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Abstract: In recent years, Dedicated Short-Range Communication (DSRC) vehicle interconnection
technology has achieved mature development and broad applications, which is the key Vehicle to
Everything (V2X) technology to realize transport intelligence. However, the openness of wireless
transmission and the mobility of wireless terminals cause the identification mechanism of the DSRC
system to face serious security threats. A radio frequency fingerprint (RFF)-based identification
method can better resist the identity attack and spoofing by extracting the hardware characteristics
formed by the differences of electronic components to authenticate different devices. Therefore,
in this paper a novel RFF identification mechanism is proposed for IEEE 802.11p protocol-based
DSRC intelligent vehicle networking devices suitable for a high mobility environment, in which the
preamble field features of physical layer frames are extracted as device fingerprints, and the random
forest algorithm and sequential detection method are used to distinguish and authenticate different
devices. The experiment and simulation results demonstrate that the identification accuracy rates of
the eight DSRC modules in the low-speed LOS and NLOS experimental states and up to 70 km/h
high-speed simulations all exceed 99%, illustrating that this method has important application value
in the field of identity authentication of V2X devices in high-speed scenarios.

Keywords: vehicle networking; radio frequency fingerprint; feature extraction; device identification

1. Introduction

The interconnected vehicle technology is an effective method to solve the information
intercommunicating problems in the intelligent transportation system (ITS) and plays an
important role in the sustainable development of intelligent transportation [1]. Among
them, Vehicle to Everything (V2X) is one of the key interconnected vehicle technologies for
realizing ITS, and the ultimate goal of V2X is intelligent transportation. The communication
mode of V2X includes various forms of interaction between vehicles and surrounding
vehicles, vehicles and road infrastructure, vehicles and Internet cloud service platforms,
vehicles and roadside pedestrians, etc. The V2X system contains a variety of elements,
which requires the cooperation of the communication industry, the transportation industry,
the automotive industry, the electronics industry, and the cyber security industry to jointly
build a novel technology and business model [2].

In the global V2X system which provides interconnected vehicle services, there are
two main technical routes, Dedicated Short-Range Communication (DSRC) and Cellular-
V2X (C-V2X). DSRC is an in-vehicle communication standard based on the IEEE 802.11
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wireless local area network protocol, while C-V2X is a cellular communication V2X standard
technology based on 4G Long Term Evolution (LTE) and 5G New Radio (NR).

C-V2X technology appeared slightly later than DSRC, whereas its development is
relatively rapid, and its performance is more stable than DSRC. However, DSRC has
a greater advantage in terms of industrial maturity [3]. Based on sophisticated Wi-Fi
technology, DSRC technology has been widely used in access control, fleet management,
electronic toll collection (ETC) system, and other fields, with more frequent interactions
and up to 10 times exact broadcast information per second including vehicle position,
speed, and acceleration. With limited mobility and low vehicle density, DSRC can provide
end-to-end latency of less than 100 ms and throughput equivalent to 10 kbps [4]. A large
number of trials have been carried out globally on 802.11p-based DSRC 2.0 from 2009 to
2021 in preparation for large-scale commercialization [5].

However, due to the openness of the wireless network transmission medium and the
mobility of terminals, there are certain security problems and uncertainties in the commu-
nication process of the V2X system [6], which may lead to the possibility of eavesdropping,
forgery, or replay of information exchanged between vehicles. If the communication system
is hijacked and erroneous instructions are issued, it will bring serious security risks to
vehicles, personnel, and roads. Therefore, the identification and access control of wireless
devices in the V2X systems is particularly important.

In view of the current security threats in the V2X systems, the proposed secure com-
munication models and identification technologies include: utilizing the blockchain-based
multi-factor authentication models to enhance identification mechanism [7]; using the ellip-
tic curve encryption-based digital signature scheme to strengthen the safe interaction of
V2X data information [8]; security authentication between cross-layer and cloud platforms
based on cryptographic algorithm technology such as national secret algorithm [9]; utilizing
various access security mutual trust authentication protocols simultaneously integrating
5G technology for secure communication of the Internet of Vehicles [10]; using third-party
security modules such as cloud servers and certificate servers to authenticate users to
protect the confidentiality and integrity of information [11]; etc.

The above-mentioned traditional identification and access control protocols are mainly
based on cryptographic mechanisms, most of which run above the data link layer. Once
the key is leaked, the network security cannot be guaranteed. Further, the third-party
server authentication-based identification methods need to consume additional resources
and increase the power consumption and complexity of the system [12], which makes it
difficult to achieve non-perceptual authentication. In recent years, wireless communication
network security has begun to rely on the physical layer security technology, and the use
of non-cryptographic identification mechanisms can achieve better performance against
identity attacks compared to traditional authentication methods [13], which may be the
future development trend of user identification technology of V2X systems [14]. In the field
of physical layer security, radio frequency fingerprint (RFF)-based identification technology
is one of the current researching hot directions, which identifies and authenticates each
wireless device individual by extracting the hardware characteristics that are unique and
difficult to clone. Therefore, in this paper an RFF-based V2X identification and authen-
tication mechanism is explored and put forward for the DSRC technology based on the
IEEE 802.11p protocol, which can also achieve better recognition results in the scene of
moving vehicles.

The flow chart of RFF extraction and identification process for DSRC intelligent vehicle
networking is shown in Figure 1. After the DSRC device to be identified sends out the signal,
the signal is collected by the receiver after passing through the mobile channel. When
the signal preprocessing is completed, channel characteristics and other environmental
interference factors are removed and only the RFF characteristics of the device itself are
retained. Subsequently, the feature extraction of RFFs, the design of classifiers, the training
and registration of fingerprint database, and the identification and authentication process
are carried out in sequence.
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Figure 1. Flow chart of DSRC radio frequency fingerprint extraction and identification.

The structure of this paper is organized as follows. The second section reviews the
related studies in the previous literature and lists the contribution of this paper. The third
section introduces the IEEE 802.11p protocol standard and describes the signal acquisition
and preprocessing process. The fourth section presents the novel radio frequency finger-
print extraction and identification methods valid in complex mobile environment. The fifth
section introduces the experiment and analyzes the results. The final section summarizes
the research work done in this paper.

