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Abstract: The accurate estimation of forest biomass is crucial for supporting climate change mitigation
efforts such as sustainable forest management. Although traditional regression models have been
widely used to link stand biomass with biotic and abiotic predictors, this approach has several
disadvantages, including the difficulty in dealing with data autocorrelation, model selection, and
convergence. While machine learning can overcome these challenges, the application remains limited,
particularly at a large scale with consideration of climate variables. This study used the random
forests (RF) algorithm to estimate stand aboveground biomass (AGB) and total biomass (TB) of larch
(Larix spp.) plantations in north and northeast China and quantified the contributions of different
predictors. The data for modelling biomass were collected from 445 sample plots of the National
Forest Inventory (NFI). A total of 22 independent variables (6 stand and 16 climate variables) were
used to develop and train climate-sensitive stand biomass models. Optimization of hyper parameters
was implemented using grid search and 10-fold cross-validation. The coefficient of determination
(R2) and root mean square error (RMSE) of the RF models were 0.9845 and 3.8008 t ha−1 for AGB, and
0.9836 and 5.1963 t ha−1 for TB. The cumulative contributions of stand and climate factors to stand
biomass were >98% and <2%, respectively. The most crucial stand and climate variables were stand
volume and annual heat-moisture index (AHM), with relative importance values of >60% and ~0.25%,
respectively. The partial dependence plots illustrated the complicated relationships between climate
factors and stand biomass. This study illustrated the power of RF for estimating stand biomass and
understanding the effects of stand and climate factors on forest biomass. The application of RF can be
useful for mapping of large-scale carbon stock.

Keywords: climate-sensitive stand biomass model; random forests algorithm; relative importance;
annual heat-moisture index; Larix spp.

1. Introduction

Forests play a vital role in mitigating climate change by absorbing CO2 and storing it
in biomass, with the global forest ecosystem holding ~861 ± 66 Gt of carbon reserves [1].
Therefore, forests provide effective global climate regulation services [2]. Accurately
estimating forest biomass and quantifying the effects of biotic and abiotic factors are
particularly important. Regression models are widely applied to represent the relationships
between forest biomass and independent variables. Stand biomass is usually expressed as a
function of stand variables such as stand average diameter at breast height (1.3 m), volume,
density, and age [3–11]. For example, Bi et al. [4] predicted the stand biomass of Pinus radiata
plantations by stand age, basal area, average height of the 50 largest diameter trees, and

Sustainability 2022, 14, 5580. https://doi.org/10.3390/su14095580 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14095580
https://doi.org/10.3390/su14095580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8389-7033
https://orcid.org/0000-0001-6582-587X
https://orcid.org/0000-0002-5462-0737
https://orcid.org/0000-0003-0193-5257
https://doi.org/10.3390/su14095580
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14095580?type=check_update&version=2


Sustainability 2022, 14, 5580 2 of 16

stand density. Forest biomass was also influenced by meteorological variables, therefore,
climate-sensitive individual tree biomass models have been recently developed [12–16].
The application of these models had shown that climate has a significant impact on biomass
and that these models produce more accurate predictions [17,18]. Usoltsev et al. [19]
showed that an increase in temperature of 1°C and an increase in precipitation of 100 mm
would lead to an increase and decrease in the biomass of stands of Pinus sp. aged 100 years
of 2.2% and 5.8%, respectively. However, a similar study showed that the stand biomass of
Birch increased with increasing rainfall and mean winter temperature [20]. He et al. [21]
developed a climate-sensitive stand biomass model for estimating forest biomass based on
traditional simultaneous equations. Their study found that consideration of the climate
effect within application of the model resulted in a 411,549 Mg biomass difference in large-
scale larch plantations region with the area of 3,085,400 ha. However, there were much
uncertainty on the results of impacts of climate on stand biomass. Previous studies have
collected data with small samples [22,23] and small-scale experimental sites [5,6,8,24], and
a single predictor has usually been selected to estimate stand biomass [6].

