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Abstract: The occurrence frequency of forest fires (OF) can be estimated using drought features be-
cause droughts are affected by climatic conditions. Previous studies have improved OF estimation 
performance by applying the meteorological drought index to climatic conditions. It is anticipated 
that the temperature will rise in South Korea in the future and that drought will become severe on 
account of climate change. The future OF is expected to change accordingly. This study used the 
standard precipitation index, relative humidity, and wind speed as predictor variables for a deep-
learning-based model to estimate the OF. Climate change scenarios under shared socioeconomic 
pathways were used to estimate future OF. As a result, it was projected that the OF in the summer 
season will increase in the future (2071–2100). In particular, there will be a 15% increase in July 
compared to the current climate. A decrease in relative humidity and increase in wind speed will 
also affect the OF. Finally, drought severity was found to be the most influential factor on the OF 
among the four drought characteristics (severity, duration, intensity, and inter-arrival), considering 
inter-model variability across all global climate models. 

Keywords: occurrence frequency; climatic condition; drought; shared socioeconomic pathway; 
deep learning; drought characteristic 
 

1. Introduction 
With global climate change, the frequency and magnitude of forest fires continue to 

increase in South Korea and many other countries worldwide [1]. To simulate the mech-
anism of forest fires, various statistical models have been developed. These models con-
sider precipitation and humidity as predictor variables for changes in forest fire regimes 
[2,3]. In addition, recent studies have analyzed the link between drought conditions and 
forest fire occurrence by adopting drought indicators, such as meteorological drought in-
dices [4]. These indicators are significant because the occurrence and spread of forest fires 
strongly depend on drought conditions. Such conditions represent a shortage of surface 
water and soil moisture relative to others. Among drought indices, meteorological 
drought determines drought based on the shortage of accumulated precipitation [5–7]. 
The standard precipitation index (SPI) is a representative meteorological drought index 
[8]. It is calculated as the relative departure from the average accumulated monthly pre-
cipitation for a pre-determined previous period. 

Forest fires are closely related to the shortage of soil moisture in surface hydrological 
variables. However, the meteorological drought index has been used as an alternative to 
represent soil moisture owing to a lack of data from actual observations [7]. In addition, 
the SPI or standardized precipitation evapotranspiration index (SPEI) [9] can reflect the 
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effect of delayed weather conditions because it uses the accumulated value of climate var-
iables. It is therefore useful in analyzing the relationship between climate and forest fires. 
Yoon and Won [10] revealed that the occurrence frequency of forest fires (OF) is related 
to the SPI. Drying facilitates the occurrence and spread of forest fires. For instance, OF is 
higher in the spring season in South Korea because spring is the driest season of the year 
there. Turco et al. [11] explored the linkage between the SPEI and forest fires. Sung et al. 
[7] enhanced the predictability of fire occurrence driven by a deep belief network (DBN) 
model using the SPI and the SPEI.  

It is well known that forest fires not only depend on changes in climate conditions 
but also on human activities and land use [12–16]. Recent studies have identified an in-
crease in OF due to changes in precipitation and temperature patterns caused by climate 
change [17–19]. Therefore, a reliable long-term projection of the OF is required because 
the OF projection can be leveraged for the empirically based deployment of firefighters 
and fire supplies as climate change adaptation measures [20]. To this end, an impact as-
sessment of future OF based on climate change scenarios is required. Recently, shared 
socioeconomic pathway (SSP) scenarios based on the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) have been released [21], and future climate patterns in South Ko-
rea are expected to change according to SSP scenarios [22–24]. 

