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Abstract: This research has been developed in the city of Esmeraldas, which is one of the poorest
urban centers of Ecuador. Historically, the economic dynamics of the city have been related to the
extraction of natural resources, but little has been invested in local populations. The objectives
of this paper are, first, to create a predictive scenario of urban growth linked to future climate
projections for Esmeraldas, with a focus on vulnerability to landslides and flooding; and second, to
generate methodological advances related to the linkage between urban growth simulation and the
downscaling of global models for climate change. This paper is based on spatially explicit simulation,
Cellular Automata (CA), to capture the dynamics of urban processes. CA is linked to the analysis
of vulnerability to climate change based on socioeconomic conditions and is focused on flooding-
and landslide-exposed areas. We found that the proportion of Afro-Ecuadorian people and the risk
of landslides and flooding are positively related to urban growth. Based on our future scenarios,
the urban growth area in Esmeraldas will increase 50% compared to the year 2016. Moreover, if the
existing trends continue, natural vegetation—including mangroves—will be removed by that time,
increasing the vulnerability to climate change.

Keywords: urban growth; climate change; Esmeraldas City; floods; landslide vulnerability; cellu-
lar automata

1. Introduction

At global scales, urban dwellers are among the most affected by climate change. About
3.4 billion people living in urban areas of low- and middle-income countries were affected
by climate change in 2020 [1]. Urban centers in the Global South, especially in the tropics,
have a high degree of vulnerability to large-scale climatic processes—such as El Niño
Southern Oscillation (ENSO)—and to local-scale modifications of the landscape, such as
the expansion of impervious surfaces, deforestation, and land degradation [2–4].

Social vulnerability to climate change is strongly linked to the dynamic conditions of
natural resources, and communities adapt depending on multiscale socioeconomic condi-
tions [5]. At global scales, poor households are disproportionally affected by climate change
and its cascading effects including flooding, landslides, and the outbreak of infectious dis-
eases [6]. Climate change is also linked to other types of local anthropogenic environmental
change, including pollution, deforestation, and land erosion, which generate added stresses
on local ecosystems [7,8].

Vulnerability analysis and mapping is becoming critical to adaptation planning for cli-
mate change, emergency response and disaster planning, risk management communication,
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and urban planning; thus, analyzing vulnerability is considered a top research priority [9].
In this regard, an increasing trend in research within this field has been noted [10–12], and
even though Latin America registers fewer publications than other regions in the world,
this is a field that is starting to become consolidated [13].

It is also accepted that climatic events amplify urban inequality—the unequal distribu-
tion of resources, opportunities of adaptation, and burden of impacts [14,15] and in Latin
America, inequality will also feedback on local environmental change [16]. Inequality, as
related to local environmental change, can be expressed as: (a) the differential access to
basic infrastructure, such as safe water and sewer systems, but also to emergency response
systems; (b) the differential in financial, social, and cultural capital that allows different
levels of resilience among urban dwellers, and (c) the lack of basic urban planning schemes,
which allows spontaneous urban growth (in terms of number of people and urban area)
and a cascade of social and environmental problems.

As in many other sectors in Latin America, urban areas suffer due to the lack of long-
term public policy related to economic development and natural hazards management. The
lack of strategies for economic and demographic growth and the lack of understanding of
the consequences of development are themselves drivers of catastrophes [17–19]. Scenario
modeling to understand the consequences of climate change in cities across the globe
has been used for several decades [20–22]. However, cities in Latin America do not take
advantage of spatially explicit scenarios of growth and climate change to understand
impacts and possible changes in their development trajectories.

The objectives of this paper are twofold: (a) to create a predictive scenario of urban
growth linked to future climate projections for the city of Esmeraldas, Ecuador, with a
focus on vulnerability to landslides and flooding, and thus inform local governments; (b) to
generate methodological advances related to the linkage between urban growth simulation
and the downscaling of global models for climate change.

Methodologically, this paper is based on spatially explicit simulation, including Cellu-
lar Automata (CA), which is a particular type of dynamic system that organizes a discrete
lattice of space into cells [23]. It has been used in various studies that address the pattern–
process relation and dynamics of urban process, such as the evolution of urban land use,
the urban form, and urban sprawl [21,24–27].

This research is a comprehensive analysis of urban vulnerability based on an urban
growth future scenario for the city of Esmeraldas, from which exposed areas to flooding
and landslide events are derived. In terms of the scope of this analysis, we consider that
the prevalence of flooding and landslide, and their possible future increment due to the
impact of climate change on precipitation frequency and magnitude, has become a threat
to the population of Esmeraldas that settles in exposed areas. Through this analysis, we
identify current and future exposed areas, and characterize the underlying socioeconomic
causes that promote or limit their resilience capacity to resist or recover from negative
effects (Based on Moser’s vulnerability concept [28]).

1.1. Esmeraldas City: Regional and Local Context

Located in the northwestern corner of the country (see Figure 1), Esmeraldas is one of
the poorest provinces in Ecuador [29], with a long history of segregation and exploitation
of its natural resources [30,31]. Due to its location in the Choco bio-geographical region—
known for having one of the highest biodiversity rates in the world [32,33]—a long history
of natural resource extraction is associated with the region. Additionally, in the last few
decades, the city’s proximity to Colombia’s coca-growing regions has had an impact on its
social dynamics, resulting in high levels of urban violence and crime [34]. It has become
one of the preferred destination of people escaping from violence in Colombia [35].
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based on enclaves prompted by external funding, such as the banana and oil industries, 
as well as seaport activities. These economic activities offer low-skilled jobs, and became 
the main rural immigration pull factors, incrementing the city’s population. Additionally, 
poor city planning generated urban growth based on informal settlements with no basic 
service coverage, and on lands vulnerable to natural hazards, becoming the structural ba-
sis for the population’s social problems (Rebotier et al., 2020). Nearly 60% of the dwellings 
are located in informal settlements without any form of building permits [33]. Current 
statistics of poverty and inequality show that 52.2% of the total inhabitants live in poverty 
due to unsatisfied basic needs (INEC, 2010). The secondary effects of the COVID 19 pan-
demic are expected to increase these levels of poverty and vulnerability. 
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town, towards areas that are prone to flooding and landslides [34,39].  