Regression models are a powerful tool for understanding the contributions of different
factors to stand biomass. However, stand survey data are hierarchical and autocorrelated in
space and time, thus the assumptions of the error term normally distributed, independent,
and homoscedastic are usually difficult to satisfy [25–27]. In addition, an increase in
the number of independent variables complicates the regression relationship. A specific
mathematical equation needs to be chosen for each independent variable resulting in model
selection experiments [5,6]. Furthermore, the convergence of the iterative process used
for estimating model parameters cannot be guaranteed. These challenges have resulted in
difficulties in the application of traditional statistical models.

Non-parametric methods, such as machine learning (ML), have also shown great
potential for application to estimate the various ecological indicators and parameters [28],
especially the biomass estimation based on remote sensing data [29–34]. Since ML has
several advantages over regression models, including not requiring a strict statistical as-
sumption of distribution and errors, the method has received much attention in recent
years [35,36]. The random forests (RF) is one of the most frequently used ML methods [37].
RF is a powerful parallel structure ensemble modeling method that combines regression
trees and bootstrap resampling. Within RF, bootstrap resampling is used to split the origi-
nal data into n new datasets of the same dimensions, following which a regression tree is
constructed for each new dataset. The final predicted value is equal to the average of the es-
timated results by all trees [37,38]. RF has several advantages traditional linear or nonlinear
regression models, making it useful for describing the relationship between stand biomass
and predictors. One advantage of RF relates to its ability to handle different types of pre-
dictors without data transformation [38]. RF can also effectively fit nonlinear relationships
using the hierarchical structure of a tree. Lastly, RF can produce the important and partial
dependence plots of each predictor, thereby greatly improving model interpretability [39].
Li et al. [40] applied RF for carbon density estimation based on forest inventory plot data in
south China. The input variables to their model included the distribution of tree species,
geographical coordinates, topographical factors, human disturbance, and climate factors.
Their model explained over 72% of the observed variation in stand biomass. While RF
has recently begun to gain prominence in forest growth and yield modelling [41–44], the
applications of RF to estimating stand biomass remain limited, particularly at a large scale.
More examinations are needed.

Larch (Larix spp.) is a main tree species in north and northeast China for afforestation
and plays an important role in providing ecological services, particularly in respect to
carbon capture and sequestration. The 9th National Forest Inventory (NFI) report in
China [45] indicated the biomass of larch forest to be 0.922 billion tons, accounting for 5.55%
of total forest biomass in China. Existing stand biomass models have been developed and
applied for biomass estimation at large scales [3,46,47]. Since stand biomass is sensitive to
climate [48–50], individual tree and stand biomass models that consider climate variables
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have been also developed [13,21]. The results of these models confirmed the need to
consider climate variables to reduce uncertainty in biomass estimation at large scales [21].
However, the performance of applying RF for large-scale stand biomass estimation has not
been tested with the input of both stand and climate variables.

Therefore, the aim of the present study was to apply RF to the estimation of stand
biomass based on the NFI sample plot observations of larch plantations in north and
northeast China. The specific objectives were to: (1) develop stand-level biomass models
based on RF; (2) quantify the different contributions of stand and climate predictors to forest
biomass. The results of the present study can contribute to examining the performance of
RF application in biomass estimation, and understanding the effects of stand and climate
variables on forest biomass and carbon stock at a large scale.