It is expected that drought frequency in South Korea will increase owing to climate 
change [25–27]. Thus, it can be projected that the OF in the future will increase by reflect-
ing an increase in the drought frequency. In previous studies, the drought severity was 
analyzed to reveal the connection between forest fires and droughts [25]. The present 
study focused not only on the severity but also on the duration of drought, that is, drought 
intensity and inter-arrival. For this purpose, climate variables (relative humidity, wind 
speed, and precipitation) were downscaled to the observation station scale from the raw 
data of 18 global climate models. In addition, a deep learning model with three predictor 
variables—relative humidity, wind speed, and SPI—was designed to predict the OF. The 
future projection time horizon was divided into three periods. Finally, this study explored 
the significant effect of drought on forest fires by comparing the projected OF and four 
drought characteristics. 

2. Materials and Methods 
2.1. Procedure 

This study projected the future OF using CMIP6 global climate models (GCMs) that 
were statistically downscaled to the locations of observation stations. Downscaled GCM 
data, monthly precipitation, relative humidity (RH), and wind speed (WS) series of the 
historical period were validated using the observation data. A deep learning model was 
developed to simulate OF with hydro-meteorological variables (RH, WS, and SPI3) as in-
put data, considering the quantified relationship between OF and hydro-meteorological 
variables. Subsequently, the future OF was projected using the developed deep-learning 
model. Moreover, this study explored the relationship between future OF and drought 
characteristics to determine the drought characteristics’ influences on OF. The overall pro-
cedure of this study is illustrated in Figure 1. 
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Figure 1. Procedure of this study. 

2.2. Data 
2.2.1. Application Sites and Observation Data 

South Korea is geographically located at mid-latitudes and has complex climatic re-
gimes with distinct seasonal changes. The East Asian monsoon brings warm and moist air 
masses over South Korea, which causes heavy rainfall during the summer season [28]. 
Meanwhile, South Korea is exposed to cold air masses from Siberia, which creates a con-
siderably cold and dry climate during the winter season. Approximately two-thirds of 
South Korea is a mountainous region that is located in the north south direction along the 
eastern part of South Korea (Figure 2). 
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Figure 2. Elevation map of South Korea. 

The observational data of RH and WS were provided by the Korea Meteorological 
Administration (KMA) from 1997 to 2019, and SPI3 was calculated using the observed 
precipitation provided by the KMA. The monthly mean RH was 67.4% and the lowest 
value was 58.7% in March. RH values were generally greater in summer (Figure 3a–c). 
The monthly mean of WS was 2 m/s, and the strongest WS value was 2.4 m/s, which oc-
curred in March. In the case of the drought index, the three lowest SPI3 values were in 
2000, 2001, and 2017 at −2.22, −2.57, and −1.73, respectively, which were determined to be 
more severe droughts than others. The observed OF data were provided by the Korea 
Forest Service (KFS), and the data were only available for the past 23 years (1997–2019). 
The average annual OF was 466.5 and the standard variation in the annual OF was 163.3. 
The OF in March and April was the highest, whereas it was relatively low from July to 
September (Figure 3d). As wildfires occurred the most frequently during the spring sea-
son, the relationship between OF and hydro-meteorological variables in the spring season 
was analyzed. RH showed the highest correlation (−0.7) with OF, and WS and SPI3 
showed a linear relation with values of 0.5 and −0.5, respectively. 
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(a) (b) 

  
(c) (d) 

Figure 3. Monthly series of the observed climate variables and SPI3 (presented by color gradation): 
(a) relative humidity, (b) wind speed, (c) SPI3, and (d) OF for South Korea. 
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2.2.2. Climate Change Scenario Data 
This study used the CMIP6 GCM data with SSP scenarios. In a comparison with the 