Urban growth began in 1960, occupying the northern region (actual Las Palmas 
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tlements located in the western region were affected by landslides as a result of strong 
rainfall events during the wet season [34]. The current configuration of the city emerged 
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Figure 1. Location of Esmeraldas province and urban growth in Esmeraldas City from 1990 to 2016.

The city of Esmeraldas has been growing rapidly, from 100,221 to 161,868 inhabitants
between 1990 and 2010 [36,37], with more than half (56.4%) of the population having an
Afro-Ecuadorian background. Historically, the economic dynamics of the city have been
based on enclaves prompted by external funding, such as the banana and oil industries, as
well as seaport activities. These economic activities offer low-skilled jobs, and became the
main rural immigration pull factors, incrementing the city’s population. Additionally, poor
city planning generated urban growth based on informal settlements with no basic service
coverage, and on lands vulnerable to natural hazards, becoming the structural basis for
the population’s social problems (Rebotier et al., 2020). Nearly 60% of the dwellings are
located in informal settlements without any form of building permits [33]. Current statistics
of poverty and inequality show that 52.2% of the total inhabitants live in poverty due to
unsatisfied basic needs (INEC, 2010). The secondary effects of the COVID 19 pandemic are
expected to increase these levels of poverty and vulnerability.

Urban land growth is an important process that has a strong relationship with popula-
tion growth, and the technical evaluation of this development process and its conditions
are the basis for governments to make policies cautiously [38]. Esmeraldas’ urban land
expanded from 8.59 km2 in 1990 to 14.69 km2 in 1999, and to 27.2 km2 in 2016 (Figure 1),
tripling in the last 25 years. However, this expansion in area is seriously limited by natu-
ral and economic barriers, which push low-income families to the outskirts of the town,
towards areas that are prone to flooding and landslides [34,39].

Urban growth began in 1960, occupying the northern region (actual Las Palmas neigh-
borhood) and the hillsides located in the southwest of the city. Historically, the settlements
located in the western region were affected by landslides as a result of strong rainfall events
during the wet season [34]. The current configuration of the city emerged in the mid-1970s
with the construction of landfills over the left margin of the Esmeraldas River [40,41], due
to a strategic location that benefits trade, industry, and economic development. In conse-
quence, this brought about the deforestation of about 42 hectares of mangrove forest [40],
which resulted in increased flood exposure in new settlements. The presence of the oil
refinery also shaped the expansion of the city towards the southeastern areas, prompting an
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increase in workforce settlements for its operation in high-risk sites and with no planning
guidelines [39].

1.2. Urban Vulnerability in Esmeraldas

Esmeraldas is a coastal city exposed to the impacts of naturally induced disasters,
including sea-level rise, flooding, and landslides with their related effects [42,43]. However,
extreme levels of poverty and a low capacity to adapt to climate change make it even more
vulnerable to natural hazards and their consequences. El Niño and La Niña are examples
of such events that have had a great impact on the climate, mainly in the Ecuadorian Coast.
Both are opposite effects of the same phenomenon, now known as the El Niño Southern
Oscillation (ENSO), characterized by an anomalous and widespread warming of central
and eastern tropical Pacific Ocean sea surface temperatures [44]. Esmeraldas is located
at the extreme north of the ENSO events influence area, and has experienced important
economic losses in the past two decades, which are related to the overflowing of rivers and
landslides due to intense precipitation [45]. In recent research, Fasullo et al. [46] created and
ran a multiple model to see how ENSO’s impacts on temperature and wildfire probability
will change in a warmer future world, concluding that these impacts will be more extreme.

Esmeraldas’ climate is classified in the semi-humid megathermal tropical category,
characterized by an average temperature ranging from 25 ◦C to 26.2 ◦C and a relative
humidity of 81% [47,48]. It is also influenced by the warm, low-salinity estuarine waters
of the Esmeraldas River system, one of the largest rivers of the region [49]. Based on
meteorological measurements (1981–2017), the average annual precipitation in Esmeraldas
is about 1000 ± 177 mm/year, where heavy rainfall has been correlated with El Niño occur-
rences (Figure 2a). In the last decade, this value has increased to 1437.20 ± 432 mm/year,
evidencing the increased frequency of extreme El Niño events [50,51].
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Figure 2. (a) Annual variability of accumulated rainfall for Esmeraldas City (M0444), bars in dark
blue represent the very strong El Niño events and the horizontal dashed red line is the annual mean.
(b) Boxplots of monthly precipitation for 1981–2017 showing the monthly mean (red lines) and El
Niño 97/98 event (red “+”).

In the city, precipitation is not evenly distributed during the year, with 80% of the
annual rainfall occurring from December to May (Figure 2b). In the wet season, the
maximum rainfalls occur in January and February, with an average mean precipitation
of 200 mm. The 1997–1998 ENSO event was a period wherein the precipitation was over
100 mm/month, even in the dry season, resulting in a total precipitation of 3739.8 mm
for the July 1997–June 1998 period. The El Niño event experienced during 1997–1998 was
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considered as very damaging to the infrastructure of Esmeraldas, affecting infrastructure
and livelihoods, including agriculture, fisheries, and industry [52,53]. The city’s dwelling
units have also been affected by an increased frequency of flooding and landslides [53].

2. Dataset and Data Preprocessing

The basic data land use/cover maps were extracted from Landsat satellite images
acquired on 21 February 1990, 3 April 1999, and 3 May 2016 of the Path11/Row59 scene.
Pre-processing procedures were performed in order to transform raw sensor data (Digi-
tal Number) into surface reflectance data using the ENVI software. These images were
geo-rectified with a 2016 scene as reference. Seven land use classes—soil, forest, shrub
vegetation, pasture, crops, urban land, and water—were extracted applying an object-based
classification method. The first five classes are considered non-urban areas that have poten-
tial for urbanization, and the water class is considered as not suitable for development and
was therefore considered as a constraint and excluded from future analysis.