2. Materials and Methods
2.1. Sample Plot and Climate Data

The Larix plantation sample plot data were obtained from the 8th (2009–2013) NFI
across 7 provinces in northern (Beijing, Hebei, Shanxi, and Inner Mongolia) and north-
eastern (Heilongjiang, Jilin, and Liaoning) China (Figure 1). Each province represents a
population and NFI data were collected over a survey period of 5 years [51,52]. The area of
a sample plot was 0.0667 ha in Beijing and Shanxi, 0.08 ha in Liaoning, and 0.06 ha in the
remaining provinces. The diameter of a living tree with a diameter at breast height (dbh,
1.3 m) ≥ 5 cm was measured and used to deduce the stand volume (V), quadratic mean
diameter (Dg), basal area (Ba), and stem density (N) within each plot. Other measures stand
characteristics included stand age and average height (H), with H obtained by measuring
3 to 5 intermediate trees using a Blume–Leiss hypsometer in the sample plot. The allometric
models released by the State Forestry Administration of China [53] (Equations (1)–(4) for
larch) and Wang [54] (not listed for associated tree species) were used to estimate individual
tree aboveground biomass (AGBtree) and tree total biomass (TBtree) from dbh, then AGBtree
and TBtree were summed for all trees and converted to the stand-level aboveground biomass
(AGB) and total biomass (TB). Data for sample plots with a total number of trees of less
than 20 were eliminated, resulting in 445 valid sample plots. Table 1 showed a statistical
summary of stand factors in the present study. The data for the sixteen climate variables
(Table 1) were downloaded according to geographical coordinates and elevation of each
sample plot using the ClimateAP (v2.11) software (http://ClimateAP.net) (accessed on
15 July 2019). ClimateAP can generate scale-free historical (1901–2015) climate data for
specific locations in the Asia Pacific [55]. The present study obtained candidate climate
values by averaging from 1981 to 2010.

Figure 1. Map of sample plots of larch plantations across the north and northeast China.

http://ClimateAP.net
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Table 1. Summary statistics of stand and climate variables across the north and northeast China
(n = 445).

Factors Variables Units Mean Min. Max. S.D. Description

Stand

AGB t/ha 53.98 2.75 168.07 33.49 Stand aboveground biomass
TB t/ha 72.05 3.74 226.50 44.53 Stand total biomass
H m 12.0 4.2 24.0 4.0 Stand average height
Dg cm 13.4 6.0 26.4 4.3 Stand quadratic mean diameter at breast height
V m3/ha 82.81 3.28 282.25 53.22 Stand volume
Ba m2/ha 13.55 0.93 38.48 7.63 Stand basal area
N trees/ha 1021 263 3933 595 Stand density

Age a 28 11 60 9 Stand average age

Climate

AHM - 22.5 11.7 39.8 4.9 Annual heat-moisture index (MAT + 10)/(MAP/1000))
CMD - 185 35 382 74 Hargreaves climate moisture deficit
DD_0 days 1537 425 3250 513 Degree-days below 0 ◦C

DD_18 days 5332 3601 7867 788 Degree-days below 18 ◦C
DD18 days 191 12 489 108 Degree-days above 18 ◦C
DD5 days 1882 1012 2707 354 Degree-days above 5 ◦C
EMT ◦C −30.5 −43.8 −17.7 4.2 Extreme minimum temperature over a 30-year period
EREF ◦C 701 510 912 60 Extreme maximum temperature over a 30-year period
EXT - 32.6 25.5 35.1 1.5 Hargreaves reference evaporation
MAP mm 625 382 1050 146 Mean annual precipitation
MAT ◦C 3.6 −4.0 9.2 2.4 Mean annual temperature

MCMT ◦C −16.0 −27.0 −5.6 3.9 Mean coldest month temperature
MWMT ◦C 20.4 14.8 24.0 1.9 Mean warmest month temperature
NFFD days 171 111 224 20 The number of frost-free days

PAS mm 52 14 133 21 Precipitation as snow between August in previous year
and July in current year

TD ◦C 36.4 25.0 45.2 3.8 Temperature difference between MWMT and MCMT,
or continentality

AGBtree and TBtree were derived from dbh according to Equations (1) and (2) for eastern
Inner Mongolia, Heilongjiang, Jilin, and Liaoning provinces, and Equations (3 and (4) for
central and western Inner Mongolia, Beijing, Hebei, and Shanxi provinces.

AGBtree = 0.11270dbh2.39582 (kg), (1)

TBtree = 0.11270dbh2.39582 + 0.042583dbh2.37053 (kg), (2)

AGBtree = 0.07302dbh2.47298 (kg), (3)

TBtree = 0.07302dbh2.47298 + 0.028287dbh2.36403 (kg). (4)

2.2. Random Forests Algorithm

RF is a supervised machine learning algorithm, which combines multiple decision
trees together to make a more accurate prediction. We used RF to solve regression problems
with the “randomForest” package [56] in R Version 4.0.3. Detailed description on RF
algorithm was omitted in the study, but tuning hyper-parameters and quantifying variables
importance were key steps when running the model.