2. Related Works

The transmission information of the physical layer in the wireless communication
system, which is at the bottom of the OSI network layer, contains some characteristics
that cannot be reflected in the data transmission process from the upper layer. Therefore,
the identification and authentication technology based on radio frequency fingerprints
takes advantage of the unique hardware features of the devices which can be reflected in
the physical layer to distinguish different users, aiming at improving the security level
of information transmission. Radio frequency fingerprint is the hardware characteristic
of the device, which can be understood as the DNA of the device itself. There are certain
differences in the electronic components of the transmitting signal circuit between each
wireless device, so that each wireless transmitter will produce different radio frequency
response parameters when performing radio frequency work, and ultimately lead to
different radio frequency fingerprints produced by different devices [15]. Radio frequency
fingerprint mainly has five characteristics: universality, uniqueness, short-term invariance,
independence, and robustness, which is not affected by channel and location variation. In
the process of feature extraction and recognition, the hardware structure of the original
system does not need to be changed [16], and its normal operation is not affected; thus,
non-perceptual authentication and recognition can be realized. Moreover, the hardware
characteristics of the devices are difficult to clone, which brings higher attack cost and
better anti-attack performance.

In the more than 20 years of development of radio frequency fingerprint identification
technology, scholars have achieved a variety of RFF extraction and recognition methods
through research. The research of RFF identification has experienced the transformation
from using transient signals to using steady-state preamble field sequences, and then to
using arbitrary data field information; from the use of single domain features to the use of
multi-domain features, and from the waveform domain-based methods to the modulation
domain-based methods; from the use of supervised learning to unsupervised learning, and
then to deep learning methods [17].

Most of the early research on RFF focused on transient characteristics, which extract the
instantaneous amplitude, instantaneous frequency, signal envelope, and phase information
by detecting the transient signal [18]. In recent years, more researchers have turned to
the feature extraction of steady-state signals, such as stable preamble signal, to achieve
more recognizable steady-state RFF features. Initially, Kennedy et al. [19] proposed that
they converted the steady-state preamble signals to spectral features as radio frequency
fingerprints based on frequency domain characteristics to identify user equipment in the
universal mobile telecommunications system. Afterwards, Wheeler et al. [20] extracted
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the carrier frequency offset value from the preamble of the IEEE 802.11a Wi-Fi signal and
studied the effect of using or removing the frequency offset on RFF recognition.

In addition, RFF feature extraction and recognition can also be carried out in the
waveform domain and modulation domain. In terms of waveform domain, Williams
et al. [21] have shown through experiments that the fingerprint recognition performance
can be improved from the time domain to the wavelet domain and the spectral domain.
While in the modulation domain, the feasible features include carrier offset, modulation
offset, I/Q offset, power amplifier nonlinearity, constellation trace figure, and so on. Peng
et al. [22] proposed an RFF extraction and device classification scheme that mixes multiple
modulation features. Within this hybrid method, extensive experiments were conducted
to prove the effectiveness of classifying a large number of devices under different chan-
nel conditions including line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios and
to verify that the extracted RFF features are still stable and invariable after one and a
half years.

In the past decade, many studies have applied classifiers to RFF identification. De-
signing classifiers for machine learning can improve generalization ability, which is the
key processing step after extracting RFF characteristics. The existing mature methods for
RFF classification include Bayesian classification algorithm, K-nearest neighbor algorithm,
neural network classification algorithm, support vector machine classification algorithm,
random forest algorithm, etc. In addition, deep learning methods that have demonstrated
excellent performance in image recognition, voice recognition and other fields can also be
applied to RFF recognition, such as using the framework of deep neural network to detect
the extracted fingerprint features [23].

For different kinds of signals and modulation modes, different multipath channels and
environmental interference, and different signal-to-noise ratios, the researchers also put
forward some novel improved methods to optimize the RFF identification rate. For example,
according to ZigBee signals, Zhou et al. [24] proposed an algorithm for long-term stacking
of repeated symbols to convert the measurement noise into standard Gaussian distribution,
and another algorithm for artificially adding noise in the training stage to improve the
performance under time-varying channels. Their further study reveals that the scheme
is feasible and robust in additive white Gaussian noise channel and multipath scenarios.
For linear frequency modulation (LFM) radar signals, Xing et al. [25] put forward a radio
frequency fingerprint identification mechanism, which performs the signal derivation and
envelope operations to extract both transient-based and modulation-based features after
the interference pulses are eliminated through the piecewise curve fitting-based denoising
algorithm. For GSM communication standard mobile phones, Wang et al. [26] combine the
physical layer RFF method of differential constellation trace figure with the classification
scheme of convolution neural network, which can identify different devices with low
complexity and high accuracy and can still possess strong robustness when the device
locations and GSM parameters change.

From the above analysis, it can be seen that the research on radio frequency fingerprint
identification has made significant progress, which is still a hot topic. At the same time,
there are some deficiencies and challenges in the current research, and the following issues
remain to be further explored for practical application in the V2X intelligent transportation
systems. First, the influence of time-varying wireless multipath channels on the stability
of RFF has not been emphatically discussed in the past. Since the vehicles are in a high-
speed moving state in the actual DSRC vehicle networking environment, the received
signal strength indication (RSSI) and channel state information (CSI) values are constantly
changing, which cannot be used as device fingerprint features. Previous studies on RFFs
mostly considered the ideal static situation and did not take into account the diversity
of transmission channel in the mobile environment and the interference caused by other
obstacles. The extracted device fingerprints are often mixed with channel fingerprints,
which will change with the location, and the RFF identification accuracy will decrease once
in a mobile environment. Second, the 802.11p protocol signal in DSRC is a broadband



Sustainability 2022, 14, 5037 5 of 19

signal with a bandwidth of 10 MHz, which carries abundant spectral information and is
more susceptible to the multipath interference caused by people walking, wall and obstacle
reflections, and other negative factors in complex indoor environment. Therefore, previous
traditional RFF methods for narrowband signals are not applicable.

In view of the above problems and shortcomings, this paper further studies the IEEE
802.11p protocol-based DSRC intelligent vehicle networking radio frequency fingerprint
extraction and identification technology in high-speed mobile environment. The main
contributions of this article are listed as follows:

1. A novel RFF extraction method is proposed for the IEEE 802.11p preamble signal,
which utilizes the ratio of the spectrum amplitudes of the superimposed short training
sequence and long training sequence as the fingerprint feature. This method can
effectively remove the channel interference and is less affected by noise and position
movement, thus obtaining more stable device fingerprints.