The 1999 land use/cover map was used to produce the model’s initial urban pattern,
while the 2016 map was used to generate its final urban pattern. These maps were re-
classified in two categories and set as binary data, with 1 representing urban land and
0 representing non-urban land. These maps were used to calibrate the CA model consider-
ing the acquisition date of the explanatory variables.

A set of 11 potential determinants or variables (Table 1) was identified in order to
explain the probability of non-urban land being converted to urban land. These urban land
change driving factors were derived from statistical analyses and empirical and theoretical
relations among driving factors and urban growth, based on the literature [54,55].

Table 1. Summary of the key driving factors for the urban growth in Esmeraldas.

Variable Description Data Source

Proximity to roads Euclidean distance from the cell to main roads Base geographic information from Instituto
Geográfico Militar (2013). Scale: 1:50,000.

Proximity to rivers Euclidean distance from the cell to main rivers Base geographic information from Instituto
Geográfico Militar (2013). Scale: 1:50,000.

Proximity to focal points
Euclidean distance from the cell to the nearest

focal point within the city: commercial,
administrative and industrial sites

Base geographic information from Instituto
Geográfico Militar (2013). Scale: 1:50,000.

Elevation The elevation of the cell Digital Elevation Model from SRTM * data
(30 m, 2014)

Slope The slope of the cell (degree) Digital Elevation Model from SRTM * data
(30 m, 2014)

Landslide

Number of landslide occurrences per square
kilometer calculated in each cell. Zones where

landslides are likely to occur based on
historical information.

Data collected in the 2C ** Esmeraldas project
(2017). Local Municipality information

Flood

Number of flood occurrences per square
kilometer calculated in each cell. Zones where
floods are likely to occur based on historical

information.

Data collected in the 2C ** Esmeraldas project
(2017). Local Municipality information.

Population density The population density of the cell. Number of
people living per square meter. National Census data 2010 [37]

Afro-Ecuadorian fraction The Afro-Eecuadorian fraction of the cell at
census administrative level. National Census data 2010 [37]

Poverty

The poverty rate of the cell based on the
unsatisfied basic needs (infrastructure, housing
conditions, sanitary conditions, education, and

subsistence capacity)

National Census data 2010 [37]

Crime density
The crime density of the cell. Number of
crimes (property and violent crimes) per

square meter occurred in 2010.

General Operations Division Policía Nacional
del Ecuador, 2010

* SRTM: Shuttle Radar Topography Mission. ** Secondary Cities Project.
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These factors represent the spatial influence of an entity or activity (accessibility),
the physical characteristics of the local land (suitability), the spatial exposure to natural
hazards, and the spatial variation in socioeconomic conditions. All these variables were
processed and spatialized via GIS functions. The census and police data were spatialized
at administrative census level. All variables were resampled to 30 m spatial resolution
to match the land use/cover maps derived from the Landsat imagery. Additionally, all
variables were standardized to the 0–1 range.

3. Methods

To achieve a comprehensive analysis of the urban vulnerability in Esmeraldas, this
study follows a specific process: (Section 3.1) urban growth modeling for 2030 using a CA
simulation model regarding the interactions between social, physical, and environmental
changes and urban growth, and (Section 3.2) analysis of vulnerability to climate change
based on socioeconomic conditions and focused on flooding- and landslide-exposed areas.

3.1. Urban Growth Model Structure

An urban growth model, based on a logistic regression model and a constrained CA
model, was developed to predict urban transition probabilities in Esmeraldas. The model
was developed in the free-access R software environment and consists of three main steps:
calibration, simulation, and validation (Figure 3), as described in the next sections.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 24 
 

 
Figure 3. Workflow of the urban growth modeling, which includes three steps: (a) calibration, (b) 
CA simulation, and (c) validation. 

3.1.1. Urban Growth Calibration Model 
The success of CA in urban growth simulation is the optimum determination of the 

CA transition rule. The use of other modeling techniques and statistical approaches in 
conjunction with the CA model is more useful to calibrate the urban transition rules. For 
this study, a conventional logistic regression was built to explore and address the spatial 
patterns of the drivers of urban land conversion besides eliminating spatial autocorrela-
tion and reducing spatial dependency among variables. Logistic regression is a form of 
regression based on the concepts of binomial probability theory, which is used to model 
the relationship between a binary variable and one or more explanatory variables, yield-
ing dichotomous outcomes. 

For this model, the land use conversion from non-urban to urban was considered as 
state 1, while no conversion was indicated as state 0. Multi-collinearity among explana-
tory variables was tested using Pearson’s correlation and variance inflation factors (VIFs). 
The results of the analysis show there was no significant multicollinearity observed 
among the set of the variables in the model. All the variables scored VIF less 5, the thresh-
old level suggested to deal with multicollinearity. Therefore, the entire set of variables 
was incorporated into the model. 

3.1.2. CA Simulation Model 
The spatially explicit simulation uses a cell-based, dynamic modeling approach 

based on Cellular Automata (CA) principles to calculate non-urban to urban changes in 
annual time steps. The SIMLANDER (simlander.wordpress.com) a simulation of land use 
change using R algorithm, which is a prototype Cellular Automata (CA), was imple-
mented in this study. The original script was modified to improve the model fit in order 
to address the local conditions in Esmeraldas’ urban growth. 

The simulation process defines the initial conditions of the system, which are repre-
sented by an initial land cover classification in year t (for this case, the urban–non-urban 

Figure 3. Workflow of the urban growth modeling, which includes three steps: (a) calibration, (b) CA
simulation, and (c) validation.

3.1.1. Urban Growth Calibration Model

The success of CA in urban growth simulation is the optimum determination of the
CA transition rule. The use of other modeling techniques and statistical approaches in
conjunction with the CA model is more useful to calibrate the urban transition rules. For
this study, a conventional logistic regression was built to explore and address the spatial
patterns of the drivers of urban land conversion besides eliminating spatial autocorrela-
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tion and reducing spatial dependency among variables. Logistic regression is a form of
regression based on the concepts of binomial probability theory, which is used to model
the relationship between a binary variable and one or more explanatory variables, yielding
dichotomous outcomes.

