been carried out by Ukritchon and
Keawsawasvong [24–28], Keawsawasvong and Ukritchon [29,30], Yodsomjai et al. [31],
Keawsawasvong and Lawongkerd [32], Nguyen et al. [33], Keawsawasvong et al. [34,35],
and Lai et al. [36,37] to compute the stability solutions of several geotechnical problems.
In this paper, the numerical results are presented in the form of design charges and tables
for practical use. The failure mechanisms of cylindrical suction caissons in anisotropic and
inhomogeneous clay were also conducted in the paper to portray the essential effects of all
considered parameters. Furthermore, the sensitivity of each dimensionless input parameter
is investigated using the multivariate adaptive regression splines (MARS) technique. All
FELA results are used as the training data in the MARS model to propose an efficient
equation for engineering practitioners. It is noted that this is the first time a study has been
carried out to investigate the uplift capacity of cylindrical suction caissons in anisotropic
and inhomogeneous clay by using FELA, the AUS model, increasing undrained shear
strengths, and the MARS model.

2. Problem Formulation

A problem definition of a cylindrical suction caisson in clay with linearly increasing
anisotropic shear strength is shown in Figure 1. Due to the symmetry of the cylindrical
suction caisson, only half of the domain is modelled in the FELA analysis. Note that the line
of symmetry is set to be located at the left boundary of the domain. The depth and diameter
of the cylindrical caisson are L and D, respectively. The caisson is assumed to be perfectly
rigid and is subjected to the ultimate uplift load P. The AUS failure criterion with the
associated flow rule (Krabbenhoft et al. [23]) is used as the failure criterion of anisotropic
clay. Three anisotropic undrained shear strengths obtained from triaxial compression (suTC),
triaxial extension (suTE), and direct simple shear (suDSS) are the input strengths of this
failure criterion. In this study, the clays are assumed to be weightless (e.g., γ = 0). Note that
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using the weightless is the common way to compute the pullout capacity in the undrained
analysis since we only consider the part of Nc in Terzaghi’s bearing capacity theory. The
same approach has been applied in previous research on stability analysis under undrained
conditions (e.g., references [32–35,38,39]). The adhesion factor (α) is also employed to
represent the limiting shear strength at the soil–caisson interface. At the interface, the
anisotropic undrained shear strengths can be defined as suTCi, suTEi, and suDSSi, which can
be basically calculated from αsuTC, αsuTE, and αsuDSS, respectively. Note that the range of α
is between zero (fully smooth interface) and one (fully smooth interface).
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Figure 1. Problem definition of a cylindrical suction caisson in anisotropic and inhomogeneous clay.

According to the research of Krabbenhoft et al. [23] and Ladd [20], two anisotropic
strength ratios for anisotropic clays can be defined as re = suTE/suTC and rs = suDSS/suTC. The
harmonic mean is determined by a relationship between re and rs (Krabbenhoft et al. [23]),
as follows:

rs =
2re

1 + re
(1)

As seen in Equation (1), only one anisotropic strength ratio used in the parametric
study is re since rs is a function of re. Note that the range of re varies from 0.5 to 1. Changing
in re can cause a change in the formation of the failure surface of the AUS failure criterion
(Krabbenhoft and Lyamin [22]; Krabbenhoft et al. [23]). In addition, the cases of isotropic
clays can be simulated by defining re = 1 or suTC = suTE = suDSS so that the AUS failure
criterion becomes the Tresca failure criterion.

An experimental investigation by Bishop [40] proved that saturated normally consoli-
dated and lightly overconsolidated clays consist of an increment in the undrained strength,
which almost linearly increases with depth. As a result, this study imposes three anisotropic
undrained shear strengths (suTC, suTE, and suDSS) to be linearly increased with depth, and
are expressed as:

suTC(z) = suTC0 + ρz (2)

suTE(z) = suTE0 + reρz (3)

suDSS(z) = suDSS0 + rsρz (4)

where suTC0, suTE0, and suDSS0 denote the anisotropic undrained shear strengths at the
ground surface; ρ denotes the linear strength gradient; and z denotes the depth measured
from the ground surface.
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By adopting the dimensionless technique, the considered parameters can be reduced
so that four dimensionless input parameters are employed in this study, which can be
written as a function of the uplift capacity factor as follows:

N =
P

AsuTC0
= f

(
L
D

, α, re, m =
ρD

suTC0

)
(5)

A =
π

4
D2 (6)

where N = P/AsuTC0 represents the uplift capacity factor; L/D represents the ratio of depth
to diameter; α represents adhesion factor at the interface between caisson and clay; m or
ρD/suTC0 represents the shear strength gradient ratio; and re represents the anisotropic
strength ratio. The ranges of four dimensionless parameters in all studied cases of the
paper are presented in Table 1. Considering the ranges of parameters can show the effect of
the variability of soil properties in the real design (e.g., references [41,42]). It is useful for
practical engineers in the initial design.

Table 1. Range of parameter.

Parameters Input Values

L/D 0.2, 0.6, 1, 2, 5, 10

m = ρH/suTC0 0, 0.2, 0.6, 1, 2, 5

α 0, 0.2, 0.4, 0.6, 0.8, 1

re 0.5, 0.6, 0.7, 0.8, 0.9, 1.

3. Modelling of Cylindrical Suction Caisson

The commercial software for the LB and UB FELA, namely OptumG2 [43], is used to
numerically derive the uplift capacity factor of the cylindrical suction caissons in anisotropic
and inhomogeneous clays with linearly increasing strengths. In OptumG2, UB elements
employ six-node elements with the quadratic interpolation of unknown displacements
being continuous between elements, while LB elements employ three-node elements with
the linear interpolation of unknown stresses, where stress discontinuity is permitted to
occur at the shared edges of adjacent triangles [44–46].

The FELA model of a cylindrical suction caisson subjected to a vertical uplift load is
shown in Figure 2. In this paper, the undrained stability analyses of a spherical cavity in
anisotropic clay cover a wide range of input parameters as follows: cover depth L = 0.2–10 m,
D = 1 m, soil unit weight = 0, suTC0 = 4–20 kPa, and re = 0.5–1. Note that each studied
dimensionless parameter in the following analyses covers a wide range (show in Table 1), as
follows: (1) L/D = 0.2–10; (2) m = 0–5; and (3) α = 0–1 (4) re = 0.5–1. The utilized input values
of each parameter do not affect the solutions to the established dimensionless problem.
The standard boundary conditions are imposed in the FELA analysis for all numerical
models. The efficient technique of automatic mesh adaptivity with shear dissipation control
is activated in OptumG2 in order to increase the accuracy of the computed LB and UB
results. Using this technique, meshes will automatically increase in sensitive zones with
high plastic-shearing strain. This study employs five adaptive steps of meshing with an
initial mesh number of 5000 elements and a final mesh number of 10,000 elements. Note
that the final adaptive meshes can be used as the revealed failure mechanisms of cylindrical
caissons in anisotropic and inhomogeneous clay obeying the AUS failure criterion. The full-
tension contact at the soil–structure interface is assumed to simulate the fully developed
suction force between the cap and the skirt of the caisson and the underlying clay. The
ultimate uplift load P is computed using LB and UB FELA analyses in OptumG2. The
ultimate uplift load is then normalized to obtain the uplift capacity factor N according to
the expression in Equation (5).
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Figure 2. Numerical model of a cylindrical suction caisson in OptumG2.