Two hyper-parameters are required for optimization in random forests algorithm,
namely ntree and mtry, with the former representing the number of regression tree models
to develop and the latter representing the number of independent variables randomly
sampled as candidates at each split. The default values of ntree and mtry for regression are
500 and int P/3, respectively, where P is the number of independent variables. However, the
use of default parameter values does not guarantee an optimal model [57] and optimization
of hyper-parameters is recommended to acquire robust predicted results. So, grid search
and 10-fold cross-validation was applied for hyper-parameters tuning. Combinations of
possible values of ntree and mtry were tested for training and validation data. The optimal
hyper-parameter values were determined according to model efficiency and errors.

RF can identify the importance scores of the predictor variables according to the out of
the bag error [37]. In a random forests model trained with a set of hyper-parameters, about
36.8% (an average) of the observations in the train data are not used for individual regres-
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sion tree, that is out of the bag (OOB) data. The importance of the independent variable (Xj)
was calculated by the mean sum of squares of residuals on OOB data (MSEOOB) reduction
for all regression trees when OOB data for Xj is permuted while all others are left unchanged.
The variable importance (VI) score of Xj was attained from Equations (5)–(7) [58].

MSEOOB,t(Xj) =
1

nOOB,t
∑

nOOB,t
i=1

[
yOOB,t,i − ŷOOB,t,i(Xj)

]2 (5)

MSEOOB,t(X′ j) =
1

nOOB,t
∑

nOOB,t
i=1

[
yOOB,t,i − ŷOOB,t,i(X′ j)

]2 (6)

VI =
1
t ∑t

i=1

[
MSEOOB,t(X′ j)−MSEOOB,t(Xj)

]
(7)

where, MSEOOB,t
(
Xj
)

and MSEOOB,t
(
X′ j
)

are the mean sum of squares of residuals on
OOB data based on Xj and X′ j (Xj is permuted), respectively; nOOB,t is sample size of OOB
data for regression tree t; t is the number of regression tree (the hyper-parameter ntree);
yOOB,t,i is the ith observed values of OOB data for regression tree t; and ŷOOB,t,i(Xj) and
ŷOOB,t,i(X′ j) are the ith predicted values for regression tree t using OOB data for Xj and
X′ j, respectively.

The present study calculated the relative importance of all predictors to quantify their
contributions to stand biomass, with the importance values normalized to a percentage as
relative importance [43].

2.3. Climate-Sensitive Stand Biomass Model Development

Stand AGB and TB were regarded as separate dependent variables, whereas the
considered predictors comprised 22 stand and climate factors (see Table 1 for definitions).
Stand factors included Dg, H, Ba, N, V, and stand age, whereas climate variables included
AHM, CMD, DD_0, DD_18, DD18, DD5, EMT, EREF, EXT, MAP, MAT, MCMT, MWMT,
NFFD, PAS, and TD. The present study tested hyper-parameters by sequences of parameter
values (ntree = 50, 100, 150, . . . 1,500; mtry = 2, 3, . . . 22). A total of 630 RF models were
tested and a 10-fold cross-validation was applied to assess the models and to select the
optimal hyper-parameters separately for stand AGB and TB models.

2.4. Model Validation and Evaluation

Three goodness-of-fit statistics were used in the present study for evaluating the
performance of the RF models using 10-fold cross-validation, which were the coefficient
of determination (R2), root mean square error (RMSE), and relative root mean square
error (RRMSE), calculated according to Equations (8)–(10), respectively. Each evaluation
indicator was averaged to verify the model performance for the 10 resampled validation
datasets. In addition, the optimal values of hyper-parameters ntree and mtry with the
smallest RMSE were used to develop the model for the full dataset, after which the model
was applied for further analysis.