For this model, the land use conversion from non-urban to urban was considered as
state 1, while no conversion was indicated as state 0. Multi-collinearity among explanatory
variables was tested using Pearson’s correlation and variance inflation factors (VIFs). The
results of the analysis show there was no significant multicollinearity observed among
the set of the variables in the model. All the variables scored VIF less 5, the threshold
level suggested to deal with multicollinearity. Therefore, the entire set of variables was
incorporated into the model.

3.1.2. CA Simulation Model

The spatially explicit simulation uses a cell-based, dynamic modeling approach based
on Cellular Automata (CA) principles to calculate non-urban to urban changes in annual
time steps. The SIMLANDER (simlander.wordpress.com) a simulation of land use change
using R algorithm, which is a prototype Cellular Automata (CA), was implemented in this
study. The original script was modified to improve the model fit in order to address the
local conditions in Esmeraldas’ urban growth.

The simulation process defines the initial conditions of the system, which are repre-
sented by an initial land cover classification in year t (for this case, the urban–non-urban
map of 1999). This is followed by the determination of the transition rules within the
system, which allow us to produce transition potential maps. The transition potential maps
indicate the ability of a pixel to turn from one state to another, or to remain unchanged [56].

To build the overall transition rule, two important parameters were included to capture
the local and regional dynamic: the neighborhood factor and the stochastic factor. The
neighborhood factor was built using a moving window of 5 × 5 cells (150 × 150 m),
estimated from the cumulative allocated development of the previous period, where the
central or focal cell is susceptible to change based on the values of its neighbors. The weigh
matrix that achieves a better simulation in this study was found using a trial-and-error
method. The uncertainty addressed in this study is the stochastic (random) factor, which
describes the inherent variation associated with the system or the environment under
consideration. A random distribution is generated in a range of [0, 1] to represent the
possibility that land cover may change in less predictable ways and isolated locations; in
other words, to represent the stochastic behavior using urban agents. Thus, the overall
transition rule for each cell in the model was given by:

Prtu = P + (N × St)

where Pr is the urban land use conversion probability of a cell at time tu, P is the logistic
regression model, N is the normalized neighborhood effect, and St is the normalized
stochastic factor.

The annual demand for urban area was calculated from the difference between the
built-up land in the final year (2016) and the built-up land in the initial year (1999), divided
by the number of the years in this period. For the future simulation of urban growth in
2035, the urban demand was projected based on built-up growth rate for the 1990–1999
and 1999–2016 periods. In this context, the urban demand for the 2016–2035 period was
estimated at 872 cells per year.

Finally, the urban growth model was built through the integration of all these pro-
cedures in the annual interactive CA modeling process, where, for each year, the highest
potential pixels are selected and converted to urban land until the demand is filled. The
CA output is a map showing a simulation of the urban growth in a known year. If the
results of the simulation assess goodness-of-fit against the reference map (for this case
the urban–non-urban map of 2016), the process is completed and the transition rule is
accepted for future simulations—in this case for the year 2035. Otherwise, it is necessary to
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apply modifications to the transition rule, and then the above process is repeated until the
resulting map is made satisfactory through the validation process.

3.1.3. Model Validation

The accuracy of the simulation results compared to the reference map needs to be
validated to quantify the goodness-of-fit. A cross-tabulation analysis was used to compare
the simulated map and the reference map, wherein four generalization types of pixels
are summarized: areas of observed urban change simulated correctly (hits; H), observed
non-urban simulated as urban (false alarms; F), observed urban change simulated as non-
urban (misses; M), and observed non-urban simulated as non-urban (correct rejections;
CR) [11]. Derived from the cross-tabulation analysis, the overall kappa index (K), overall
accuracy (OA), and the allocation disagreement (AD) are presented to assess the accuracy
of the model.

3.2. Vulnerability to Climate Change

Based on the predictive scenario of Esmeraldas’ urban growth for 2035, a vulnerability
analysis was implemented with a focus on landslides and flooding risks, given its current
level of exposure. These events are generally triggered by high-intensity rainfall [57] and
the increased precipitation could cause additional life and property loses [33].

Thus, future precipitation variability for the 2016–2035 period was examined using
downscaled projections, which allowed us to understand the potential impacts of climate
change over Esmeraldas’ urban land. These projections, provided by the Ecuadorian
Ministry of Environment’s (MAE for its acronym in Spanish) official estimates, consist of
the dynamically downscaled outputs of four Global Circulation Models (GCMs): CSIRO-
Mk3-6-0, GISS-E2-R, IPSL-CM5A-MR, and MIROC-ESM. The final spatial resolution of this
multi-model is 10 km, and it was built under two scenarios: RCP4.5 and RCP8.5. Climate
conditions were characterized for the 1981–2015 reference period.

Additionally, the use of scenarios defined by impact thresholds (elevation and slope)
that consider physical vulnerability reported by scientific data was helpful to effectively
assess the degree of population susceptibility at the regional scale. For flooding vulner-
ability scenarios, the Fifth Assessment Report of the IPCC suggests that mean sea levels
could rise by 1 m or more by 2100 [58], which will have severe impacts on costal environ-
ments. According to the Fourth National Climate assessment [59], the IPCC projects are
still somewhat conservative, and do not reflect the full range of physically plausible global
average sea-level rise (SLR) over the 21st century. Recent studies suggest that global SLR
could exceed 2.5 m by 2100 considering a business-as-usual scenario [60–62]. Based on
these estimates, and considering short-term climate change, the flood risk was spatialized
with a 1.5 m of sea-level rise scenario calculated by the SRTM (Shuttle Radar Topography
Mission), identifying impacted areas of actual urban land and the predicted urban growth
for 2035.

Landslide vulnerability is based on the local terrain condition, wherein the slope angle
is an active parameter directly related to the physical proprieties and the formation of land-
slides, and it is the most influential and essential factor in landslide susceptibility [63,64].
Some studies suggest that slope gradients between 30◦ and 45◦ are susceptible to mass
movement, while others believe it can occur above 25◦ [63,65]. This situation could vary
regionally, and could be influenced by external parameters such as wind and rainfall.
Heavy rainfall and an excess amount of groundwater could affect the stability of slopes
between 5–15◦. Thus, this study evaluated landslide risk with moderate slope angle values,
spatializing a scenario with slopes above 25 degrees to identify the actual and predicted
urban land impacted by mass movements.