4. Verification

The results of the uplift capacity factor of a cylindrical suction caisson, N, are deter-
mined from LB and UB FELA to be the average solutions, and these results are compared
with previous works. The comparison is the cases of cylindrical suction caissons in homo-
geneous and isotropic clays, where re = 1 and m = 0. The obtained results are compared
with the existing results: (i) the results from finite element analysis by Ukritchon et al. [16],
(ii) the results from finite element limit analysis by Keawsawasvong et al. [34]. The com-
parison is shown in Figure 3. It can be seen that the present results are well fitted with the
previous works for all cases of different values of the adhesion factor (α = 0, 0.2, 0.4, 0.6, 0.8,
and 1).

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 21 
 

. 

Figure 3. Comparison of the present study and those available from the literature for the cases of 
isotropic and homogenous clays (re = 1, m = 0). 

5. Numerical Results and Discussion 
In this paper, all results of the uplift bearing factor N obtained from the average 

values between LB and UB FELA are prepared in Tables 2–4. Figure 4 shows the variation 
of the uplift capacity factor N by changing the ratio of depth over diameter L/D for the 
cases of α = 0.7 with m = (0, 0.6, 1, 5). As a result, the nonlinear relationship between the 
uplift capacity factor N and the ratio of depth over diameter L/D can be observed for all 
cases of m and re. An increase in L/D yields a nonlinear increase in N. It is due to the fact 
that increasing the size of the caisson can directly increase the uplift capacity. 
Furthermore, as seen in Figure 4a, the nonlinear relationship is convex while the others 
show the concave relationships in Figure 4b–d. The rate of the increase (or gradient of 
line) of N in Figure 4b–d is changed to be higher when the value of L/D is approximately 
larger than five. Additionally, an increase in the value of re and m can produce an increase 
in N. The impacts of L/D on the failure patterns of the final adaptive meshes of suction 
caisson in anisotropic and inhomogeneous clays for the cases of re = 0.7, α = 1, and m = 5 
with L/D = (1, 2, 5, 10) are shown in Figure 5a–d, respectively. The shear dissipation 
contours of the suction caisson for the same cases are shown in Figure 6a–d. It can be seen 
that the refined mesh contains a large number of elements in the shear failure zones. As 
the values of L/D increase, the sizes of the failure patterns increase in both horizontal and 
vertical directions. The failure zones start from the bottom of the caisson and go up to the 
ground surface. This is the typical failure type of an uplifting foundation. Based on these 
failure patterns, it can be concluded that an increase in the size of the failure pattern 
cooperates with an increase in L/D. 

Table 2. Results obtained from the present analysis for the cases of m = 0 and m = 0.2. 

α L/D 
m = 0 m = 2 

re  re  
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 

0.0 
0.2 4.03 4.68 5.29 5.86 6.41 6.93 4.35 5.05 5.70 6.32 6.90 7.46 
0.6 4.66 5.40 6.11 6.77 7.41 8.02 5.38 6.24 7.05 7.81 8.54 9.24 
1 5.10 5.93 6.71 7.44 8.14 8.82 6.27 7.28 8.22 9.12 9.97 10.80 

Figure 3. Comparison of the present study and those available from the literature for the cases of
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5. Numerical Results and Discussion

In this paper, all results of the uplift bearing factor N obtained from the average values
between LB and UB FELA are prepared in Tables 2–4. Figure 4 shows the variation of
the uplift capacity factor N by changing the ratio of depth over diameter L/D for the
cases of α = 0.7 with m = (0, 0.6, 1, 5). As a result, the nonlinear relationship between
the uplift capacity factor N and the ratio of depth over diameter L/D can be observed
for all cases of m and re. An increase in L/D yields a nonlinear increase in N. It is due
to the fact that increasing the size of the caisson can directly increase the uplift capacity.
Furthermore, as seen in Figure 4a, the nonlinear relationship is convex while the others
show the concave relationships in Figure 4b–d. The rate of the increase (or gradient of line)
of N in Figure 4b–d is changed to be higher when the value of L/D is approximately larger
than five. Additionally, an increase in the value of re and m can produce an increase in N.
The impacts of L/D on the failure patterns of the final adaptive meshes of suction caisson
in anisotropic and inhomogeneous clays for the cases of re = 0.7, α = 1, and m = 5 with
L/D = (1, 2, 5, 10) are shown in Figure 5a–d, respectively. The shear dissipation contours
of the suction caisson for the same cases are shown in Figure 6a–d. It can be seen that the
refined mesh contains a large number of elements in the shear failure zones. As the values
of L/D increase, the sizes of the failure patterns increase in both horizontal and vertical
directions. The failure zones start from the bottom of the caisson and go up to the ground
surface. This is the typical failure type of an uplifting foundation. Based on these failure
patterns, it can be concluded that an increase in the size of the failure pattern cooperates
with an increase in L/D.

Table 2. Results obtained from the present analysis for the cases of m = 0 and m = 0.2.

α L/D

m = 0 m = 2

re re

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

0.0

0.2 4.03 4.68 5.29 5.86 6.41 6.93 4.35 5.05 5.70 6.32 6.90 7.46

0.6 4.66 5.40 6.11 6.77 7.41 8.02 5.38 6.24 7.05 7.81 8.54 9.24

1 5.10 5.93 6.71 7.44 8.14 8.82 6.27 7.28 8.22 9.12 9.97 10.80

2 5.92 6.89 7.80 8.67 9.50 10.31 8.31 9.66 10.93 12.14 13.29 14.41

5 7.29 8.51 9.69 10.81 11.90 12.96 14.00 16.32 18.54 20.65 22.72 24.72

10 8.42 9.91 11.35 12.73 14.06 15.36 23.60 27.61 31.45 35.13 38.78 42.33

0.2

0.2 4.17 4.84 5.47 6.07 6.63 7.17 4.50 5.22 5.90 6.53 7.14 7.71

0.6 5.04 5.84 6.59 7.30 7.97 8.62 5.80 6.71 7.57 8.38 9.15 9.89

1 5.71 6.62 7.47 8.26 9.03 9.76 6.95 8.05 9.08 10.05 10.97 11.85

2 7.06 8.17 9.22 10.21 11.15 12.05 9.71 11.24 12.67 14.02 15.31 16.54

5 10.02 11.59 13.07 14.47 15.80 17.08 18.16 21.00 23.70 26.23 28.68 31.02

10 13.80 15.97 18.01 19.92 21.74 23.47 34.48 39.86 44.91 49.67 54.30 58.73

0.4

0.2 4.31 5.00 5.65 6.26 6.84 7.40 4.65 5.39 6.09 6.74 7.36 7.96

0.6 5.42 6.27 7.07 7.82 8.53 9.21 6.21 7.18 8.09 8.94 9.76 10.53

1 6.31 7.30 8.21 9.08 9.90 10.69 7.62 8.81 9.92 10.96 11.95 12.90

2 8.19 9.45 10.63 11.73 12.78 13.79 11.09 12.80 14.39 15.88 17.31 18.67

5 12.74 14.66 16.44 18.11 19.69 21.19 22.29 25.67 28.82 31.77 34.60 37.28

10 19.17 22.02 24.65 27.10 29.40 31.56 45.34 52.07 58.34 64.18 69.78 75.07
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Table 2. Cont.