2. The random forest algorithm and sequential detection method are discussed to classify
and identify RFF features, which adapt to the complex and changeable mobility
environments and can improve the accuracy of recognition.

3. For eight modules of the same model that can transmit IEEE 802.11p protocol signals,
experiments are carried out in static state, indoor LOS moving state and partition
NLOS moving state, and simulation are tested in a vehicle speed of 0–70 km/h to
corroborate the stability and fine recognition performance of the extracted device
RFF features in high mobility scenarios. After completing the signal acquisition and
feature extraction, the identification accuracy rate of more than 99% can be achieved
through the above classification and identification algorithm.

3. Signal Acquisition and Preprocessing
3.1. IEEE 802.11p OFDM PHY Frame

As mentioned above, the radio frequency fingerprint-based identification method
belongs to the research scope of physical layer security. Therefore, the physical layer (PHY)
specification in the IEEE 802.11p protocol standard [27], which is used as the underlying
technology by DSRC, is first introduced in this section. The IEEE 802.11p standard specifies
the PHY entity for an orthogonal frequency division multiplexing (OFDM) system [28], in
which the orthogonal subcarriers can be overlapped together without affecting each other,
with strong anti-interference ability and high spectrum utilization. In this OFDM system,
the frame format of the Physical Layer Convergence Procedure (PLCP) Protocol Data Unit
(PPDU) is defined, which is composed of a preamble field, a signal field, and a data field,
including the OFDM PHY preamble, the PHY header, the PLCP Service Data Unit (PSDU),
the tail bits and the pad bits.

In the PPDU encoding process, it contains multiple steps such as producing the
preamble field, adding a guard interval, filling corresponding bit fields, calculating relevant
parameters, and inserting pilots. The service bits, whose length is stored in the length field
of the PHY header, together with the PSDU, are part of the data field. In addition, the data
transmission rate, modulation mode, and coding rate are determined by the rate field of
the PHY header in the signal field. Therefore, the content of both the signal field and the
data field will change according to the data content actually transferred and transmission
rate. However, the data format transmitted in the preamble field is constant, hence it is
more feasible to extract stable and invariable RFFs from the PHY preamble field.

The OFDM PHY preamble field contains 10 repeated short training symbols and
2 repeated long training symbols, and its main function is to realize signal synchronization.
Figure 2 shows the training structure of PHY preamble in the IEEE 802.11p OFDM PPDU
frame format, where t1 to t10 represent short training symbols and T1 and T2 represent
long training symbols. At 10 MHz channel spacing, the total preamble training duration is
32 µs. These cyclic repeated symbols are caused by the periodicity of the inverse Fourier
transform, and the period of a Fourier transform or inverse Fourier transform TFFT is
6.4 µs [29].
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The structures of short training symbols and long training symbols are different. A
short training symbol consists of 12 subcarriers, which is modulated by the elements
of sequence

S−26,26 =
√

13
6 {0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0,

0, 0, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0}
(1)

Since the short training symbol only utilizes 12 of the 52 subcarriers, and its spectrum
only has a non-zero spectral amplitude at a multiple of 4, the signal period of the short
training symbol is one quarter of that of TFFT, i.e., 1.6 µs. There are 10 such training symbols
in the short preamble field, with a total duration of 16 µs.

A long training symbol consists of 53 subcarriers, including a DC zero value, which is
modulated by the elements of sequence

L−26,26 = {1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0,
1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1} (2)

A period of long training symbol lasts 6.4 µs in the time domain, and the protocol
states that two periods of long training symbols need to be sent, totaling 12.8 µs. In addition,
a 3.2 µs cyclic prefix GI2 is added before the two long training symbols with the result that
the total duration of the long preamble field is also 16 µs.

Each frame of PPDU signal has the same format of preamble field, and the short
preamble and long preamble have the same length and different structures, which is conve-
nient for the removal of channel features and the extraction of the location independent
RFF characteristics with better consistency.

3.2. Signal Acquisition

Wireless signals are often collected through universal software radio peripheral (USRP).
After the wireless signals are collected, it is necessary to capture and separate each frame
conforming to the OFDM PPDU frame format from the collected signals for subsequent
analysis, and at the same time the interference of other standard signals that may exist in
the air should be also considered.

Considering that the PHY preamble has a fixed repetition structure, and especially
the time domain waveform of 10 repeated short training symbols has obvious distinction,
which can be used as the search target for fast acquisition, the method of cross-correlation
operation with the local ideal signal can be adopted to realize the signal capture. Since the
real-time requirement for capturing valid signal frames from the received signals needs to
be satisfied in practical work, the way of sliding a small window to receive the signal can
be taken, in which the collected signal is sent to the processor in sequence, and its conjugate
correlation value is calculated with a local ideal short training symbol. If the correlation
value exceeds the threshold value and the energy of the received signal also exceeds the
threshold value, it can be considered that the signal acquisition is successful.

In the IEEE 802.11p protocol, a short training symbol lasts for 1.6 µs and occupies
32 sampling points at a sampling rate of 20 MHz. Using a window with a length of
32 sampling points for sliding and performing correlation operations have low overhead
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and can basically meet the demands of real time. Suppose a local short training symbol is
x(n), and the received signal taken out by sliding window and sent to the processor is y(n).
In order to facilitate the comparison with the decision thresholds, the amplitudes of the
two sequences are normalized first. The two normalized sequence signals are

xshort_symbol(n) =
x(n)

1
L

L−1
∑

n=0
|x(n)|

(3)

yshort_symbol(n) =
y(n)

1
L

L−1
∑

n=0
|y(n)|

(4)

where n = 0, 1, . . . , L− 1, L denotes the sampling points of a short training symbol. The
complex conjugate correlation value of two normalized signals is expressed by

rshort_symbol =
L−1

∑
n=0

yshort_symbol(n)x∗short_symbol(n) (5)

where x∗short_symbol(n) is the conjugate of xshort_symbol(n). Only when the calculated value
rshort_symbol exceeds the threshold TH, can it be considered that a short training symbol
has been captured. In addition, since the correlation value of the noise part after the
normalization may also exceed the threshold, the energy of the received signal itself

P =
1
L

L−1

∑
n=0
|y(n)|2 (6)

also needs to exceed a threshold value. According to the above acquisition rules, when the
correlation values of continuous multi-segment signals with local ideal signal and their
own energy both exceed the threshold, it means that a frame of IEEE 802.11p PPDU signal
has been acquired.