Finally, we have characterized the socioeconomic composition of the city, identifying
critical weak points in the settlements that are currently exposed to landslides and flooding
hazards based on an urban land map for 2016. This evaluation used the National Census
data [37] to characterize the “census sectors” with a high vulnerability to climate events and
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natural risks. The features that were considered in the analysis include dwelling conditions
and living standards, socioeconomic characteristics, and demographic features.

4. Results
4.1. Land Use and Land Cover Mapping

It was found that the actual urban land increased from 8.6 km2 to 27.2 km2 during the
period 1990–2016, with an increase of 6% in total area (Table 2). Periodic observations show
that the built-up area increased 6.1 km2 in 1999, mainly concentrated in the central region,
which later increased by 12.5 km2 in 2016, continuing with an expansion over the central
and southern regions (Figure 4), primarily along the Teaone and Esmeraldas Rivers, and on
the Piedad and Prado Islands located in the northeastern region.

Table 2. Land use/land cover area (in square kilometers) statistics for 1990–2016.

Bare Soil Forest Urban Shrub
Vegetation Pasture Mangrove Crops

km2 % km2 % km2 % km2 % km2 % km2 % km2 %

1990 4.1 1.3% 145.4 45.7% 8.6 2.7% 14.4 4.5% 34.5 10.9% 1.3 0.4% 39.5 12.4%
1999 6.6 2.1% 118.1 37.1% 14.7 4.6% 9.2 2.9% 37.9 11.9% 1.1 0.3% 60.4 19.0%
2016 7.9 2.5% 100.2 31.5% 27.2 8.6% 4.9 1.5% 48.4 15.2% 1.4 0.4% 58.6 18.4%

1990–2016
(∆%) 1.2% −14.2% 5.9% −3.0% 4.4% 0.0% 6.0%
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In contrast, the overall change in vegetation area (forest and shrubs) from 1990 to 2016
was observed to be −17.2%. The forest cover occupied 145.4 km2 (45.7%) in 1990, which
decreased to about 100.2 km2 (31.5%) in 2016, mainly replaced by agricultural activities.
Shrub vegetation, concentrated on the hillside west of the city in 1990, decreased from
14.4 km2 to 4.9 km2, with a −3% change, primarily resulting from urban expansion. The
area covered by mangroves showed a slight change in the period, from 1.3 km2 to 1.4 km2;
however, its spatial configuration was impacted by river dynamics and human influence.
Mangrove forests play an important role in the local population’s adaptation to climate
change [66,67], but the mangroves that are located in this area are the last remains of an
extensive forest that was transformed by urban development and by the encroachment
of agricultural and aquaculture activities. All the agricultural land (pastures and crops)
covered a total area of 74.0 km2 (23.3%) in 1990, which increased to 107 km2 (33.6% of the
total area) in 2016.
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4.2. Urban Growth Modeling
4.2.1. Model Calibration: Transition Rule

The key factors responsible for the changing patterns of urban growth are presented
through the binary logistic regression results shown in Table 3. All the variables are
significant at α < 0.001. The relative significance of the explanatory variables can be
concluded from the odds ratio (OR), which is an indicator of the change of odds resulting
from a unit change in the predictor, and the value of coefficients of the variables obtained
from the model [55,68].

Table 3. Estimated coefficients and odds ratios for the logistic regression model of 1999–2016.

Coefficient Std. Error p-Value Odds Ratio

Intercept −1.13 0.05 0.000 * -
Proximity to roads −19.93 0.35 0.000 * 2.20 × 10−9

Proximity to rivers −1.07 0.10 0.000 * 0.344
Proximity to focal points −3.08 0.07 0.000 * 0.045

Elevation −0.47 0.11 0.000 * 0.625
Slope −3.45 0.17 0.000 * 0.031

Landslide 2.39 0.07 0.000 * 10.937
Flood 1.84 0.05 0.000 * 6.303

Population density −2.28 0.15 0.000 * 0.101
Afro-Ecuadorian

fraction 2.76 0.06 0.000 * 15.930

Poverty −0.95 0.04 0.000 * 0.386
Crime density −156.46 4.9 0.000 * 1.116 × 10−68

α = Significance level, * α = 0.001.

The results in Table 3 show that only three variables—proportion of Afro-Ecuadorian
people, landslide, and flooding—have a positive relationship with Esmeraldas’ urban
growth. This means that the greater the variables’ value, the higher the probability of
the land unit being urbanized. In contrast, the remaining eight variables are negatively
correlated with urban growth, implying a higher urbanization probability in areas close to
roads, rivers and focal points, or when the variables’ (elevation, slope, population density,
poverty and crime density) values are smaller.

The odds ratio results suggest that the following factors were found to affect urban
growth with varying degrees of influence for Esmeraldas (with odd ratios larger than 10
or less than 0.1): distance to roads, distance to focal points, slope, landslide-susceptible
areas, population density, Afro-Ecuadorian fraction, and crime density of urban pixels.
Finally, these results were used to determine the urban development suitability mapping
in Esmeraldas, as shown in Figure 5. The values range from 0 to 1, where the green tones
indicate higher probabilities of urban expansion. The future pattern of urban expansion
is easy to identify from this map, and an urban development potential is observed in the
southwestern and northeastern parts of Esmeraldas City, regions where the oil industry
and the terrestrial and aerial transport services are located.