0.6

0.2 4.44 5.15 5.81 6.44 7.04 7.62 4.78 5.54 6.26 6.93 7.57 8.19

0.6 5.79 6.69 7.53 8.32 9.08 9.84 6.62 7.64 8.60 9.50 10.35 11.16

1 6.90 7.96 8.95 9.88 10.76 11.60 8.29 9.56 10.75 11.86 12.92 13.92

2 9.32 10.72 12.03 13.25 14.41 15.50 12.46 14.34 16.09 17.73 19.29 20.77

5 15.46 17.72 19.80 21.75 23.57 25.29 26.41 30.31 33.92 37.29 40.49 43.51

10 24.53 28.06 31.29 34.27 37.06 39.65 56.16 64.26 71.74 78.65 85.21 91.38

0.8

0.2 4.55 5.28 5.96 6.60 7.22 7.81 4.90 5.68 6.41 7.10 7.76 8.39

0.6 6.16 7.11 8.00 8.83 9.62 10.37 7.01 8.09 9.10 10.04 10.94 11.79

1 7.49 8.63 9.69 10.68 11.62 12.51 8.94 10.31 11.57 12.75 13.87 14.94

2 10.44 11.98 13.42 14.76 16.02 17.21 13.82 15.88 17.79 19.57 21.26 22.85

5 18.17 20.77 23.16 25.37 27.44 29.39 30.51 34.93 39.01 42.79 46.36 49.73

10 29.89 34.09 37.92 41.44 44.70 47.73 66.96 76.43 85.11 93.09 100.65 107.65

1.0

0.2 4.60 5.34 6.04 6.70 7.33 7.93 4.95 5.75 6.49 7.20 7.87 8.52

0.6 6.46 7.34 8.42 9.30 10.05 10.93 7.33 8.49 9.56 10.55 11.50 12.39

1 7.99 9.24 10.39 11.45 12.45 13.40 9.53 10.99 12.35 13.62 14.75 15.94

2 11.45 13.21 14.79 16.25 17.62 18.91 15.08 17.36 19.45 21.38 23.19 24.90

5 20.82 23.77 26.49 28.98 31.29 33.43 34.49 39.49 44.06 48.25 52.20 55.88

10 35.19 40.08 44.52 48.56 52.30 55.75 77.49 88.42 98.40 107.50 115.90 123.80

Table 3. Results obtained from the present analysis for the cases of m = 0.6 and m = 1.

α L/D

m = 0.6 m = 1

re re

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

0.0

0.2 4.95 5.74 6.48 7.17 7.83 8.46 5.52 6.40 7.22 7.98 8.71 9.41

0.6 6.77 7.84 8.86 9.81 10.72 11.58 8.12 9.41 10.62 11.76 12.84 13.87

1 8.52 9.89 11.16 12.37 13.52 14.62 10.73 12.44 14.05 15.56 17.00 18.38

2 12.96 15.05 17.02 18.88 20.66 22.38 17.56 20.39 23.04 25.55 27.95 30.27

5 27.19 31.65 35.91 39.95 43.92 47.76 40.32 46.91 53.20 59.17 65.01 70.68

10 53.48 62.47 71.11 79.37 87.57 95.52 83.31 97.29 110.70 123.55 136.25 148.65

0.2

0.2 5.12 5.93 6.69 7.41 8.08 8.73 5.70 6.61 7.45 8.24 8.99 9.70

0.6 7.25 8.39 9.46 10.47 11.42 12.34 8.66 10.02 11.30 12.50 13.63 14.72

1 9.35 10.82 12.20 13.49 14.73 15.91 11.70 13.54 15.26 16.88 18.41 19.89

2 14.86 17.19 19.39 21.44 23.41 25.30 19.96 23.09 26.02 28.79 31.43 33.96

5 34.16 39.53 44.59 49.35 53.96 58.38 50.12 57.99 65.39 72.39 79.16 85.64

10 75.32 87.07 98.16 108.60 118.80 128.50 116.10 134.20 151.30 167.45 183.15 198.15

0.4

0.2 5.28 6.12 6.90 7.63 8.33 9.00 5.88 6.81 7.67 8.48 9.25 9.98

0.6 7.72 8.93 10.05 11.11 12.12 13.08 9.19 10.62 11.96 13.22 14.41 15.55

1 10.16 11.74 13.21 14.60 15.92 17.17 12.65 14.62 16.45 18.17 19.81 21.37

2 16.74 19.31 21.72 23.97 26.13 28.18 22.32 25.76 28.97 31.99 34.87 37.61

5 41.12 47.37 53.21 58.68 63.94 68.94 59.89 68.99 77.51 85.50 93.16 100.50

10 97.07 111.60 125.15 137.70 149.90 161.40 148.80 171.10 191.80 211.25 229.85 247.55
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Table 3. Cont.

0.6

0.2 5.43 6.29 7.09 7.85 8.56 9.25 6.04 6.99 7.88 8.71 9.50 10.26

0.6 8.18 9.45 10.63 11.74 12.80 13.80 9.71 11.21 12.61 13.93 15.17 16.36

1 10.96 12.65 14.22 15.69 17.09 18.41 13.59 15.68 17.62 19.44 21.17 22.82

2 18.59 21.41 24.03 26.48 28.82 31.04 24.67 28.40 31.89 35.15 38.25 41.21

5 48.02 55.16 61.78 67.96 73.85 79.42 69.59 79.95 89.57 98.53 107.10 115.25

10 118.80 136.10 152.00 166.80 180.90 194.10 181.40 207.80 232.20 254.85 276.40 296.75

0.8

0.2 5.55 6.43 7.27 8.03 8.77 9.48 6.17 7.15 8.06 8.91 9.73 10.51

0.6 8.64 9.96 11.21 12.36 13.46 14.51 10.22 11.79 13.25 14.62 15.92 17.16

1 11.75 13.54 15.21 16.76 18.24 19.64 14.51 16.72 18.78 20.70 22.52 24.26

2 20.42 23.48 26.32 28.97 31.48 33.86 26.97 31.02 34.77 38.28 41.61 44.77

5 54.91 62.92 70.32 77.19 83.72 89.87 79.26 90.84 101.55 111.50 120.95 129.90

10 140.50 160.50 178.85 195.80 211.80 226.80 213.90 244.45 272.50 298.40 322.85 345.80

1.0

0.2 5.61 6.50 7.34 8.13 8.89 9.44 6.23 7.22 8.14 9.02 9.85 10.66

0.6 9.01 10.41 11.73 12.95 14.10 15.11 10.63 12.29 13.84 15.28 16.64 17.94

1 12.45 14.38 16.18 17.80 19.36 20.84 15.32 17.68 19.87 21.92 23.84 25.67

2 22.12 25.46 28.56 31.41 34.10 36.65 29.11 33.53 37.59 41.36 44.92 48.28

5 61.51 70.54 78.78 86.36 93.52 100.20 88.42 101.45 113.45 124.40 134.70 144.45

10 161.55 184.35 205.50 224.60 242.55 259.25 245.35 280.35 312.55 341.70 369.00 394.60

Table 4. Results obtained from the present analysis for the cases of m = 2 and m = 5.

α L/D

m = 2 m = 5

re re

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

0.0

0.2 6.88 7.96 8.97 9.91 10.81 11.66 10.71 12.39 13.93 15.37 16.72 18.00

0.6 11.44 13.25 14.94 16.54 18.04 19.49 21.23 24.59 27.71 30.64 33.43 36.08

1 16.19 18.76 21.18 23.45 25.60 27.67 32.44 37.58 42.40 46.92 51.23 55.35

2 29.00 33.64 38.02 42.14 46.10 49.90 63.18 73.31 82.80 91.76 100.35 108.60

5 73.07 84.99 96.34 107.15 117.60 127.90 171.30 199.20 225.70 250.90 275.50 299.40

10 157.80 184.25 209.60 233.85 257.90 281.25 381.25 445.10 506.25 564.80 622.80 679.00

0.2

0.2 7.09 8.20 9.24 10.21 11.12 12.00 11.00 12.71 14.29 15.77 17.15 18.46

0.6 12.13 14.03 15.81 17.48 19.06 20.57 22.36 25.86 29.12 32.18 35.08 37.85

1 17.52 20.26 22.83 25.25 27.54 29.74 34.81 40.27 45.37 50.16 54.70 59.07

2 32.64 37.75 42.56 47.07 51.39 55.53 70.53 81.64 92.01 101.75 111.10 120.00

5 89.98 104.10 117.40 129.90 142.00 153.70 209.35 242.20 273.15 302.30 330.50 357.60

10 218.05 252.10 284.20 314.55 344.00 372.25 523.80 605.60 682.80 755.65 826.50 894.25

0.4

0.2 7.29 8.43 9.49 10.49 11.43 12.32 11.28 13.02 14.64 16.15 17.56 18.91

0.6 12.79 14.79 16.65 18.39 20.04 21.62 23.45 27.09 30.49 33.66 36.68 39.56

1 18.80 21.73 24.46 27.01 29.44 31.75 37.14 42.90 48.27 53.32 58.11 62.69

2 36.23 41.81 47.03 51.92 56.60 61.06 77.77 89.82 101.05 111.55 121.60 131.20

5 106.75 123.00 138.20 152.45 166.20 179.25 247.20 284.95 320.20 353.20 385.00 415.20

10 277.95 319.70 358.60 394.90 429.75 462.90 665.50 765.55 858.60 945.55 1029.50 1109.00
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Table 4. Cont.