3.3. Signal Preprocessing

Before extracting the RFF features, it is necessary to preprocess the captured PPDU
frames, which mainly includes time synchronization and frequency offset compensation.

In the previous signal acquisition step, the starting position of each frame is only
roughly determined, which may have a certain time deviation from the actual signal start
point. While in the process of frequency offset compensation and fingerprint extraction,
there is a high requirement for the accuracy of time synchronization. Therefore, in this
section an improved synchronization method is proposed based on the existing method,
in which the short preamble is utilized for coarse synchronization first, and then the long
preamble is utilized for fine synchronization. Both the coarse synchronization and the
fine synchronization are realized by performing complex conjugate correlation operation
between the received signal and the corresponding local preamble signal, which can make
synchronization more precise through two correlation operations.

Due to the strong correlation of short preamble, it is first used for coarse synchro-
nization. During the correlation operation for each PPDU frame, the complete 16 µs short
preamble field is used, and the range of M sampling points before and after the starting
point determined by the acquisition process are contained to ensure that the actual start-
ing point is included in this range. Assume that the local ideal short preamble signal is
xshort(n), and the received signal is yshort(n), whose energy normalized complex conjugate
correlation value is

rshort(m) =
N−1

∑
n=0

yshort(n + m)x∗short(n)√
Rxx(0)Ryy(0)

(7)
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where

Rxx(0) =
N−1

∑
n=0

xshort(n)x∗short(n) =
N−1

∑
n=0
|xshort(n)|2 (8)

Ryy(0) =
N−1

∑
n=0

yshort(n)y∗short(n) =
N−1

∑
n=0
|yshort(n)|2 (9)

m = 0, 1, . . . , 2M− 1, M denotes the sampling points before and after the starting point
determined during signal acquisition, n = 0, 1, . . . , N−1, N denotes the sampling points of

a short training symbol. The position
∧
m is the starting point of the coarse synchronization

of each frame where the maximum value rshort(m) is obtained by

∧
m = argmax

m
{rshort(m)} (10)

However, in the case of severe multipath channels and mobile environment, the peak
point performed by correlation calculation in the coarse synchronization process may
have several points deviation. Therefore, it is necessary to use the long preamble field for
fine synchronization. The fine synchronization utilizes the 16 µs long preamble field for
correlation operation, whose sliding searching range is within 3.2 µs before and after the
starting point determined by the coarse synchronization, namely a total of 6.4 µs, which is
the length of a long training symbol, and the correlation operation method and calculation
equations are similar to the coarse synchronization process.

The frequency offset is mainly caused by the inconsistency of the frequency between
the wireless signal receiver and the transmitter oscillator. In the process of frequency
offset compensation, the frequency offset values are estimated and then averaged through
multiple periodic repetitive signals of the short preamble.

In the frequency offset estimation process, the phase offsets between the corresponding
points of the two adjacent short training symbols are estimated, and then their average
value is calculated. The 10 short training symbols can be used to calculate the phase offset
between the adjacent symbols for 9 times, and finally the phase offset can be converted
to the frequency offset. The specific calculation process of frequency offset estimation is
as follows.

Assuming that xshort(iL + n) is the nth sampling point of the ith ideal local short
training symbol, yshort(iL + n) is the nth value of the ith received signal of the actual short
training symbol, and the frequency deviation of the transmitter and receiver is ∆ f . By
calculating the conjugate correlation value between the two adjacent short training symbols,
the phase offset of the corresponding point between the ith and the (i + 1)th short training
symbol can be expressed as

θyi (n) = angle
[
yshort(iL + n + L)y∗short(iL + n)

]
= angle

[
xshort(iL + n + L)ej2π∆ f (iL+n+L)Ts

(
xshort(iL + n)ej2π∆ f (iL+n)Ts

)∗]
= angle

[
xshort(iL + n + L)x∗short(iL + n)ej2π∆ f (iL+n+L)Ts e−j2π∆ f (iL+n)Ts

]
= angle

[
|xshort(iL + n)|2ej2π∆ f LTs

]
= 2π∆ f LTs

(11)

where i = 0, 1, . . . , 8, n = 0, 1, . . . , L− 1, L denotes the sampling points of a short training
symbol, angle(•) denotes calculating phase angle of complex number, and Ts denotes
the sampling interval. Then, the average of the phase offset ∆θ of corresponding points
between the adjacent short training symbol is calculated. Eventually, the average frequency
offset produced by a sampling interval can be calculated by

∆ f = fs
∆θ

2πL
(12)
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where fs represents the sampling frequency of the receiver.
The frequency offset compensation process is performed on the overall preamble field

signal after synchronization, and is implemented by

y f req(n) = ysyn(n)e−j2π∆ f nTs (13)

where ysyn(n) is the signal after synchronization and y f req(n) is the signal after frequency
offset compensation. This frequency offset estimation and compensation method can well
remove the signal phase deviation caused by the frequency offset, and better serve the
subsequent fingerprint extraction.

4. RFF Extraction and Identification Methods
4.1. Preamble Field-Based RFF Extraction Method

After the signal acquisition and preprocessing steps are completed, the features of
the radio frequency fingerprint can be extracted. In the mobility environment, if stable
RFFs need to be obtained, the most challenging problem to be solved is to eliminate the
time-varying influence of the channel. This paper proposes an RFF extraction method for
IEEE 802.11p-based DSRC signals, which utilizes the characteristics of the preamble field
of the OFDM PHY frame, superimposes part of the time domain waveform of the short
preamble and the long preamble, and then divides the spectrum of them to remove the
multi-channel and the added noise in the mobile environment, resulting in a purer device
fingerprint.

First, four signal sequences are taken out from the preprocessed OFDM preamble field
in order to extract the fingerprint for each frame of received signal. Considering that the
first short training symbol may be affected by the initial transient response, and that the
IFFT transformation period is 6.4 µs, equivalent to four times of the period of the short
training symbol, the second to fifth symbols are taken and named as the sequence STF1.
Accordingly, the seventh to tenth symbols are taken as the sequence STF2. For local signal
sequence, STF1 and STF2 are theoretically identical, each containing 12 subcarriers. For
long preamble, regardless of the cyclic prefix part, the first long training symbol is taken
as the sequence LTF1, and the second long training symbol is taken as the sequence LTF2.
Theoretically, LTF1 and LTF2 are also identical, each containing 52 non-DC subcarriers. As
described in Section 3.1, the four sequences are identical in length and each last for 6.4 µs,
totaling 128 sampling points at a sampling rate of 20 MHz.