Representative Concentration Pathways (RCPs) of CMIP5, SSPs refer to global socio-eco-
nomic change with greenhouse gas emissions up to 2100. SSPs are trajectories that evolve 
over time according to future developments in various fields, such as socio-economic, 
technical, energy-industrial, policy and governance, and the ecosystem. SSPs are catego-
rized into five trajectories: (i) SSP119 denotes that the world is taking the Green Road, a 
sustainable path with a 1.9 W/m2 radiative forcing; (ii) SSP126 refers to fossil fuel use being 
minimized and eco-friendly sustainable economic growth being achieved; (iii) SSP245 de-
notes that climate change mitigation and socio-economic development are at an interme-
diate stage; (iv) SSP370 is passive in climate change mitigation policies and delays tech-
nology development; and (v) SSP585 assumes that the social structure is vulnerable to the 
high level of fossil fuel use, where it is assumed that indiscriminate development centered 
on cities will expand. In particular, SSP5 is confronted with high socioeconomic challenges 
to be addressed and low socioeconomic challenges for adaptation. Therefore, the SSP585 
scenario, currently the only SSP scenario that results in a radiative forcing path as high as 
the highest RCP8.5, was used to examine the future change in OF.  

In this study, 18 GCMs (Table 1) were spatially downscaled and systematic bias was 
corrected using the quantile mapping (QM) method with the observation data. QM cor-
rects the systematic error of raw GCM data to fit the target cumulative distribution func-
tion (CDF) assuming that the statistical distribution of the target data is stationary. Obser-
vational data from 39 years (1972–2010) were used to develop the target CDF. For future 
projections, three future periods were analyzed under climate change scenarios: (i) early 
(F1: 2011–2040), (ii) mid-century (F2: 2041–2070), and (iii) late 21st century (F3: 2071–2100). 

Table 1. GCM list in this study. 

Institute GCMs Resolution References 
Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM4 360 × 180 John et al. [29] 

Meteorological Research Institute (Japan) MRI-ESM2-0 320 × 160 Yukimoto et al. [30] 
Centre National de Recherches Meteorologiques 

(France) 
CNRM-CM6-1 24572 grids distributed 

over 128 latitude circles 
Voldoire [31] 

CNRM-ESM2-1 Séférian [32] 
Institute Pierre-Simon Laplace (France) IPSL-CM6A-LR 144 × 143 Boucher et al. [33] 

Max Planck Institute for Meteorology (Germany) 
MPI-ESM1-2-HR 384 × 192 Schupfner et al. [34] 
MPI-ESM1-2-LR 192 × 96 Wieners et al. [35] 

Met Office Hadley Centre (UK) UKESM1-0-LL 192 × 144 Good et al. [36] 
Commonwealth Scientific and Industrial Research 

Organisation, Australian Research Council Centre of 
Excellence for Climate System Science (Australia) 

ACCESS-CM2 192 × 144 Dix et al. [37] 

Commonwealth Scientific and Industrial Research 
Organisation (Australia) 

ACCESS-ESM1-5 192 × 145 Ziehn et al. [38] 

Canadian Centre for Climate Modelling and Analy-
sis (Canada) 

CanESM5 128 × 64 Swart et al. [39] 

Institute for Numerical Mathematics (Russia) 
INM-CM4-8 180 × 120 Volodin et al. [40] 
INM-CM5-0 180 × 120 Volodin et al. [41] 

EC-Earth-Consortium EC-Earth3 512 × 256 EC-Earth Consortium 
EC-Earth [42] 

Japan Agency for Marine-Earth Science and Tech-
nology/Atmosphere and Ocean Research Insti-
tute/National Institute for Environmental Stud-

ies/RIKEN Center for Computational Science (Japan) 

MIROC6 256 × 128 Shiogama et al. [43] 

MIROC-ES2L 128 × 64 Tachiiri et al. [44] 
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NorESM Climate Modeling Consortium consisting 
of CICERO (Norway) 

NorESM2-LM 144 × 96 Seland et al. [45]  

National Institute of Meteorological Sciences/Korea 
Meteorological Administration (Korea) 

KACE-1-0-G 192 × 144 Byun et al. [46] 

2.2.3. Standardized Precipitation Index 
The SPI is one of the most widely applied meteorological drought indices over a 

range of timescales. It quantifies the accumulated observed precipitation as a standard-
ized departure from normality using a selected probability distribution function [47]. The 
SPI employs the standardization of the probability distribution related to accumulated 
monthly precipitation. Regarding the probability distribution function, although Guttman 
[48] suggested a Pearson type-III (PT-III) as a proper probability distribution, any suitable 
distribution function can be adopted. 