0.6

0.2 7.48 8.65 9.74 10.76 11.72 12.65 11.54 13.33 14.98 16.52 17.97 19.35

0.6 13.45 15.53 17.47 19.29 21.01 22.65 24.50 28.29 31.82 35.12 38.25 41.23

1 20.08 23.17 26.05 28.74 31.30 33.74 39.42 45.47 51.12 56.42 61.45 66.24

2 39.76 45.82 51.45 56.72 61.75 66.53 84.95 97.90 110.00 121.30 132.00 142.30

5 123.45 141.80 158.95 174.85 190.15 204.55 284.90 327.35 366.90 403.85 439.15 472.55

10 337.90 387.10 432.70 475.00 515.25 553.25 807.15 924.95 1034.00 1135.00 1231.50 1322.50

0.8

0.2 7.64 8.83 9.95 10.99 11.99 12.94 11.76 13.59 15.27 16.85 18.33 19.75

0.6 14.09 16.26 18.27 20.16 21.96 23.66 25.54 29.46 33.11 36.53 39.77 42.86

1 21.32 24.59 27.61 30.44 33.13 35.69 41.64 48.00 53.92 59.46 64.73 69.73

2 43.25 49.77 55.82 61.47 66.84 71.93 91.99 105.90 118.80 130.85 142.30 153.20

5 140.05 160.55 179.55 197.20 213.95 229.85 322.30 369.65 413.45 454.15 492.90 529.55

10 397.60 454.30 506.60 554.80 600.45 643.30 948.35 1084.00 1209.00 1324.00 1433.00 1535.50

1.0

0.2 7.72 8.92 10.05 11.12 12.13 13.10 11.87 13.69 15.41 17.02 18.54 20.00

0.6 14.61 16.89 19.01 20.99 22.86 24.64 26.35 30.48 34.30 37.85 41.24 44.46

1 22.36 25.88 29.09 32.10 34.92 37.60 43.55 50.29 56.56 62.18 67.91 73.15

2 46.48 53.56 60.10 66.13 71.83 77.26 98.40 113.60 127.40 140.25 152.40 163.95

5 156.05 178.70 200.00 219.35 237.70 254.85 357.45 410.40 459.45 504.05 546.25 586.00

10 454.80 520.35 580.00 634.25 685.20 732.85 1084.50 1240.00 1382.50 1512.00 1633.50 1747.50

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 21 
 

0.6 13.45 15.53 17.47 19.29 21.01 22.65 24.50 28.29 31.82 35.12 38.25 41.23 
1 20.08 23.17 26.05 28.74 31.30 33.74 39.42 45.47 51.12 56.42 61.45 66.24 
2 39.76 45.82 51.45 56.72 61.75 66.53 84.95 97.90 110.00 121.30 132.00 142.30 
5 123.45 141.80 158.95 174.85 190.15 204.55 284.90 327.35 366.90 403.85 439.15 472.55 

10 337.90 387.10 432.70 475.00 515.25 553.25 807.15 924.95 1034.00 1135.00 1231.50 1322.50 

0.8 

0.2 7.64 8.83 9.95 10.99 11.99 12.94 11.76 13.59 15.27 16.85 18.33 19.75 
0.6 14.09 16.26 18.27 20.16 21.96 23.66 25.54 29.46 33.11 36.53 39.77 42.86 
1 21.32 24.59 27.61 30.44 33.13 35.69 41.64 48.00 53.92 59.46 64.73 69.73 
2 43.25 49.77 55.82 61.47 66.84 71.93 91.99 105.90 118.80 130.85 142.30 153.20 
5 140.05 160.55 179.55 197.20 213.95 229.85 322.30 369.65 413.45 454.15 492.90 529.55 

10 397.60 454.30 506.60 554.80 600.45 643.30 948.35 1084.00 1209.00 1324.00 1433.00 1535.50 

1.0 

0.2 7.72 8.92 10.05 11.12 12.13 13.10 11.87 13.69 15.41 17.02 18.54 20.00 
0.6 14.61 16.89 19.01 20.99 22.86 24.64 26.35 30.48 34.30 37.85 41.24 44.46 
1 22.36 25.88 29.09 32.10 34.92 37.60 43.55 50.29 56.56 62.18 67.91 73.15 
2 46.48 53.56 60.10 66.13 71.83 77.26 98.40 113.60 127.40 140.25 152.40 163.95 
5 156.05 178.70 200.00 219.35 237.70 254.85 357.45 410.40 459.45 504.05 546.25 586.00 

10 454.80 520.35 580.00 634.25 685.20 732.85 1084.50 1240.00 1382.50 1512.00 1633.50 1747.50 
 

  
(a) (b) 

  
(c) (d) 

Figure 4. Impact of L/D on the uplift capacity factor N for the cases of α = 1: (a) m = 0, (b) m = 0.6, (c) 
m = 1, (d) m = 5. 
Figure 4. Impact of L/D on the uplift capacity factor N for the cases of α = 1: (a) m = 0, (b) m = 0.6,
(c) m = 1, (d) m = 5.
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The effects of the shear strength gradient ratio m on the uplift bearing factor N for the 
cases re = 0.5 with different values of α and L/D are depicted in Figure 7. Shown in Figure 
7a–d are cases of L/D = (0.2, 0.6, 2, 5), respectively. A linear relationship between N and m 
can be observed for all cases of α and L/D. An increase in m causes a linear increase in N. 
This is because the caissons can obtain a more mobilized resistance due to an increase in 
the undrained shear strength of the soil with depth. Note that a larger value of α produces 
a larger value of N. In addition, together with the growth of L/D, the gradient of the N and 
m relationship becomes greater owing to the increase of α. The comparison of four 
potential failure patterns (shear dissipation contour) is described in Figure 8 for various 
values of m = (0, 1, 2, 5). This comparison is based on the cases of re = 0.9, L/D = 5, and α = 
1. The results show that the failure zone increases as m increases. This finding is 
compatible with the results showing an increase of N due to an increase of m. 
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Figure 6. Comparison of shear dissipations of the cylindrical suction caissons for different values of
L/D with re = 0.7, α = 1, m = 5: (a) L/D = 1, (b) L/D = 2, (c) L/D = 5, (d) L/D = 10.