4.2.2. Model Simulation and Validation

The proposed CA model for simulating the urban growth in Esmeraldas for the
year 2016—using 1999 as a baseline year—was implemented, and the model’s results are
shown in Figure 6. The study area was divided into three regions (for visual analysis only)
delimited by the main rivers that flow through the city: northwestern region (1), eastern
region (2), and southern region (3). Visually, the simulated patterns fit better with the
actual (observed) urban patterns for 2016 in region 1 than the results from the other regions
(Figure 6a). The main noticeable differences in regions 2 and 3 are that the simulation
shows a lower predicted growth in the southeast part of region 3, and a somewhat less
fragmented urban land pattern in region 2 and the northern part of region 3.
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Figure 6. Urban growth simulation model for the year 2016. (a) The observed and simulated patterns.
(b) Local comparison with correctness and errors of the simulation model, where Hits are areas of
observed urban change simulated correctly, False Alarms are observed non-urban simulated as urban,
Misses are observed urban change simulated as non-urban, and Correct Rejections are observed
non-urban simulated as non-urban.
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The distribution of allocation errors (missed and false alarms) in the CA model results
is illustrated in Figure 6b. The figure reveals that the model correctly simulates a larger
area of actual urban growth (black) in regions 1 and 3 than in region 2. Missed (red)
and false alarm (yellow) areas are relatively small in region 1, while the yellow and red
areas are relatively larger in regions 2 and 3, respectively. This could be attributed to the
administrative division in the rural areas located in these regions, where the division’s area
is greater than in urban zones. This administrative division (“Sector Censal”) is based on
population density.

For model accuracy assessment, the real and the simulated maps were used to validate
the model’s capabilities in producing simulation results. Table 4 shows the tabular matrix
resulting from the cross-tabulation analysis. It represents the proportion of pixels in the
2016 observed map versus the simulated map, illustrating the allocation disagreement
between the simulated and observed changes. The overall kappa, overall accuracy, and the
allocation disagreement of the CA model were 76%, 96%, and 4%, respectively, indicating a
high level of consistency between the simulation and reality.

Table 4. Cross-tabulation analysis of the CA model, number of pixels, and the percentage
in parenthesis.

Simulation

Urban Non-Urban TOTAL

Urban 23,356 (6%) 6758 (2%) 30,114 (8%)
Non-urban 6757 (2%) 318,449 (90%) 325,207 (92%)

TOTAL 30,113 (8%) 325,207 (92%) 355,320 (100%)

4.2.3. Urban Growth in Esmeraldas for 2035

After the validation process, the proposed CA model was applied to predict the future
urbanization in Esmeraldas City for the year 2035, as is shown in Figure 7. The simulation
presented in this study reveals the city’s tendency to expand into bordering areas, and in
proximity to main roads and rivers. Based on the projected model, the urban growth area
in Esmeraldas will be 16 km2, making a total of 43.1 km2 of urban land in 2035, meaning an
increase of 50% compared with the year 2016.
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Considering the actual land use in the study area, the projected expansion of urban
land in 2035 would be accompanied by an important decline in native vegetation (loss
of 40.7%), followed by bare soil (loss of 23.5%) and agricultural land areas (loss of 22%).
This pattern threatens ecosystem services in the area, and the conservation and integrity of
the native ecosystems will be heavily affected. Additionally, the projected model shows
that 26.1 ha of mangrove forest will be removed by 2035 due to urban growth (red area in
Figure 7), increasing at almost twice the annual rate of loss (1.28%). If the present rate of
loss continues (1 to 2% a year), ecosystem goods and services, such as flood defense, could
be lost by 2035 [51,66].

4.3. Urban Exposure to Climate Change
4.3.1. Future Precipitation

By examining the trends of future rainfall in Esmeraldas, derived from the MAE
climatological repository, we can see a notable increase in precipitation over the 2016–2035
period when compared with the historical reference period of 1981–2017 (Figure 8), suggest-
ing a future wetting condition in the city. The projected monthly rainfall, particularly its
magnitude, differs across the scenarios and time period (5 years) mainly in the wet season.
Conservative estimations (RCP 4.5) project a monthly rainfall that ranges from 200 mm to
250 mm between January and May, while for most extreme climate projections (RCP 8.5), it
ranges from 250 mm to 300 mm in the same period. These results show an intensification of
the wet season with an increase in the number of months with precipitation over 200 mm.

Furthermore, projections show that the maximum precipitation occurs in February
and March under the RCP 8.5 scenario, with monthly cumulative rainfalls over 300 mm in
the 2021–2025 and 2031–2035 periods, which could be due to the influence of future ENSO
events in these periods.

The projected changes show that multi-model mean annual precipitation would
increase by between 12.5% and 17% across the city by 2030 (Figure 9a); however, future
spatial patterns differ across scenarios. Conservative climate estimations (RCP 4.5) suggest a
wetter future in the northeastern region, while extreme estimations (RCP 8.5) project higher
precipitation over the southwestern region. Changes in extreme conditions (Figure 9b)
indicate that for extreme dry anomalies (10th percentile), the low precipitations may
not change significantly (percent changes between −5% and −3%). As for extreme wet
conditions (90th percentile), rainfall may increase by about 28%. Additionally, we note that
the northeastern part of the city may be affected by extreme conditions. We acknowledge
the need to improve local climate observations and projections that include temperature
records and hydrological variables, yet here, we expect to show an initial overview of the
rainfall conditions.

Considering urban growth and its exposure to heavy rainfalls, the spatial patterns
indicate that the northeastern and southwestern regions, where much of the future urban
growth is expected to take place, will receive more rainfall than the other regions. The high
rainfall in these areas is expected to worsen the flood situation along the Esmeraldas and
Teaone Rivers, meaning extensive land losses in the immediate surrounding area by the
2030s, as well as significant economic and human impacts.

4.3.2. Exposure Scenarios

Analyzing the present and future projection of urban growth development in this
study, we found that 240.39 ha (9%) of the Esmeraldas urban area was exposed to 1.5 m of
sea level rise in 2016. By 2035, this value will have increased in 91.35 ha of exposed urban
area, to a total of 331.74 ha (Figure 10a), which represents 8% of the total urban land for
this year.
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As for landslide risk, based on the 2016 urban map, houses on hills of over 25 degrees
are built in over 156.36 ha (6%) of the land. The projected model indicates that this area
will increase to 337.26 ha (8%) by 2035, and these new settlements will suffer the risk of
landslides (Figure 10b).

Overall, about 15% of the urban land was exposed to the effects of climate variability
in the year 2016. Two decades later, the existing tendency of the population to build on
areas highly exposed to climate-related risk will continue (16% of the urban land will be
exposed to climate change effects).