As mentioned, other drought indices, such as the SPI, the SPEI, and the PDSI, have 
been used in previous studies. Because there is no universal index, the choice of index is 
based on data availability. Although the definitions (and interpretations) of each index 
are different, most are characterized based on the run theory approach. The run theory 
[49] was introduced to recognize the characteristics of drought, such as duration, severity, 
intensity, and inter-arrival (as shown in Figure 4). 

 
Figure 4. Concept of drought characteristics. 

The SPI is generally created for different accumulation periods of one to 36 months. 
In the case of one- or three-month periods, short-term droughts were caused by a lack of 
precipitation during a short period of time. On the other hand, in the case of 12-month 
periods (SPI12), long-term drought caused by a persistent shortage of precipitation was 
evaluated. Many studies have assessed the relationship between forest fires and drought; 
for example, Sung et al. [7] indicated the role of the drought index in improving the per-
formance of forest fire prediction using deep learning techniques. Thus, this study utilized 
a deep-learning-based model to estimate the OF with a drought index based on an analy-
sis of the correlation between OF and SPI (Figure 5). 
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(a) SPI3 (b) SPI6 

 

 

(c) SPI9  

Figure 5. Relationship between SPI (3, 6, 9 months) and OF. 

3. DBN-Based of Prediction Modeling 
The deep belief network (DBN) is an unsupervised probabilistic deep learning algo-

rithm composed of a few restricted Boltzmann machines that simply stake one another 
[50]. The DBN uses a greedy learning algorithm to train one layer at a time, starting with 
the bottom weight, the closest to the input layer. The DBN connects only between layers, 
and there is no connection between the units within a layer. The vanishing gradient prob-
lem, which occurs as the number of layers increases in conventional machine learning, 
was improved through pre-training in the DBN. 

To estimate the OF, Sung et al. [7] suggested RH, WS, and SPI3 as the input data. 
Thus, this study used RH, WS, and SPI3 as the input data to develop a DBN-based model. 
The parameters in the DBN model, hidden units (10, 20, 30), learning rates (0.1, 0.5, and 
0.9), epochs (100, 500, and 1000), and batch size (6, 12, and 24), were optimized using da-
tasets from 1997 to 2013 and validated using data from the rest period from 2014 to 2019. 
The optimal values of the parameters were varied by the input datasets. The hidden unit, 
learning rate, epoch, and batch size were 10, 0.9, 500, and 12 for RH-WS-SPI3-AOF, and 
10, 0.9, 1000, and 6 for RH-WS-AOF. The OF time series of both observations and the four 
DBN model-based estimations are shown in Figure 6. 
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Figure 6. Comparison between the observed and estimated OF in the validation period. 

The evaluation of the DBN model based on four different combinations of input data 
sets (RH-WS-SPI3-AOF, RH-WS-AOF, RH-AOF, WS-AOF) was conducted using three 
preference indices (root mean square error, RMSE; Nash–Sutcliff efficiency, NSE; and de-
termination coefficient, R2) in Table 2. The acronyms in front of the AOF are independent 
variables, whereas AOF is the dependent variable of the DBN model. The RH-WS-SPI3-
AOF and RH-WS-AOF matched the observations well; however, WS-AOF did not. The 
NSE and R2 values of RH-WS-SPI3-AOF were 0.837, and 0.855, which were superior to 
those of RH-WS-AOF, RH-AOF, and WS-AOF. The DBN model improved when the 
drought index was included. It was similarly explained in previous studies that RH and 
WS, including drought, caused OF.  

Table 2. Performance skills of the three-DBN model in the validation period (2014–2019). 