However, in practice, the preamble field signals transmitted by each device are not
the same, because the RFF information of the transmitter will be parasitized in the signal
it sends. In addition, when the transmitter sends the wireless signal, it will experience
wireless channel and generate convolution relationship with the multipath effect in it.
Moreover, the final received signal will be affected by various types of noise dominated
by additive noise. The following part will discuss and deduce how the method proposed
in this paper can not only preserve and enhance the RFF features, but also eliminate the
mobile multipath interference and additive noise.

The formation of RFF can be ideally modeled as a local time domain baseband signal
passing through a filter, in which the local ideal signal and fingerprint are in a convolution
relationship, and the received signal can be expressed as

y(n) = x(n) ∗ f t(n) ∗ h(n) ∗ f r(n) + v(n) (14)

where n = 0, 1, . . . , N− 1, N denotes the length of the sequence. In the four signal sequences
mentioned above, each sequence lasts 6.4 µs and thus N = 128 if the sampling rate is
20 MHz. Besides, y(n) denotes the received signal, x(n) denotes the local ideal signal, f t(n)
denotes the RFF of signal transmitter, f r(n) denotes the RFF of signal receiver, h(n) denotes
the multipath channels experienced by the sequence, v(n) denotes the additive noise, and
∗ denotes a linear convolution operation.
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Specifically, the received signal of the four sequences STF1, STF2, LTF1, and LTF2 are
represented as

ySTF1(n) = xSTF1(n) ∗ f t
STF1(n) ∗ h(n) ∗ f r(n) + vSTF1(n) (15)

ySTF2(n) = xSTF2(n) ∗ f t
STF2(n) ∗ h(n) ∗ f r(n) + vSTF2(n) (16)

yLTF1(n) = xLTF1(n) ∗ f t
LTF1(n) ∗ h(n) ∗ f r(n) + vLTF1(n) (17)

yLTF2(n) = xLTF2(n) ∗ f t
LTF2(n) ∗ h(n) ∗ f r(n) + vLTF2(n) (18)

Since the local signal xSTF1(n) and xSTF2(n) are the same sequence, the RFF generated
by the transmitter f t

STF1(n) and f t
STF2(n) are also the same. Similarly, f t

LTF1(n) and f t
LTF2(n)

are the same. It is assumed that the multipath channel characteristics h(n) experienced by
each of the four sequences in a frame signal are the same. In general, the same receiver is
used for signal reception in the system, so the influence of the receiver RFF f r(n) on the
received signal is also regarded as the same. Additive white Gaussian noise can be proved
to be a stationary random process with zero mean and constant variance, hence all four
v(n) sequences are random sequences.

Additive noise v(n) can be attenuated by signal superposition in time domain. Since
the mean value of additive white Gaussian noise is zero, when enough noise sequences are
added, the value of the stacked sequence is in theory zero, which proves that the method of
superposition denoising method is feasible. In a frame of PPDU signal, the received two
STF sequences ySTF1(n) and ySTF2(n), and two LTF sequences yLTF1(n) and yLTF2(n), can
be added separately to enhance the fingerprint features and ease the influence of noise to a
certain extent. Although only two sequences are superimposed each time, the fingerprint
part f t(n) is enhanced twice, and the amplitude of noise v(n) is reduced compared to
the original.

In the V2X system using DSRC technology, the vehicle is moving at a high speed in
most cases, and the relative position between the receiver and the sender is often changing,
so that each frame of the received signal has a variable channel factor, which adversely
affects the extraction of stable RFFs. By using the repeated preamble structure defined in
the PPDU frame format of IEEE 802.11p standard, transforming the time domain signal
into the frequency domain and applying the division operation can remove the interference
of channel condition on the fingerprint.

After the above time domain superposition operations of STF and LTF, it can be ap-
proximately considered that the noise v(n) has been effectively eliminated. The expressions
of the superimposed sequences transformed into frequency domain are

YSTF1(k) + YSTF2(k) = XSTF1(k)Ft
STF1(k)H(k)Fr(k) + XSTF2(k)Ft

STF2(k)H(k)Fr(k) (19)

YLTF1(k) + YLTF2(k) = XLTF1(k)Ft
LTF1(k)H(k)Fr(k) + XLTF2(k)Ft

LTF2(k)H(k)Fr(k) (20)

where Y(k), X(k), Ft(k), H(k), Fr(k) are the frequency domain of y(n), x(n), f t(n), h(n),
f r(n), respectively. According to Equations (1) and (2), the amplitudes of the non-zero
spectrum of short training symbol and long training symbol are different in the frequency
domain. When the signals are transmitted with different amplitudes, the nonlinearity
of the power amplifier in the transmitter will cause it to work in different states [30].
The difference in signal transmission power and energy will result in different nonlinear
fingerprints generated by nonlinear electronic components such as power amplifiers. When
the two identical STF sequences and two identical LTF sequences are transmitted, the
frequency domain of transmitter RFF can be uniformly expressed as Ft

STF(k) and Ft
LTF(k),

while these two fingerprint expressions are different. When the two parts receiving signals
are divided in the following steps, even if the consistent linear part is removed in the
division operation, the nonlinear RFF components can still be preserved.
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Next, the frequency domain expressions of the two superimposed sequences are
divided to remove the multipath channel, which can be shown as

RFF(k) = YSTF1(k)+YSTF2(k)
YLTF1(k)+YLTF2(k)

=
XSTF1(k)Ft

STF(k)H(k)Fr(k)+XSTF2(k)Ft
STF(k)H(k)Fr(k)

XLTF1(k)Ft
LTF(k)H(k)Fr(k)+XSTF2(k)Ft

LTF(k)H(k)Fr(k)

=
XSTF1(k)Ft

STF(k)+XSTF2(k)Ft
STF(k)

XLTF1(k)Ft
LTF(k)+XSTF2(k)Ft

LTF(k)

(21)

where X(k) is the spectrum of the ideal signal and is a fixed value, the linear channel part
and linear fingerprint part can be cancelled, and the nonlinear fingerprint part can still be
retained. Therefore, the above Equation (21) can be further simplified to

RFF(k) = A
Ft

STF(k)
Ft

LTF(k)
(22)

where A denotes a constant value. It can be seen from the above Equation (22) that only
the transmitter fingerprint feature is included, and the RFF expression RFF(k) is only
related to the characteristics of the transmitter itself and has no relationship with the
channel. Therefore, this expression can be used as the RFF feature expression in the mobile
multipath environment.