4.3.3. Population Vulnerability

Imran et al. (2019) considered that social vulnerability due to natural hazards is driven
by socioeconomic conditions, demographics, status of land tenure, coping capacity, and
spatial neighborhood (e.g., road networks, housing quality, connectivity of flood-prone
communities), and that the interrelationships between these constructs reveal reinforcing
dynamics between them. The values of the parameters selected for analyzing the socioe-
conomic condition of the population that has settled on flooding- or landslide-vulnerable
areas are presented in Table 5. The results show that 43.75% of the city’s population is
located in risk zones, 29.46% of which is located in landslide exposure areas and 14.3% in
flooding-vulnerable areas.
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the lower panel shows multi-model changes in precipitation for the 90th percentile (P90, extreme wet
anomalies).
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Table 5. Housing conditions and population characteristics of settlements located in flooding and
landslide exposure areas, and in non-vulnerable areas. The values are presented in percentages.

Subject Indicator Values Flooding Landslide No Exposure to
Flooding/Landslide

Housing
conditions and

standard of living

Structural dwelling condition
(wall, floor, ceilings)

Good 32.85 40.08 50.05
Regular and poor 67.15 59.92 49.95

Solid waste disposal
Solid waste collected 93.55 94.58 98

Throwing out 2.09 0.92 0.4
Burning or burying 4.36 4.51 1.6

Sewage disposal

Public server 60.97 67 78.67
Septic tank or cesspit 22.13 25.89 17.77

Discharge into water bodies 5.52 0.78 0.54
Latrine 0.63 0.64 0.37

Non-existing 10.76 5.68 2.66

Water supply system

Public system (piped
system) 91.7 92.97 96.31

Well water 1.11 1.57 0.67
Rivers, springs 3.5 0.69 0.68
Tanker truck 1.16 2.6 0.99

Other sources 2.53 2.17 1.37

Electricity system

Public service 89.14 93.82 96.4
Solar panel 0.49 0.22 0.18
Generator 0.63 0.19 0.16

Other sources 2.64 1.59 0.86
Non-existing 7.1 4.17 2.4

Socioeconomic
characteristics

Education status

Primary and secondary 83.32 76.48 71.95
Bachelor´s degree 10.26 16.55 21.41

Post-graduate degree 0.53 1.01 1.58
No answer 5.9 5.97 5.05

Source of income

Government or private job 40.01 50.96 52.97
Day laborer 7.61 5.35 4.13
Housemaid 6.82 6.21 3.82

Business owner 26.85 22.44 25.60
No income 18.71 15.05 13.48

House ownership
Owned housing 62.98 68.79 72.13

Borrowed housing 13.35 13.9 0
Rented housing 23.67 17.31 27.87

Social security Included 10.45 16.75 21.84
Excluded 78.27 71.74 68.75

Demographic
Features

Afro-Ecuadorian fraction 73.53 59.91 50.79
Literacy rate 6.6 4.13 5.28

Infants and children fraction 36.2 33.06 31.58
Old age fraction 4.5 5.28 5.73
Poverty (UBN) 59.80 50.70 39.80

Inhabitants/Esmeraldas population 14.29 29.46 56.24

In general, the socioeconomic parameters show lower percentages in dwelling con-
ditions, basic services coverage, education status, and social security access, and higher
levels in illiteracy rate, than the ones presented in the areas of the city that are not exposed
to flooding and landslides. However, the population that lives in areas exposed to flooding
stand out due to evident precarious conditions. The population that lives in dwelling units
in regular or poor conditions are 17.20 points higher than in those areas with no exposition.
Additionally, sewage disposal and electrical service coverage are significantly lower than
the in rest of the city, thus the proximity to the river makes it easier to fill the gaps in access
to basic services, such as water supply, sewage disposal, and solid waste disposal.

As for the educational characteristics, in flooded zones, 11.37% less of the population
only achieved elementary and high school education, compared with the non-vulnerable
city areas. Furthermore, the proportion of people that achieve a bachelor or professional
degree is between 40 and 50% less. The literacy rate in flooded plain settlements is higher
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(6.6%) compared with the population that lives in landslide-exposed (4.1%) and non-
exposed areas (5.3%).

The Afro-Ecuadorian fraction located in flooded zones is 31% higher than in the rest
of the areas, and in proportion, almost 50% fewer people in this area receive social security
benefits. As for the poverty level, based on unsatisfied basic need (UBN), more than 50% of
the population that lives in areas exposed to climate change hazards is considered poor, so
it is necessary to concentrate mitigation efforts in these areas.

5. Discussion

The effects of climate change on society are not only a function of exposure to tem-
perature and precipitation changes, or increases in the frequency or magnitude of extreme
events. The sensitivity and adaptive capacity of societies to these changes play a crucial
role in influencing outcomes [13]. In this regard, current studies have shown that socioeco-
nomic development will largely influence future trends in social vulnerability to climate
hazards [69]. It is also recognized how important these comprehensive future dynamics of
human systems are, and the influence they will have on future vulnerability research [70].

This study encompasses urban growth modeling (1999–2035), and its potential vulner-
ability to environmental hazards results from a range of social, economic, historical, and
climatic factors. While enhancing adaptation to climate change has played an important
role in research and policy agendas, it is essential to ask as well why some communities
and people are disproportionately exposed to—and affected by—climate threats [71,72].
Thus, the use of multilevel factors (demography, economic development, urbanization,
and climate) in urban modeling allows for a better understanding of the heterogeneity of
the complex urban growth process (non-stationary), and the mechanisms by which these
factors influence urban expansion [22,73] and contribute in generating future impacts [13].

According to the study, future urban development is expected to occur in proximity
to major roads and rivers and in low-lying lands, preferring areas close to central indus-
try/business zones, which facilitates the mobilization of goods and people, and the access
to basic social and cultural services provided by local government. However, much of this
urban development process is unplanned, and the physical characteristics of these areas
are not suitable for future urban sprawl. For example, in the last decade, new roads have
been opened into the mangrove islands in front of the city at Isla Piedad and Isla Prado,
including a bridge that links the city to the airport on the other side of the Esmeraldas
River [33], giving rise to new informal settlements in these zones. These unmanaged
settlement patterns reduce the sensitive and adaptive capacities of the communities facing
climate change, leading to land fragmentation and pressure on land resources [56].