The effects of the shear strength gradient ratio m on the uplift bearing factor N for
the cases re = 0.5 with different values of α and L/D are depicted in Figure 7. Shown in
Figure 7a–d are cases of L/D = (0.2, 0.6, 2, 5), respectively. A linear relationship between
N and m can be observed for all cases of α and L/D. An increase in m causes a linear
increase in N. This is because the caissons can obtain a more mobilized resistance due to an
increase in the undrained shear strength of the soil with depth. Note that a larger value of
α produces a larger value of N. In addition, together with the growth of L/D, the gradient
of the N and m relationship becomes greater owing to the increase of α. The comparison
of four potential failure patterns (shear dissipation contour) is described in Figure 8 for
various values of m = (0, 1, 2, 5). This comparison is based on the cases of re = 0.9, L/D = 5,
and α = 1. The results show that the failure zone increases as m increases. This finding is
compatible with the results showing an increase of N due to an increase of m.
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Figures 9 and 10 show the impacts of the adhesion factor of α on the uplift capacity
factor of N and the failure patterns, respectively. As shown in Figure 9, a linear relationship
between N and α is observed for all cases of m = 1 with various values of L/D and re. The
value of N is not much changed by increasing α for cases of L/D = 0.2, 0.6, 1, 2, except for
cases of L/D = 5, 10. This finding shows that the influence of L/D seems to be stronger
than the influence of α. In Figure 10, the effect of α on the failure patterns is investigated
through four cases of α = (0.2, 0.4, 0.8, 1) in which the other parameters are fixed as re = 0.7,
L/D = 2, and m = 2. It is found that the variation of α does not significantly influence the
change in failure patterns.
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Figure 10. Comparison of shear dissipations of the cylindrical suction caissons for different values of
α with re = 0.7, L/D = 2, m = 2: (a) α = 0, (b) α = 0.4, (c) α = 0.8, (d) α = 1.

The impact of the anisotropic undrained shear strength ratio re on the uplift capacity
factor N is demonstrated in Figure 11 for the cases of α = 1 and different values of m and
L/D. Shown in Figure 11a–d are the cases of L/D = (0.2, 0.6, 2, 10), respectively. The convex
relationship between N and re is observed for all cases of m and L/D. The value of N
increases with the rise of re due to the increase of the extension of the undrained shear
strength. Additionally, the rate of the increase in N is developed when the value of m is
growing. The influence of re on the failure patterns is examined for the cases of re = (0.5,
0.7, 0.9, 1), as shown in Figure 12a–d, respectively. This investigation is based on the cases
of α = 1, L/D = 5, and m = 5. The results show that the size of the failure pattern is bigger in
both horizontal and vertical directions when the value of re is greater.
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6. Empirical Prediction by MARS Model

The above dimensionless parametric studies express that the coupling impacts among
multiple input parameters are enormously complex. Thus, it is necessary to examine
the sensitivity of each parameter on the uplift bearing factor of N. It is noted that the
sensitivity analysis of all input parameters is useful for practical engineering because
it can provide optimization strategies for the initial design of suction caissons. In this
study, the multivariate adaptive regression splines (MARS) technique is applied in the
sensitivity analysis.

MARS is a successful automated regression tool for fitting the relationship between
input and out parameters in multi-dimensions. MARS is considered a curve-based machine
learning model [47–50]. Compared to other machine learning approaches, such as artificial
neutrons networks, Gaussian process regression, stochastic gradient-boosting trees, and
support vector regression, Mars seems to be more effective [47,48]. The concept of the
MARS model is shown in Figure 13. MARS is partitioned data in many data groups that are
suitable for the linear regression model. It aims to simplify a complex nonlinear regression
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to a multi-linear regression. The boundary of each group is determined by Knot values.
The position of the Knot is selected by an adaptive regression algorithm. The regression
line in each data group is mathematically described by the basic function, as shown in
Equation (7) [49,50].

BF = max (0, x − t) =
{

x − t if x ≥ t
0 otherwise

(7)

where x is an input variable and t is a threshold value. The MARS algorithm includes two
main steps. Firstly, MARS generates a number of basic functions, i.e., a number of data
groups to increase the accuracy of the regression. Later, the least effective terms are cleared
using a pruning algorithm based on generalized cross-validation (GCV) [51–53]. To build
the closed-form equation between the input variables and output results, MARS combines
basic functions, as follows:

f (x) = a0 +
M

∑
i=1

aigi(X) (8)

where a0 is the constant, M is the number of BFs, gi is the ith BF, and ai is the coefficient of
gi. The details of the MARS model can be seen in Zhang [54].
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Due to the effectiveness of the MARS model in data analysis, it was applied to various
geotechnical issues. For instance, Lai et al. [55] adopted the MARS model to build the
closed-form equation between six input parameters, and their corresponding output results
in their analyses are the behavior of two adjacent open caissons. Furthermore, the impact
of each parameter on their output results was also implemented. Zhang et al. [56] used
MARS in the deep excavation problem to build the correlation equation between five input
parameters and the lateral displacements of retaining walls in clays. Raja and Shukla [48]
applied MARS in investigating the relationship between the settlement of the reinforcement
of soil foundations and eight input parameters. By comparing MARS with four other
machine learning methods, including extreme learning machines (ELM), Gaussian process
regression (GPR), support vector regression (SVR), and stochastic gradient-boosting trees
(SGBT), they suggested that MARS is a better model. In this study, with the muti-input
parameters (four dimensionless input parameters) and the complex relationship between
the input parameters and output uplift bearing factor N, the MARS model is a good
approach to examine the influence of each input and output parameter.

The influence of each parameter can be described through the relative importance
index in MARS. In this study, all 1296 output numerical results of the uplift bearing factor
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N corresponding to the input values of dimensionless parameters (i.e., L/D, re, α, m),
which are shown in Tables 2–4, are used to access their sensitivities using Mars. Figure 14
demonstrates the relative importance index for all considered dimensionless parameters. It
can be seen that the relative importance index of L/D is 100%, while those parameters such
as m, α, and re are 90.54%, 37.08%, and 20.81%, respectively. Note that the value of 100%
in the relative importance index expresses that the L/D parameter is the most important
input parameter that has the largest impact on the output value of the uplift bearing factor
N. A smaller value of the relative importance index corresponds to a lesser effect of each
parameter on N.
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Given the high impacts of the input dimensionless parameters, it is useful to propose
a more efficient tool such as an empirical design equation that can be easily used to predict
the uplift stability factor of a suction caisson in anisotropic and non-homogenous clay. The
multivariate adaptive regression splines (MARS) model is also employed to develop the
empirical equation. The MARS algorithm does not need specific assumptions to show
the correlation relationships between input and output parameters. The optimal equation
f (x) with the smallest GCV value after a pruning algorithm is proposed based on a linear
combination of BFs, as shown in Equation (8).

Note that the set of 1296 numerical results shown in Tables 2–4 is also used as the
training data to propose the empirical design equation. The list of basic functions (BFs)
and the optimal empirical equation to predict the uplift bearing factor N are shown in
Table 5. The comparison between the predicted values of N from the optimal empirical
equation and those from FELA is shown in Figure 15. It can be seen that a high accuracy of
the optimal empirical equation is obtained, where the coefficient of determination (R2) is
very high (about 100%). Note that the use of many basic functions (BFs) can provide more
accurate results. Thus, there are 60 BFs in the design equation in which these functions
can be easily used by engineering practitioners by inputting them into the user-defined
function in Excel Marco.
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Table 5. Basic functions (BF) and mathematical equations in MARS model for uplift bearing factor N.