The above-mentioned method of removing noise by superimposing the short preamble
and long preamble in the time domain, and then removing the channel by division in the
frequency domain has basically realized that the multipath effect and environmental noise
interference of the wireless channel are eliminated only through the preamble field of the
collected signal of one frame. At the same time, the pure RFF information of the device is
preserved to the greatest extent.

4.2. Random Forest and Sequential Detection-Based RFF Identification Method

After the radio frequency fingerprint feature vectors of the devices are extracted
according to the above method, the next step is to use these features to distinguish and
identify different devices. In this paper, the random forest algorithm which has better
effect in the machine learning methods is selected and combined with the sequential
detection method to effectively distinguish devices of the same model and to better adapt
to the diverse environment through long-term observation and tracking of the trend of
RFF features.

The random forest algorithm is an ensemble learning algorithm that uses multiple
decision trees to train samples and make judgments and the judgment results are obtained
by the combination of multiple decision trees randomly generated in the forest [31]. Based
on the bagging idea, through randomly selecting samples for training, and then randomly
selecting the characteristics of different dimensions of the samples to become the branch
and establish a decision tree, the correlation between different decision trees is reduced
and the accuracy of the model is further improved. After multiple iterations, the trees
will adaptively select better samples and characteristics for branching each time, making
themselves perform more outstanding in the forest. The idea of an “out-of-bag estimate” is
taken advantage of, in which a part of the samples in the training set is used for learning,
where the selected samples will be put back into the training set for the next extraction, and
the remaining part of the samples is used for predicting. In the random forest algorithm,
the importance of each dimension of the feature in the tree is measured by changing the
weight of the feature in the tree and comparing the change of the error rate of the test data
before and after the change.

The concrete steps to classify radio frequency fingerprint features using random forest
algorithm are as follows:
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1. Set the size of the training set as N, the tree number in the forest as ntree, the number
of iterations as K. For each tree, K groups of training sample sets with the size of N
need to be randomly selected.

2. Assuming that characteristic dimension of the sample is n, specify a constant m <<
n, and randomly select m dimensions from the n-dimension vector for each training
set above.

3. In the process of generating K groups of training set, the optimal characteristics are
selected in each round of iteration. Then, the m-dimension characteristics are used to
maximize the growth of each tree to obtain the model for each decision tree and the
whole forest.

4. Among the K classification models, the optimal random forest model is selected
by using the idea of “out-of-bag estimation”. For the input test set data, the fi-
nal classification result is given by synthesizing the decision results of each tree in
the forest.

The correlation between sub-sample sets and the correlation between characteristics
of sub-sample sets is random, which ensures that the decision tree does not need prun-
ing and will not cause overfitting. In addition, using multiple trees for decision making
can also avoid overfitting caused by noise that may be generated by a single decision
tree. Experiments also demonstrate that the random forest algorithm has a high classifi-
cation accuracy for radio frequency fingerprint features, which will be introduced in the
next section.

On the basis of statistical learning, this paper applies the idea of sequential detection
to RFF identification. Sequential detection can comprehensively make a decision based
on the current real-time signal features and the characteristics observed in the previous
period of time. This method can reduce the impact of instantaneous feature mutation on
RFF recognition and can update and correct the features in the fingerprint database in real
time, thereby improving the recognition accuracy of the devices in long-term work.

The flow of the radio frequency fingerprint identification method using the thought of
sequential detection is as follows:

1. First, the RFF features of devices and their statistical parameter sets are extracted to
form the final feature vectors X, which are entered into the fingerprint database.

2. Then, in the process of the signal collection and identification, the same length of
signal is cut out from each frame newly collected, and its features are calculated in the
same way to obtain the feature vector Y.

3. Next, the feature vector Y is compared with the feature vectors X in the fingerprint
database to calculate the similarity S. The similarity can be measured by correlation
coefficient, Euclidean distance, Mahalanobis distance, etc.

4. The feature vector of newly acquired signal frame whose similarity exceeds the
threshold will be stored in the buffer area, indicating that this frame of received signal
is subordinate to the devices in the database, and the buffered data will be used for
the judgment of subsequent new frames. On the other hand, if the similarity does not
reach the threshold, it means that this frame is exceptional data, which may originate
from a non-registered device, and additional buffer area needs to be opened up to
store it.

5. The newly received frame data from the same device for the second time will not
only be compared with the previously entered fingerprint database, but also with
the data in the buffer area. With the increase of data in the buffer area, the judgment
accuracy will correspondingly be improved. Furthermore, when the buffer area data
reaches a certain amount, the stable feature vectors can be updated to the fingerprint
database, so as to dynamically adjust the fingerprint feature vectors of the devices in
the database.

Through the sequential detection method, the system can continuously track relevant
RFF features, and observe and learn their long-term change rule. During the process of
identification, the feature of the current signal is compared with the real-time updated
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fingerprint database and the buffer area data at the same time for better recognition.
In the meantime, continuous observation can avoid misjudgment caused by accidental
instantaneous fluctuation of RFFs. When there is anomalous difference in the occasional
one frame of signal caused by external factors, whose similarity to the feature vectors in
the database is lower than the threshold, it will be stored in the new buffer area separately.
Afterwards, when the subsequent feature values return to the normal range, they will still
be judged to the original device, which will not affect the final judgment result. Therefore,
the radio frequency fingerprint identification method incorporating sequential detection
can further improve the recognition rate of RFFs in the changeable mobility environment.

5. Experiment Results and Discussion

In the experiment the ESP8266 modules are emulated as communication modules
in the DSRC technology and are used to simulate the signal transmission that conforms
to the IEEE 802.11p protocol standard. By configuring the corresponding parameters,
eight ESP8266 modules of the same model are set to client mode or AP mode to simulate
Vehicle-to-Vehicle, Vehicle-to-Infrastructure, Vehicle-to-Network, and other various modes.
Afterwards, the transmitted wireless signals are subsequently received by USRP.