Socioeconomic and demographic characteristics play an important role in driving
urban growth and social vulnerability to risk events in Esmeraldas. Socioeconomic, de-
mographic, and land tenure indicators in the areas exposed to flooding and landslides
reveal a cyclical vulnerability that is reinforced by the lack of urban planning in the city.
Rebotier et al. [39] speak of an absence of planning rather than a failure to comply; thus,
this vacuum has contributed to transforming the economic milestones, such as the banana
industry, the port, and the oil industry, into dominant actors and engineers of the city’s
urban structure. Hence, the population tries its best to meet its needs for housing, equip-
ment, and services on its own, while the State intervenes by financing infrastructure for the
productive economy [39].

Most of the dwellers who settle in Esmeraldas’ neighborhoods that are at risk of
flooding and landslides are the result of the exponential growth of informal settlements.
Mostly low-income families take part in this process, because the price of the land—when
it is paid—is lower than in non-vulnerable areas. Additionally, the municipality is part of
these dynamics, promoting relocations from one risk zone to another due to hazardous
events that have taken place. In this context, the ownership of housing in these areas
is lower than in the rest of the city, which presents a limitation to people affected by a
hazardous event. This happens because land ownership promotes preventive measures
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and reduces damages, increasing coping capacity [74], and also because it allows claims for
post-disaster government assistance.

Consequently, the levels of poverty (UBN) in Esmeraldas City clearly show that the
dwellers who settle in areas exposed to flooding and landslides are significantly poorer
than those in the rest of the city, with low education levels and low access to formal jobs that
guarantee social security. It is also evident that households in these areas show precarious
dwelling conditions and lower levels of basic service coverage, which increase social
vulnerabilities because a house built with better materials and that is in good condition
will be less vulnerable to a hazardous event [75], and because inadequate storm drains,
waste management, and water supplies are considered some of the worst problems during
a hazard, as they can significantly exacerbate the impacts during and after the event [76].

The described social scenario supports geography of exposure theories, whereby the
poor tend to occupy the more risk-prone environments [16,77]. In urban areas, exposure
to hazard events such as flooding and landslides tends to be concentrated in marginal,
low-lying sites along rivers, on floodplains and coastal marshes, and on steeply sloping
areas, which have been historically avoided by the better-off but are often settled by the
poorest communities because of their availability and/or proximity to sources of economic
livelihood, low prices, and less danger of eviction by city authorities (if located in areas
deemed undesirable for legal private or public development) [78]. In turn, the unsustainable
settlement of such areas can accentuate flooding levels and landslide risks, causing a cyclical
increase in hazard exposure [77].

These social and geographical conditions state that it is not just that the poor may be
more exposed to flooding and landslides, but more importantly, they are also more likely
than the wealthy to suffer when flooding occurs [78]. In Esmeraldas, city dwellers in ex-
posed areas have fewer resources upon which to draw to counteract the impacts [33]. Thus,
social susceptibility becomes cyclical, because disruption to assets and livelihoods by one
event often makes households even more vulnerable to future hazardous events, reflecting
a loop structure whereby household losses due to one event increase their vulnerability to
the next event [79].

The use of spatially explicit methodologies, such as the logistic Cellular Automata
model, allowed us to explore different scenarios that conceal the complex mechanisms and
processes involved in urban growth [22]. Analyzing these scenarios in conjunction with
global climate downscaling models has allowed us to visualize and quantify future climate
vulnerability, from both social and natural risk perspectives. These results are important
assets to the Esmeraldas City authorities’ decision-making in urban land planning and
management. However, further research is still needed into local climate modeling to
understand the real impacts of climate change, addressing social vulnerabilities with
tangible and practical knowledge.

6. Conclusions

Urban development is a complex dynamic process, whereby the population is not
uniformly vulnerable to social and environmental hazards derived from climate change.
The integration of multi-level factors into urban growth modeling, focused not only on
accessibility and suitability parameters but also on socioeconomic and demographic char-
acteristics, allows for a better understanding of the continuous urban development process
in terms of future climate hazards. A CA logistic regression model was used to simulate
and predict urban growth for 2035 in Esmeraldas City. Rainfall predictions, derived from
national downscaling projections, were used to provide an understanding of future climatic
conditions and their potential effects over current and future urban land. The results of
rainfall projections suggest a noticeable increase in precipitation (between 12.5 and 17%)
during the 2030s compared to the historical long-term average, increasing the total amount
of water bodies, particularly during the wet season. The results of the model indicate that
urban land in Esmeraldas is expected to increase 16 km2 (50% compared to 2016) by 2035,
with a notable sprawl in the southwestern and northeastern regions. Urban expansion in
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the city is closely associated with a significant decline in natural vegetation, led by informal
settlements in high-risk exposure areas. In total, 15% of the urban land was exposed to
landslides and flooding events in 2016, but a slight increase (16%) will be observed by 2035,
showing a continuous marked trend towards building up in these areas.

Climate change’s effects on society depend not only on climate variability or the
intensity of extreme events, but also on the sensitive and adaptive capacity of societies to
cope with natural disasters. These parameters are associated with the socioeconomic and
demographic characteristics of a community [80]. In Esmeraldas, this analysis reveals a
high degree of vulnerability in the population located across natural risk-exposed areas, a
product of informal settlements and the lack of urban planning in the city. Overall, mostly
low-income families take part of this urban growth and sprawl process, whose members
present low education levels and little access to formal jobs that guarantee social security.
This pattern has become cyclical in Esmeraldas, reducing the resilience and adaptive
capacity of households.

This study provides the basis for the prioritization of initiatives to be taken to build
resilience in Esmeraldas’ population under climate change, where urban growth is primarily
haphazard and unplanned. The results show a potential future damaged urban area;
however, this does not mean that all the identified area will be exposed to natural hazards
derived from climate change. The preparation of planning policies, a careful urban land
management approach, and the identification and application of mitigation/adaptation
strategies could make the results differ.
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