R2 =
1
k

k

∑
j=1

(1−

nj

∑
i=1

(Bij − B̂ij)
2

nj

∑
i=1

(Bij − Bj)
2
) (8)

RMSE =
1
k

k

∑
j=1

(

√√√√√√
nj

∑
i=1

(Bij − B̂ij)
2

nj
) (9)

RRMSE =
1
k

k

∑
j=1

(
RMSEj

Bj
× 100%) (10)
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where k is the number of folds (k = 10 in the present study), Bij and B̂ij represent the ith
observed and predicted stand biomass values of the jth folds, respectively, Bj is the ith
observed stand mean biomass of the jth fold, RMSEj is the root mean square error (RMSE)
of the jth fold and nj is the number of samples of the jth fold.

3. Results
3.1. The Optimal Model

There were large variations in R2, RMSE, and RRMSE for different hyper-parameter
values (ntree and mtry) of the RF model used to simulate AGB and TB (Figure 2). Generally,
with increasing mtry, the R2 of the AGB model initially increased and then stabilized at val-
ues exceeding 8. In contrast, both RMSE and RRMSE initially decreased, stabilized at values
between 8 and 15, and continued an increasing trend at values between 15 and 22. Finally,
the minimum RMSE indicated the RF model with ntree = 900 and mtry = 12 to be the opti-
mal climate-sensitive AGB model with R2 = 0.9845± 0.0095, RMSE = 3.8008 ± 1.135 t ha−1,
and RRMSE = 7.0671 ± 2.1095%.

Figure 2. Performance of the climate-sensitive stand biomass model with different values of the ntree
and mtry parameters in random forests according to 10-fold cross validation. AGB and TB stand for
aboveground biomass and total biomass, respectively.

Although similar model performances with different hyper-parameter values were
found for the TB model, the optimal values of hyper-parameters were different from those of
the AGB model. Specifically, optimal ntree and mtry were 300 and 13, respectively, produc-
ing R2 = 0.9836 ± 0.0102, RMSE = 5.1963 ± 1.5904 t ha−1, and RRMSE = 7.2418% ± 2.273%.
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3.2. Relative Importance of Stand and Climate Factors

The relative importance of stand factors in explaining the variation in stand biomass
within both the AGB and TB models far exceeded that of climate factors (Figure 3), with
stand factors and climate factors having a cumulative relative importance of 98.17% and
1.83%, respectively in the AGB model. The rank of stand factors according to importance
was: V > Ba > H > Dg > age > N. The rank of the five most important climate factors was:
MAP = AHM > TD > PAS = CMD, with the relative importance of the remaining climate
variables ranging between 0.04–0.19%. Similar results were found for the TB model, with
relative importance of the AHM, MAP, TD, and CMD variables of 0.25%, 0.24%, 0.23%,
and 0.15%, respectively. The cumulative relative importance of stand factors within the TB
model was 98.18%, whereas that of climate factors was 1.82%, and no single climate factor
had a relative importance exceeding 1%.

Figure 3. Relative importance score of each independent variable in the stand biomass model. (a)—the
climate sensitive aboveground biomass (AGB) model, (b)—the climate-sensitive total biomass
(TB) model.
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3.3. Partial Dependence of Stand Biomass on Stand and Climate Factors

Stand biomass showed an initial rapid increase and was followed by a gradual increase
with increasing stand factors, i.e., V, Ba, Dg, H, and N. The change in AGB and TB with age
showed a uniform “S” shape relationship (Figure 4) in which stand biomass showed an
initial rapid increase and was followed by stabilization with increasing age. For example,
AGB reached a maximum of 54.4 t ha−1 at an age close to 50 a, after which AGB stabilized.

Figure 4. Partial dependence plots illustrating the relationships between stand biomass and V (a),
Ba (b), Dg (c), H (d), age (e), and N (f). See Table 1 for the definitions of stand variables.

Stand biomass showed a complicated relationship with climate factors. Four important
climate variables (AHM, CMD, MAP, and TD) with large relative importance were chosen
in the current study to visualize their individual partial effects (Figure 5). The trends
of AGB and TB with climate factors were similar. Stand biomass almost did not change
with increasing TD up to a threshold of 35 ◦C, after which stand biomass increased with
increasing TD. The relationships of stand biomass with AHM and CMD were opposite to
that of TD, with no initial change in stand biomass with increasing AHM and CMD until
certain thresholds, after which stand biomass decreased. However, stand biomass showed
a fluctuating relationship with MAP.