Model 
Performance Indicators 

NSE RMSE R2 
RH-WS-SPI3-AOF 0.837 0.065 0.855 

RH-WS-AOF 0.828 0.067 0.838 
RH-AOF 0.787 0.074 0.845 
WS-AOF 0.537 0.110 0.573 

4. Results 
4.1. Projection of Hydro-Meteorological Variables 

This study compared the simulated RH, WS, and SPI3 series with observations from 
1997 to 2019. Overall, the RH values driven by the GCMs were overestimated; however, 
the monthly variability was well matched with the observations (as shown in Figure 7a). 
The inter-model variability (range of the box plots) was larger when RH was relatively 
low. The simulated monthly variabilities of WS were also well matched to the observa-
tions (as depicted in Figure 7b). In the case of SPI3, the value was examined only when it 
was less than or equal to −0.5. Although SPI3 was well matched with the observations, 
SPI3 (≤−0.5) in Figure 7c could not output close values to the observations in a few months, 
such as March and May. This finding indicates that the GCM-based SPI3, where it was 
less than or equal to −0.5, was weakly evaluated in the past climate.  
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Figure 7. Monthly averaged observed and simulated (a) relative humidity, (b) wind speed, and (c) 
SPI3 (≤−0.5) data from 1997–2010. 

Figure 8 shows the monthly variability and inter-model variability of RH, WS, and 
SPI3 in the historical period and the future periods (F1, F2, and F3). The average value of 
RH across GCMs in the spring season is 63.69% in the historical period and is projected to 
increase up to 63.78%, 63.95%, and 64.10% in the future periods F1, F2, and F3, respec-
tively. The inter-model variability of RH will be increased in the future. On the other hand, 
the WS in spring is projected to slightly decrease by 0.98%, 0.98%, and 0.96% in the future 
periods F1, F2, and F3, respectively, compared to the historical period (2.37 m/s). The SPI3 
for March and April is projected to increase, which means that the frequency of severe 
drought will decrease in the future. It is evident that the model uncertainty of SPI3 is 
greater owing to the large inter-model variability of precipitation. 
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(a) 

(b) 

(c) 
Figure 8. Monthly variability between GCMs of (a) relative humidity, (b) wind speed, and (c) SPI3 
(≤−0.5) data in all periods (H, F1, F2, F3). 
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In addition to the current variability of RH, WS, and SPI3, future changes in RH, WS, 
and SPI3 were projected using 18 CMIP6 GCMs. The future trend of RH was decreasing 
compared to the current trend; in particular, IPSL-CM6A-LR showed large decrement 
rates of −1.6%, −3.9%, and −8.8% for periods F1, F2, and F3, respectively. The WS trends 
indicated a decrease in the future, except for ACCESS-ESM1-5 and MRI-ESM2-0. The 
drought severity (defined as SPI3 values less than or equal to −0.5) of IPSL-CM6A-LR in-
creased by 11.8% and 7.0% in periods F1 and F3, respectively. In addition, ACCESS-ESM1-
5, EC-Earth3, and INM-CM4-8 showed increasing trends. Wildfires are prone to accelerate 
and spread when the RH is projected to decrease and WS and SPI3 are projected to in-
crease in the future. Therefore, according to the projection of the IPSL-CM6A-LR model, 
it is projected that the OF will increase in the future compared to the current climate (as 
shown in Figure 9). 

   

(a) (b) (c) 

Figure 9. Percentile value of future projection of (a) relative humidity, (b) wind speed, and (c) SPI3 
in F1 (2011–2040), F2 (2041–2070) and F3 (20712100) relative to the historical period (unit: %). 

4.2. OF Projection 
This study projected future changes in OF using DBN and hydro-meteorological var-

iables as input data. The annual mean of the OF in the historic period was 569.3 (H), and 
the GCM ensemble mean in the future was 544.7 (F1), 540.9 (F2), and 530.8 (F3), expected 
to decrease due to climate change. In the spring season, the most frequent wildfire occur-
rence season, the future OF was projected to decrease by 5%, 7%, and 9% during the F1, 
F2, and F3 periods, respectively, compared with the current period. Although it was pro-
jected that the OF in the spring season would decrease, it had the highest OF compared to 
other seasons. 