The USRP model used in the experiment is USRP N210 produced by Ettus Research
company. The USRP is connected to the computer through a Gigabit Ethernet port for the
acquisition of IEEE 802.11p signals, and the computer is equipped with the UHD software
driver for USRP, the open-source software defined platform GNU Radio, the compilation
environment, etc. Then, the received wireless signals are preprocessed and the extraction
and identification of RFF features are performed by MATLAB software.

The experiment was carried out in a laboratory of 10 m × 9 m with a corridor outside
it, and there is a wall between the laboratory and the corridor. The schematic diagram of
the laboratory is shown in Figure 3. A number of tables, chairs and partitions are placed in
the laboratory as obstacles, and the experiment modules can be moved inside and outside
the laboratory, so that the wireless signal may be blocked from the process of transmitting
to receiving by obstacles or walls, which can simulate the LOS and NLOS situations, as
well as moving multipath scenarios.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 20 
 

The USRP model used in the experiment is USRP N210 produced by Ettus Research 
company. The USRP is connected to the computer through a Gigabit Ethernet port for the 
acquisition of IEEE 802.11p signals, and the computer is equipped with the UHD software 
driver for USRP, the open-source software defined platform GNU Radio, the compilation 
environment, etc. Then, the received wireless signals are preprocessed and the extraction 
and identification of RFF features are performed by MATLAB software. 

The experiment was carried out in a laboratory of 10 m × 9 m with a corridor outside 
it, and there is a wall between the laboratory and the corridor. The schematic diagram of 
the laboratory is shown in Figure 3. A number of tables, chairs and partitions are placed 
in the laboratory as obstacles, and the experiment modules can be moved inside and out-
side the laboratory, so that the wireless signal may be blocked from the process of trans-
mitting to receiving by obstacles or walls, which can simulate the LOS and NLOS situa-
tions, as well as moving multipath scenarios. 

 
Figure 3. Schematic diagram of laboratory. 

During the experiment, the USRP is placed in a fixed position on the table shown in 
the figure, the ESP8266 module set to AP or client mode is placed near it, and another 
module that communicates with the module in the fixed position is placed on the mobile 
trolley. The experiment allows one or more modules to simultaneously communicate with 
the module in the fixed position on the table, and the USRP can collect the signals of sev-
eral modules at the same time. In this experiment, the signals of the ESP8266 module are 
collected in three scenes of static state, indoor LOS moving state and partition NLOS mov-
ing state to test the RFF features extraction and recognition performance. The environment 
of the three experimental scenes and the placement or moving route of the communication 
module are described in detail as follows: 
1. Static state: The modules are placed at the four fixed static positions p1 to p4 marked 

in Figure 3. The distances between these four positions and the USRP are different, 
hence the received signal strength and the signal-to-noise ratios in each position are 
also different. At some points, there are obstacles in the path between the USRP and 
the transmitting modules with rich channel multipath effect, which is closer to the 
real communication environment. The reference signals for classifier training can be 
obtained in this state and can be also used for comparison with the moving state sig-
nals. 

2. Indoor LOS moving state: The to-be-identified communication modules are placed 
on the mobile trolley and the experimenter pushes the mobile trolley to walk arbi-
trarily in the laboratory shown in Figure 3. The average moving speed is 1 m/s, and 
the moving route and moving direction are random and irregular. As a result, the 

p2

p3

p1

p4

Corridor 

USRP

ESP8266 module

Figure 3. Schematic diagram of laboratory.

During the experiment, the USRP is placed in a fixed position on the table shown in the
figure, the ESP8266 module set to AP or client mode is placed near it, and another module
that communicates with the module in the fixed position is placed on the mobile trolley. The
experiment allows one or more modules to simultaneously communicate with the module
in the fixed position on the table, and the USRP can collect the signals of several modules
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at the same time. In this experiment, the signals of the ESP8266 module are collected in
three scenes of static state, indoor LOS moving state and partition NLOS moving state to
test the RFF features extraction and recognition performance. The environment of the three
experimental scenes and the placement or moving route of the communication module are
described in detail as follows:

1. Static state: The modules are placed at the four fixed static positions p1 to p4 marked
in Figure 3. The distances between these four positions and the USRP are different,
hence the received signal strength and the signal-to-noise ratios in each position are
also different. At some points, there are obstacles in the path between the USRP
and the transmitting modules with rich channel multipath effect, which is closer to
the real communication environment. The reference signals for classifier training
can be obtained in this state and can be also used for comparison with the moving
state signals.

2. Indoor LOS moving state: The to-be-identified communication modules are placed on
the mobile trolley and the experimenter pushes the mobile trolley to walk arbitrarily
in the laboratory shown in Figure 3. The average moving speed is 1 m/s, and
the moving route and moving direction are random and irregular. As a result, the
uncertainty of movement makes the wireless channel time-varying when the USRP
receives the signal. In addition, another experimenter is allowed to walk around
the laboratory freely during the movement process to simulate the disturbances by
external movement. Since there is no wall obstruction in the room, it belongs to the
moving multipath scene under the LOS situation.

3. Partition NLOS moving state: The experimenter pushes the mobile trolley to ran-
domly walk along the corridor separated by a wall with the laboratory as shown in
Figure 3. The movement form is also an average of 1 m/s uniform motion with ran-
dom moving path and moving direction including straight lines, curves, circles and
other motion modes. In the whole partition wall experiment, there is no direct path
between the receiving device and the transmitting device, and the signal needs to be
transmitted through the wall. The experimental data in this state can be used to verify
the devices classification and identification effect based on RFF features under the
NLOS condition.

In the above three scenes, after the PPDU signal frames of eight modules are collected
and captured, time synchronization and frequency offset compensation are completed
for each frame of signal according to the preprocessing process described in Section 3.
Then, the RFF feature vectors are extracted and divided into training set and test set to
classify and identify different modules according to the method introduced in Section 4,
and the identification accuracy in different experimental scenes is calculated and ana-
lyzed to verify the feasibility and superiority of the proposed RFF-based DSRC devices
identification mechanism.