BF Equation BF Equation BF Equation

BF1 =max(0, L/D − 5); BF19 =max(0, L/D − 2) × BF17; BF39 =max(0, 2 − L/D) × BF13;

BF2 =max(0, 5 − L/D); BF20 =max(0, 2 − vL/D) × BF17; BF40 =max(0, L/D − 2) × BF37;

BF3 =max(0, m − 0) × BF1; BF21 =max(0, re − 0.6) × BF4; BF41 =max(0, 2 − L/D) × BF37;

BF4 =max(0, α + 5.96046 × 10−8) × BF3; BF22 =max(0, 0.6 − re) × BF4; BF42 =max(0, L/D − 0.6) × BF37;

BF5 =max(0, m − 0); BF23 =max(0, α − 0.6) × BF5; BF44 =max(0, α − 0.8) × BF33;

BF6 =max(0, L/D − 2) × BF5; BF24 =max(0, 0.6 − α) × BF5; BF45 =max(0, 0.8 − α) × BF33;

BF7 =max(0, 2 − L/D) × BF5; BF25 =max(0, L/D − 2) × BF24; BF46 =max(0, re − 0.9) × BF10;

BF8 =max(0, re − 0.7) × BF6; BF26 =max(0, 2 − L/D) × BF24; BF48 =max(0, α − 0.2) × BF13;

BF9 =max(0, 0.7 − re) × BF6; BF27 =max(0, re − 0.7) × BF15; BF49 =max(0, 0.2 − α) × BF13;

BF10 =max(0, α + 5.96046 × 10−8) × BF6; BF28 =max(0, 0.7 − re) × BF15; BF50 =max(0, α − 0.8) × BF9;

BF11 =max(0, re − 0.8) × BF10; BF29 =max(0, L/D − 1) × BF23; BF51 =max(0, 0.8 − α) × BF9;

BF12 =max(0, 0.8 − re) × BF10; BF30 =max(0, 1 − L/D) × BF23; BF52 =max(0, m − 0.6);

BF13 =max(0, re − 0.5); BF31 =max(0, L/D − 5) × BF18; BF55 =max(0, 0.6 − L/D) × BF52;

BF14 =max(0, α + 5.96046 × 10−8); BF32 =max(0, 5 − L/D) × BF18; BF57 =max(0, 0.9 − re) × BF33;

BF15 =max(0, L/D − 2) × BF14; BF33 =max(0, L/D − 1) × BF5; BF58 =max(0, α − 0.2) × BF57;

BF16 =max(0, 2 − L/D) × BF14; BF35 =max(0, L/D − 5) × BF17; BF59 =max(0, 0.2 − α) × BF57;

BF17 =max(0, re − 0.6) × BF5; BF37 =max(0, α + 5.96046 × 10−8) × BF17; BF60 =max(0, α + 5.96046 × 10−8) × BF39;

BF18 =max(0, 0.6 − re) × BF5; BF38 =max(0, L/D − 2) × BF13;

N = 7.34338 + 0.260828 × BF1 − 0.586461 × BF2 + 1.55056 × BF3 + 11.9728 × BF4 + 16.2314 × BF5 + 9.13961 ×
BF6 − 8.05533 × BF7 − 0.983972 × BF8 − 1.13233 × BF9 + 8.1486 × BF10 + 6.52061 × BF11 − 8.4729 × BF12 +
11.2154 × BF13 + 6.17607 × BF14 + 3.28002 × BF15 − 3.2612 × BF16 + 14.6437 × BF17 − 52.8027 × BF18 + 11.351
× BF19 − 7.22317 × BF20 + 10.0719 × BF21 − 12.5708 × BF22 + 1.71651 × BF23 − 4.13455 × BF24 − 2.20414 ×
BF25 + 2.23358 × BF26 + 2.29874 × BF27 − 3.668 × BF28 + 2.0948 × BF29 − 2.13364 × BF30 − 13.8382 × BF31 +
10.4966 × BF32 + 3.28344 × BF33 + 2.3659 × BF35 + 1.94912 × BF37 + 0.48867 × BF38 − 2.67278 × BF39 − 3.96712
× BF40 − 0.989502 × BF41 + 2.07672 × BF42 + 3.32143 × BF44 − 3.44554 × BF45 + 2.48173 × BF46 + 4.8134 ×
BF48 − 6.4998 × BF49 − 3.70576 × BF50 + 1.68277 × BF51 − 0.617768 × BF52 + 1.17368 × BF55 − 1.14761 × BF57
− 3.32378 × BF58 + 3.09802 × BF59 − 1.67664 × BF60.
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7. Limitation

The LB and UB FELA are used to determine the uplift capacity factor of a suction
caisson in anisotropic and inhomogeneous clay under axisymmetric conditions. Although
this is the first time that the influences of the anisotropic behaviors of clay are carefully
investigated, it is restricted by certain assumptions and should be investigated further
as follows:
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1. All of the computed design charts are restricted with the assumption of undrained
soil conditions, which cannot be used in drained soil conditions;

2. The proposed equation for the uplift capacity factor of a suction caisson in anisotropic
and inhomogeneous clay is suitable for the ranges of dimensionless input parameters,
as presented earlier in Table 1. The results may not be accurate if the input values are
out of these ranges;

3. The present solutions cannot be used for cases of multi-layered soils;
4. If there are two caissons nearby, the effect of the spacing between these two caissons

should be further analyzed by adopting a three-dimensional FELA approach;
5. Code/guidelines or recommendations for designing the steel or concrete walls of cylin-

drical caissons or cylindrical systems should be carried out as future works. Examples of
similar guidance for designing steel tanks can be found in references [57,58].

8. Conclusions

This paper investigates the uplift resistance of suction caisson foundations in anisotropic
and inhomogeneous clays. Through verification with results from the literature, the nu-
merical results of the proposed works are well fitted with the previous solutions. The
parameters considered in this study are m (ratio of inhomogeneity), α (adhesion factor),
L/D (ratio of depth over diameter), and re (ratio of anisotropic undrained shear strengths),
which have a strong influence on the uplift resistance of suction caisson foundations. The
results show that the uplift resistance is a nonlinear increase with L/D and re and a linear
increase with m and α in all investigated cases. The influence of these investigated parame-
ters (m, α, L/D, and re) on the failure mechanisms is also determined. The size of the failure
zone increases as L/D and m increase, and there are minor changes as α and re increase.

By comparing the sensitivity of each parameter on the uplift resistance factor by em-
ploying the MARS model, the ratio of depth over diameter (L/D) is the most important
one for the ratio of inhomogeneity (m), the adhesion factor (α) and the ratio of anisotropic
undrained shear strengths (re), respectively. Based on the MARS model, the efficient empir-
ical design equation is then proposed with a very accurate prediction for all FELA results.

Author Contributions: Conceptualization, T.J., V.Q.L. and S.K.; methodology, T.J., V.Q.L. and S.K.;
software, T.J., V.Q.L., S.K., T.S.N., C.N.V., C.T. and P.N.; validation, T.J., V.Q.L., S.K., T.S.N., C.N.V., C.T.
and P.N.; formal analysis, T.J., V.Q.L., S.K., T.S.N., C.N.V., C.T. and P.N.; investigation, T.J., V.Q.L., S.K.,
T.S.N., C.N.V., C.T. and P.N.; resources, T.J., V.Q.L. and S.K.; data curation, T.J., V.Q.L., S.K., T.S.N.,
C.N.V., C.T. and P.N.; writing—original draft preparation, T.J., V.Q.L. and S.K.; writing—review and
editing, T.J., V.Q.L. and S.K.; visualization, T.J., V.Q.L., S.K., T.S.N., C.N.V., C.T. and P.N.; supervision,
T.J., V.Q.L. and S.K.; project administration, T.J., V.Q.L. and S.K.; funding acquisition, T.J., V.Q.L. and
S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Structural and Foundation Engineering Research Unit,
Thammasat University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and materials in this paper are available.