In contrast, the IPSL-CM6A-LR and EC-Earth3 models projected an increase in OF in 
the future. The inter-model variability of hydro-meteorological variables in the future pe-
riod was enlarged owing to the different dynamics between models, which caused the 
large uncertainty of the future OF. The OF driven by the EC-Earth3 model was 531.4 in 
the current period, and 583.7 and 541.5 in the F1 and F2 periods, respectively. The OF 
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driven by the IPSL-CM6A-LR model was also projected to increase by 5.0% in the F3 pe-
riod according to the decrease in RH in future periods (as shown in Figure 10). 

Wildfires in Korea occurred more frequently in spring (March to May) than in other 
seasons, and the same tendency was projected in the future. The OF in the spring season 
was projected to decrease in the future by 11%, 8%, and 2% in the F1, F2, and F3 periods, 
respectively, according to the increase in RH compared to the current period. However, it 
was projected that the future OF in the summer season (June to August) would increase 
by 15% compared to the current value. On the other hand, the OF in the autumn and 
winter seasons was projected to decrease compared to the current period. 

 

(a) Winter (b) Spring 

 
(c) Summer  (d) Autumn 

Figure 10. Seasonal variability between GCMs of OF in (a) winter, (b) spring, (c) summer, and (d) 
autumn. 

5. Discussion 
The OF is strongly associated with drought conditions, which imply soil dryness and 

a lack of precipitation [51,52]. Previous studies have introduced drought indices to esti-
mate the OF. Sung et al. [7] improved the performance of the DBN model to estimate the 
OF by using the drought indices SPI and SPEI as input variables. Meteorological drought 
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is defined as a continuation of lower precipitation than normal, and it can be characterized 
according to duration, intensity, and severity [7]. 

Therefore, this study investigated the relationship between the OF and drought char-
acteristics. The annual drought characteristics (duration, severity, intensity, and inter-ar-
rival) obtained from SPI3 using observed precipitation data were compared with the ob-
served OF to determine their relationship. Figure 11 presents scatter plots between the OF 
and each drought characteristic. The correlation coefficients between the OF and each 
drought characteristic (duration, severity, intensity, and inter-arrival) are 0.49, 0.54, 0.47, 
and 0.16, respectively. The drought duration and severity are strongly correlated with the 
OF. The relationship between drought intensity and OF is also strong (0.47) and relates to 
drought duration. Nonetheless, because drought intensity is calculated by dividing the 
drought severity by the duration, it can be considered that the drought severity and du-
ration are sufficient to explain the relationship of drought intensity to the OF. 

  

(a) Duration (b) Severity 

  
(c) Intensity (d) Inter-arrival 

Figure 11. Scatter plots of the observed OF and drought characteristics. 

The distinct change in future hydro-meteorology in Korea is associated with a high 
risk of drought due to a decrease in precipitation and increase in temperature [25,53]. Fur-
thermore, as the dispersion between future scenarios becomes larger, that is, the inter-
model variability across multiple GCMs and scenarios becomes wider, it is noted that 
there will be immense uncertainty in future projections under climate change. Thus, this 
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study assessed the relationship between OF and drought characteristics based on the over-
all scenarios under CMIP6 GCMs and SSPs by considering inter-model variability.  