Firstly, the collected data in LOS moving state are taken as an example, and the RFF
characteristic vectors of eight ESP8266 modules are drawn in Figure 4. Each module is
selected 100 frames of signals, and the feature vectors extracted from each frame of each
module are superimposed and drawn on the same figure. As can be seen from the figure,
the amplitudes in different dimensions of the eigenvector of different modules are different,
and the waveform trend and concave-convex characteristics also have obvious differences,
indicating that the module RFF characteristics of the same model also have a certain degree
of differentiation. On the other hand, the waveform trends of features extracted from the
multiple frames of the same module in the mobile multipath environment are basically
the same. After superimposing the characteristic curves of a plethora of signal frames on
the same figure, it can be approximatively regarded as falling on the same curve, which
indicates that the fingerprint characteristics of the same module are still relatively stable
and consistent in the mobile environment and are less affected by the channel.
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Next, the extracted RFF feature vectors are trained and tested, and the identification
accuracy is used for quantitative comparison and analysis. The 500 PPDU frames per
module collected in position p1 are used as the training set, and the 500 frames collected
in position p2 to p4 in the static state, 500 frames collected in indoor LOS moving state,
and 1000 frames collected in partition NLOS moving state per module are used as the test
set. Only the feature vectors of the signals in a fixed position are used for training, and
the features of the signals acquired in the remaining fixed positions and moving scenes
are used for testing, which can verify that the fingerprint features are independent of
position and moving state. The selection of the training set and test set samples above also
corresponds to the practical application scenarios. Generally speaking, signal acquisition
and training in a static position is achievable, but the moving situation of the V2X devices in
the actual working state is variable, which results that the channel and environment during
identification are different from those during training. The identification accuracy rates
of the three scenes using the random forest and sequential detection methods proposed
in this paper are shown in the following Table 1. The accuracy rates in the static state and
LOS moving state are both 100%, with a slight drop in the NLOS moving state but still
exceeding 99%, which demonstrates that the RFF feature vectors extracted by this method
in different positions and different experimental scenes still have a high degree of similarity
and are less influenced by the mobility environment.

Then, the simulated channel is added through MATLAB to emulate a high-speed
moving scene and test the recognition performance in high mobility environment. The
frames captured in the static state pass through the Rayleigh channel model, and the mobile
Doppler frequency shift is added. The relative moving speed between the module and
the USRP is set in the range of 0–70 km/h, increasing every 10 km/h, so that the signal
after going through the mobile channel with different speeds can be obtained from the
output. Figure 5 below shows the RFF characteristic vectors waveforms of one frame signal
of ESP8266 module No. 1 passing through the mobile environment at different speeds
from 0 to 70 km/h which reveals that the extracted characteristic value curves of the same
frame of signal after experiencing different mobile speeds are basically coincident and are
hardly affected by the high-speed movement. Subsequently, the collected and simulated
data are used to train and test to calculate the recognition rate. The training set utilizes
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500 frames of received signals acquired from each module in the static position p1, while
the test set utilizes the 500 frames of signals acquired in the static position p1 to p4 per
module which have passed through the simulated channel after they are collected. There
is no overlap between the training set samples and the initial samples of the test set that
has not experienced the channel. From the test results in Table 2 below, it can be seen that
the identification accuracy rate can reach 100% when the relative moving speed is below
20 km/h, and it starts to decrease slightly after the speed exceeds 30 km/h, but the accuracy
rate is always above 99% when the speed is between 30–70 km/h. Thus, it can be seen that
in the simulated high mobility scenario, the proposed identification mechanism based on
RFF still shows strong anti-moving and anti-multipath performance and the recognition
rate for eight modules of the same model can still achieve more than 99% when the vehicle
speed reaches 70 km/h.

Table 1. Identification accuracy rate (%) of eight ESP8266 modules based on RFF features in static
and moving states.

Module Number
Experimental Scene

Static State LOS Moving State NLOS Moving State

1 100 100 99.60
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 99.50
6 100 100 98.70
7 100 100 100
8 100 100 100

Overall Average 100 100 99.73
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Table 2. Identification accuracy rate (%) of eight ESP8266 modules based on RFF features in simulated
high mobility environment.

Module Number
Speeds (km/h)

0 10 20 30 40 50 60 70

1 100 100 100 100 100 100 100 99.90
2 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100
4 100 100 100 99.50 100 100 99.90 96.70
5 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100
8 100 100 100 99.25 100 94.95 97.55 99.45

Overall Average 100 100 100 99.84 100 99.37 99.68 99.51

In general, according to the experiments under static and low-speed moving scenes
and high-speed simulation tests, the RFF extraction method based on the preamble field
features proposed in this paper can extract device fingerprint characteristics with high dis-
crimination and stability for distinguishing and authenticating different devices in a mobile
multipath environment at vehicle speed level. Furthermore, the previous research on RFF
identification have not focused on the mobile multipath factor in the V2X environment and
lack experiments in the case of a high-speed moving state. Thus, the research done in this
paper takes special account of the relative movement scene, in which the communication
modules are placed in the motion of random path for data collection, and high mobility
simulation tests are carried out to make the experimental results more persuasive. The
identification accuracy rates of the eight modules in the LOS and NLOS moving state
experiments and high-speed simulation tests all exceed 99%, indicating that the method
proposed in this paper has the ability to extract the inherent physical characteristics of V2X
devices based on DSRC technologies and realize identity recognition.

6. Conclusions

In this paper, a novel identification scheme based on radio frequency fingerprints is
presented for DSRC intelligent vehicle networking devices adopting IEEE 802.11p proto-
col, in which the preamble field features of PPDU frames sent by the DSRC devices are
extracted as device fingerprints, and the random forest algorithm and sequential detec-
tion method are used to realize the distinction and authentication of different devices.
Compared with the existing V2X authentication technologies, the physical layer security
technology based on RFF authentication utilizes the unique hardware characteristics of the
devices, which can improve the performance against identity forgery without adding extra
computation overhead.

The identification method proposed in this article focuses on the impact of mobile
multipath channels on RFFs. In the LOS and NLOS mobile experiment scenes and the
simulated high-speed scenario up to 70 km/h, the recognition rate of eight DSRC modules
of the same model can reach more than 99%. Thus, it can be seen that the RFF features
extracted by this method can maintain good stability and location invariance with less
influence by mobile channel, and this method has a high practical value in the field of
authentication and identification of V2X devices. In future research, the number and model
of devices to be identified can be further increased, and the experiment can be conducted
in a more complex and changeable environment.
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