Acknowledgments: We would like to thank Ho Chi Minh City University of Technology (HCMUT),
VNU-HCM for the support of time and facilities for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mortlock, T.R.; Goodwin, I.D.; Turner, I.L. Nearshore SWAN model sensitivities to measured and modelled offshore wave

scenarios at an embayed beach compartment, NSW, Australia. Aust. J. Civ. Eng. 2014, 12, 67–82. [CrossRef]
2. Mahmoodian, M. Structural reliability assessment of corroded offshore pipelines. Aust. J. Civ. Eng. 2020. [CrossRef]
3. Randolph, M.; Gourvence, S. Offshore Geotechnical Engineering; Spon Press Taylor & Francis: Abingdon, UK, 2011.

http://doi.org/10.7158/C14-016.2014.12.1
http://doi.org/10.1080/14488353.2020.1816639


Sustainability 2022, 14, 4456 20 of 21

4. Andersen, K.H.; Dyvik, R.; Schroder, K.; Hansteen, O.E.; Bysveen, S. Field test of anchors in clay II: Predictions and interpretation.
J. Geotech. Geoenviron. Eng. 1993, 119, 1532–1549. [CrossRef]

5. Dyvik, R.; Andersen, K.H.; Hansen, S.B.; Christophersen, H.P. Field test of anchors in clay I: Description. J. Geotech. Geoenviron.
Eng. 1993, 119, 1515–1531. [CrossRef]

6. Clukey, E.C.; Morrison, M.J. A Centrifuge and analytical study to evaluate suction caissons for TLP applications in gulf of Mexico.
In Design and Performance of Deep Foundation; American Society of Civil Engineers: Reston, VA, USA, 1993; pp. 141–156.

7. Cauble, D.F. Experimental Measurements for a Model Suction Caisson. Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1996.

8. Geer, M. Analysis of Pile and Suction Caisson Behavior in Axial Loading. Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1996.

9. Bransby, M.F.; Yun, G. The undrained capacity of skirted strip foundations under combined loading. Géotechnique 2009, 59,
115–125. [CrossRef]

10. Gourvenec, S. Effect of embedment on the undrained capacity of shallow foundations under general loading. Géotechnique 2008,
58, 177–185. [CrossRef]

11. Gourvenec, S.; Barnett, S. Undrained failure envelope for skirted foundations under general loading. Géotechnique 2011, 61,
263–270. [CrossRef]

12. Yun, G.; Bransby, M.F. The undrained vertical bearing capacity of skirted foundations. Soils Found. 2007, 47, 493–505. [CrossRef]
13. Mana, D.S.K.; Gourvenec, S.; Martin, C.M. Critical skirt spacing for shallow foundations under general loading. J. Geotech.

Geoenviron. Eng. 2013, 139, 1554–1566. [CrossRef]
14. Jin, Z.; Yin, Z.Y.; Kotronis, P.; Ji, Y.F. Numerical investigation on evolving failure of caisson foundation in sand using the combined

Lagrangian-SPH method. Mar. Georesources Geotechnol. 2019, 37, 23–35. [CrossRef]
15. Liu, J.; Chen, X.; Zhu, Z.; Wang, B.; Liu, F.; Xu, J.; Zhang, M. Investigation of scour effects on lateral behaviors of suction caisson.

Mar. Georesources Geotechnol. 2019, 37, 142–151. [CrossRef]
16. Ukritchon, B.; Wongtoythong, P.; Keawsawasvong, S. New design equation for undrained uplift capacity of suction caissons

considering combined effects of caisson aspect ratio, adhesion factor at interface, and linearly increasing strength. Appl. Ocean.
Res. 2018, 75, 1–14. [CrossRef]

17. Keawsawasvong, S.; Ukritchon, B. Finite element limit analysis of uplift capacity of planar caissons in clay. Comput. Geotech. 2016,
75, 12–17. [CrossRef]

18. Ukritchon, B.; Keawsawasvong, S. Undrained uplift capacity of cylindrical suction caissons by finite element limit analysis.
Comput. Geotech. 2016, 80, 301–311. [CrossRef]

19. Sloan, S.W. Geotechnical stability analysis. Géotechnique 2013, 63, 531–572. [CrossRef]
20. Ladd, C.C. Stability evaluations during stage construction. J. Geotech. Eng. 1991, 117, 540–615. [CrossRef]
21. Ladd, C.C.; DeGroot, D.J. Recommended practice for soft ground site characterization. Arthur Casagrande Lecture. In Proceedings

of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Cambridge, UK, 22–26 June 2003.
22. Krabbenhoft, K.; Lyamin, A.V. Generalised Tresca criterion for undrained total stress analysis. Geotech. Lett. 2015, 5, 313–317.

[CrossRef]
23. Krabbenhoft, K.; Galindo-Torres, S.A.; Zhang, X.; Krabbenhøft, J. AUS: Anisotropic undrained shear strength model for clays. Int.

J. Numer. Anal. Methods Geomech. 2019, 43, 2652–2666. [CrossRef]
24. Ukritchon, B.; Keawsawasvong, S. Lower bound limit analysis of an anisotropic undrained strength criterion using second-order

cone programming. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1016–1033. [CrossRef]
25. Ukritchon, B.; Keawsawasvong, S. Lower bound solutions for undrained face stability of plane strain tunnel headings in

anisotropic and non-homogeneous clays. Comput. Geotech. 2019, 112, 204–217. [CrossRef]
26. Ukritchon, B.; Keawsawasvong, S. Three-dimensional lower bound finite element limit analysis of an anisotropic undrained

strength criterion using second-order cone programming. Comput. Geotech. 2019, 106, 327–344. [CrossRef]
27. Ukritchon, B.; Keawsawasvong, S. Undrained lower bound solutions for end bearing capacity of shallow cylindrical piles in

non-homogeneous and anisotropic clay. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 596–632. [CrossRef]
28. Ukritchon, B.; Keawsawasvong, S. Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic

shear strength. Geotech. Geol. Eng. 2020, 38, 897–915. [CrossRef]
29. Keawsawasvong, S.; Ukritchon, B. Undrained stability of plane strain active trapdoors in anisotropic and non-homogeneous

clays. Tunn. Undergr. Space Technol. 2021, 107, 103628. [CrossRef]
30. Keawsawasvong, S.; Ukritchon, B. Design equation for stability of a cylindrical tunnel in an anisotropic and heterogeneous clay.

Undergr. Space 2021, in press.
31. Yodsomjai, W.; Keawsawasvong, S.; Senjuntichai, T. Undrained stability of unsupported conical slopes in anisotropic clays based

on AUS failure criterion. Transp. Infrastruct. Geotechnol. 2021, 8, 557–568. [CrossRef]
32. Keawsawasvong, S.; Lawongkerd, J. Influences of anisotropic undrained shear strengths of clays on pullout capacity of planar

caissons. Sci. Technol. Asia 2021, 26, 90–98.
33. Nguyen, D.K.; Nguyen, T.P.; Keawsawasvong, S.; Lai, V.Q. Vertical uplift capacity of circular anchors in clay by considering

anisotropy and non-homogeneity. Transp. Infrastruct. Geotechnol. 2021, in press. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9410(1993)119:10(1532)
http://doi.org/10.1061/(ASCE)0733-9410(1993)119:10(1515)
http://doi.org/10.1680/geot.2007.00098
http://doi.org/10.1680/geot.2008.58.3.177
http://doi.org/10.1680/geot.9.T.027
http://doi.org/10.3208/sandf.47.493
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000882
http://doi.org/10.1080/1064119X.2018.1425311
http://doi.org/10.1080/1064119X.2017.1407975
http://doi.org/10.1016/j.apor.2018.03.007
http://doi.org/10.1016/j.compgeo.2016.01.015
http://doi.org/10.1016/j.compgeo.2016.08.019
http://doi.org/10.1680/geot.12.RL.001
http://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540)
http://doi.org/10.1680/jgele.15.00120
http://doi.org/10.1002/nag.2990
http://doi.org/10.1002/nag.2781
http://doi.org/10.1016/j.compgeo.2019.04.018
http://doi.org/10.1016/j.compgeo.2018.11.010
http://doi.org/10.1002/nag.3018
http://doi.org/10.1007/s10706-019-01023-8
http://doi.org/10.1016/j.tust.2020.103628
http://doi.org/10.1007/s40515-021-00153-y
http://doi.org/10.1007/s40515-021-00191-6