Figure 12a shows the number of GCMs for each drought characteristic that has the 
strongest correlation between the OF and drought characteristics in historical and future 
periods. For instance, drought duration shows the strongest correlation with the OF 
among three GCMs. Similarly, the drought severity shows the greatest correlation with 
the OF in eight GCMs, and the drought intensity showed the greatest correlation with the 
OF in six GCMs, whereas inter-arrival has no predominant correlation with the OF in the 
historical period. In the F1 period, the numbers of GCMs that show the highest correlation 
between OF and duration, severity, intensity, and inter-arrival are five, five, five, and two, 
respectively. Similarly, the numbers of GCMs are zero, eleven, three, and four in the F2 
period and six, seven, four, and one in the F3 period. In the case of drought severity, the 
majority of GCMs show the highest correlation with OF, as indicated clearly in the F2 
period. In addition, drought severity and duration show a strong relationship with OF in 
the F3 period. Although there is large inter-model variability across multiple GCMs, the 
drought severity and duration can be predictors for the projection of the OF under chang-
ing climate conditions in the future. Therefore, persistent drought during a short-term 
period would be an influential factor in managing future OF. 

The effects of drought characteristics on the OF were evaluated by examining the 
drought characteristics that had the strongest correlation with the OF in each period (H, 
F1, F2, and F3), as shown in Figure 12b. Drought severity shows a higher correlation with 
OF than other drought characteristics, which means that the largest number of GCMs 
shows the greatest correlation coefficient value with OF. The annual mean values of 
drought severity across the corresponding GCMs are −5.0, −4.7, −4.8, and −4.8 for the H, 
F1, F2, and F3 periods, respectively, which means that the drought severity will be weaker 
in the future. Moreover, drought duration has a greater effect on OF in the F3 period than 
in the other periods. Nonetheless, these results show that the OF will be affected not only 
by the severity of the drought but also by its intensity and duration. In the F2 and F3 
periods, the effect of intensity will be reduced, yet it will show a strong relationship with 
the OF in the near future. Although these dependencies of drought characteristics on the 
OF vary across different future periods, it is clear that drought mitigation plans should 
focus on reducing the drought duration to reduce the OF in the future. 

 

 

(a) (b) 

Figure 12. Impact of drought characteristics on the OF in the future. (a) Change in number of mod-
els with the strongest correlation coefficient for each drought characteristic. (b) Drought character-
istics according to number of models with the strongest correlation coefficient. 
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6. Conclusions 
This study utilized a DBN-based model that quantifies climatic and drought condi-

tions to project the OF in the future for South Korea. In particular, SSP scenarios were 
employed for quantification of the OF. The annual mean RH was projected to increase in 
the future, but it was projected to decrease during the summer season. Accordingly, it was 
projected that the OF will decrease compared to the current climate; however, it will rela-
tively increase in summer. Moreover, the faster the wind speed, the faster the forest fire 
will spread. The wind speed in the summer is projected to increase, and the spread of 
forest fires will increase accordingly.  

Most previous studies have quantified the relationship between drought severity and 
OF. In this study, the relationship between multivariate drought characteristics and OF 
was analyzed for the first time. The effects on OF were similar for drought duration and 
severity. To mitigate the risk of forest fires in the future, designing an approach to mini-
mize the duration as well as the severity should be a research focus. Short- and long-term 
policies to mitigate drought risk through prevention should be implemented. According 
to the results of this study, there is a need for water resource management in forest basins 
to prevent drought conditions due to climate change. Therefore, it is necessary to secure 
sufficient water resources through integrated watershed management. It is also necessary 
to build a management system that can terminate a drought within a short period by lev-
eraging secured water resources, even if a drought occurs in the forest watershed. More-
over, summer is a season with larger human activities, increasing the risk of accidental 
fires. Therefore, it is also necessary to consider external factors, such as human activities 
in the forest. 

In this study, changes in the OF were projected based on the SSP585 scenario. In par-
ticular, we quantified inter-model variability across climate change scenarios and ex-
plored the relation between OF and characteristics of meteorological drought. As a future 
study, a water balance model might be adopted so that available water resources in the 
forest area can be quantified, and the relationship between available water resources and 
the OF can be analyzed. Furthermore, advanced technologies are required to minimize 
drought by managing available water resources. 
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