Sustainability 2022, 14, 4456 21 of 21

34. Keawsawasvong, S.; Yoonirundorn, K.; Senjuntichai, T. Uplift capacity factor for cylindrical suction caissons in anisotropic clays
based on Anisotropic Uundrained Shear failure criterion. Transp. Infrastruct. Geotechnol. 2021, 8, 629–644. [CrossRef]

35. Keawsawasvong, S.; Shiau, J.; Ngamkhanong, C.; Lai, V.Q.; Thongchom, C. Undrained Stability of Ring Foundations: Axisymme-
try, Anisotropy, and Nonhomogeneity. Int. J. Geomech. 2022, 22, 04021253. [CrossRef]

36. Lai, V.Q.; Nguyen, D.K.; Banyong, R.; Keawsawasvong, S. Limit analysis solutions for stability factor of unsupported conical
slopes in clays with heterogeneity and anisotropy. Int. J. Comput. Mater. Sci. Eng. 2022, 11, 2150030–2150128. [CrossRef]

37. Lai, V.Q.; Banyong, R.; Keawsawasvong, S. Stability of limiting pressure behind soil gaps in contiguous pile walls in anisotropic
clays. Eng. Fail. Anal. 2022, 134, 106049. [CrossRef]

38. Houlsby, G.T.; Martin, C.M. Undrained bearing capacity factors for conical footings on clay. Géotechnique 2003, 53, 513–520.
[CrossRef]

39. Keawsawasvong, S. Bearing capacity of conical footings on clays considering combined effects of anisotropy and non-homogeneity.
Ships Offshore Struct. 2021, in press. [CrossRef]

40. Bishop, A.W. The strength of soils as engineering materials. Géotechnique 1966, 16, 89–128. [CrossRef]
41. Oteuil, A.; Oralbek, A.; Mukhamet, T.; Moon, S.W.; Kim, J.; Tokbolat, S.; Satyanaga, A. Robust Analysis and Design of Bored Pile

Considering Uncertain Parameters. Indian Geotech. J. 2022, in press. [CrossRef]
42. Zhanabayeva, A.; Sagidullina, N.; Kim, J.; Satyanaga, A.; Lee, D.; Moon, S.W. Comparative Analysis of Kazakhstani and European

Design Specifications: Raft Foundation, Pile Foundation, and Piled Raft Foundation. Appl. Sci. 2021, 11, 3099. [CrossRef]
43. Krabbenhoft, K.; Lyamin, A.; Krabbenhoft, J. Optum Computational Engineering (OptumG2). 2015. Available online: www.

optumce.com (accessed on 2 March 2022).
44. Ukritchon, B.; Keawsawasvong, S. Error in Ito and Matsui’s limit equilibrium solution of lateral force on a row of stabilizing piles.

J. Geotech. Geoenviron. Eng. 2017, 143, 02817004. [CrossRef]
45. Ukritchon, B.; Yoang, S.; Keawsawasvong, S. Undrained stability of unsupported rectangular excavations in non-homogeneous

clays. Comput. Geotech. 2020, 117, 103281. [CrossRef]
46. Keawsawasvong, S.; Lai, V.Q. End bearing capacity factor for annular foundations embedded in clay considering the effect of the

adhesion factor. Int. J. Geosynth. Ground Eng. 2021, 7, 1–10. [CrossRef]
47. Wu, L.; Fan, J. Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting

daily reference evapotranspiration. PLoS ONE 2019, 14, e0217520. [CrossRef]
48. Raja, M.N.A.; Shukla, S.K. Multivariate adaptive regression splines model for reinforced soil foundations. Geosynth. Int. 2021, 28,

368–390. [CrossRef]
49. Sirimontree, S.; Jearsiripongkul, T.; Lai, V.Q.; Eskandarinejad, A.; Lawongkerd, J.; Seehavong, S.; Thongchom, C.; Nuaklong,

P.; Keawsawasvong, S. Prediction of Penetration Resistance of a Spherical Penetrometer in Clay Using Multivariate Adaptive
Regression Splines Model. Sustainability 2022, 14, 3222. [CrossRef]

50. Lai, V.Q.; Shiau, J.; Keawsawasvong Tran, D.T. Bearing Capacity of Ring Foundations on Anisotropic and Heterogenous Clays ~
FEA, NGI-ADP, and MARS. Geotech. Geol. Eng. 2022; accepted.

51. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
52. Caraka, R.E.; Chen, R.C.; Bakar, S.A.; Tahmid, M.; Toharudin, T.; Pardamean, B. Employing Best Input SVR Robust Lost Function

with Nature-Inspired Metaheuristics in Wind Speed Energy Forecasting. IAENG Int. J. Comput. Sci. 2020, 47, 572–584.
53. Stoklosa, J.; Warton, D.I. A Generalized Estimating Equation Approach to Multivariate Adaptive Regression Splines. J. Comput.

Graph. Stat. 2018, 27, 245–253. [CrossRef]
54. Zhang, W. MARS Applications in Geotechnical Engineering Systems; Springer: Singapore, 2020.
55. Lai, F.; Zhang, N.; Liu, S.; Sun, Y.; Li, Y. Ground movements induced by installation of twin large diameter deeply-buried caissons:

3D numerical modeling. Acta Geotech. 2021, 16, 2933–2961. [CrossRef]
56. Zhang, W.; Zhang, R.; Goh, A.T.C. MARS inverse analysis of soil and wall properties for braced excavations in clays. Geomech.

Eng. 2018, 16, 577–588.
57. González, E.; Almazán, J.; Beltrán, J.; Herrera, R.; Sandoval, V. Performance of stainless steel winery tanks during the 02/27/2010

Maule Earthquake. Eng. Struct. 2013, 56, 1402–1418. [CrossRef]
58. Brunesi, E.; Nascimbene, R.; Pagani, M.; Beilic, D. Seismic performance of storage steel tanks during the May 2012 Emilia, Italy,

Earthquakes. J. Perform. Constr. Facil. 2015, 29, 04014137. [CrossRef]

http://doi.org/10.1007/s40515-021-00154-x
http://doi.org/10.1061/(ASCE)GM.1943-5622.0002229
http://doi.org/10.1142/S2047684121500305
http://doi.org/10.1016/j.engfailanal.2022.106049
http://doi.org/10.1680/geot.2003.53.5.513
http://doi.org/10.1080/17445302.2021.1987110
http://doi.org/10.1680/geot.1966.16.2.91
http://doi.org/10.1007/s40098-021-00588-7
http://doi.org/10.3390/app11073099
www.optumce.com
www.optumce.com
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001753
http://doi.org/10.1016/j.compgeo.2019.103281
http://doi.org/10.1007/s40891-021-00261-2
http://doi.org/10.1371/journal.pone.0217520
http://doi.org/10.1680/jgein.20.00049
http://doi.org/10.3390/su14063222
http://doi.org/10.1214/aos/1176347963
http://doi.org/10.1080/10618600.2017.1360780
http://doi.org/10.1007/s11440-021-01165-1
http://doi.org/10.1016/j.engstruct.2013.07.017
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000628

	Introduction 
	Problem Formulation 
	Modelling of Cylindrical Suction Caisson 
	Verification 
	Numerical Results and Discussion 
	Empirical Prediction by MARS Model 
	Limitation 
	Conclusions 
	References