Figure 5. Cont.
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Figure 5. Partial dependence plots illustrating the relationships between stand biomass and AHM (a),
CMD (b), MAP (c), and TD (d). See Table 1 for the definitions of climate variables.

4. Discussion
4.1. Applications of the Random Forests Algorithm for Estimating Stand Biomass

The present study applied the RF algorithm for developing stand biomass models
across large-scale with the inclusions of climate variables. The results showed that the
climate-sensitive stand biomass models explained 98.45% and 98.36% of variations in stand
AGB and TB, respectively. Therefore, the results illustrated that the RF algorithm could
be applied for highly accurate prediction of stand biomass. The higher R2 obtained for
the AGB model compared to that of the TB model could be attributed to the variability of
root biomass.

Traditional regression models for AGB and TB of larch plantations were also developed
for comparisons with RF. These models were divided into two categories (independent
variables were V, AHM and TD for one group, and BA, H, AHM and TD for the other
group) because of collinearity among input variables from RF (Table 2). Results showed
that the traditional regression models had higher errors (RMSE and RRMSE) than RF
models. Compared with traditional models, RMSE of RF models decreased by 27.62%
for AGB and 19.41% for TB based on V, AHM and TD, respectively; and RMSE of RF
models decreased by 23.54% for AGB and 24.78% for TB based on BA, H, AHM and TD,
respectively. The RRMSE values of RF models were also lower than those of traditional
regression models. Therefore, model performances of the RF in the current study were
better than traditional regression models, confirming that RF methods can be applied for
estimating stand biomass. Zhang et al. [59] compared the performance of parametric and
non-parametric models for predicting aboveground biomass using predictors such as H
and N. The results of their study found that the RF model showed a better performance
with an R2 = 0.9616. Liu et al. [60] developed an AGB model based on RF, with the
model achieving a satisfactory performance with an R2 = 0.95. RF has some advantages
for predicting stand biomass in comparison with traditional regression models. RF is
insensitive to collinearity, allowing it to consider multiple variables simultaneously [61].
The structure of the RF algorithm allows easy implementation of parallel processing,
thereby improving the speed of computation. The RF model could produce the relative
importance of independent variables, and the partial dependence plots for describing
nonlinear relationships between the independent variables and dependent variables. In
contrast, it is difficult to implement variable selections through the use of traditional
regression models when two (or more) independent variables are highly interrelated [62].
The present study illustrated that consideration of both stand and climate factors within
the RF model contributed to a high accuracy of biomass prediction. The application of
ML (e.g., RF, support vector machines or artificial neural networks) for biomass modelling
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requires optimization of the hyper-parameters. The widely used parameter tuning methods
included grid, random, and Bayesian search [63–66]. These methods suffer from several
disadvantages: the optimal combination of parameters cannot be guaranteed in random
search and Bayesian search requires a large number of samples to increase the dimension of
the search space. However, grid search identifies the global maximum or minimum when
there are few hyper-parameter combinations to be optimized, which is very robust. The
present study adopted grid search, which is usually applied to data with spatial and/or
temporal structure [67]. As illustrated in the present study, although default values of
hyper-parameters are used in practice, the use of optimal hyper-parameters allowed more
accurate estimation of stand biomass (Figure 2). However, a persisting disadvantage of the
RF approach was the residual heteroscedasticity of the biomass model (Figure 6), resulting
in underestimation of stand biomass, particularly for larger predicted values. Future studies
should aim to address this issue.

Table 2. Estimated parameters and statistics of traditional regression models.

Model RMSE (t ha−1) RRMSE

AGB = 0.2249V0.9558AHM0.1536TD0.2228 5.2501 ± 1.1921 9.8075% ± 2.4826%
AGB = 0.7202BA0.9639H0.4079AHM−0.1341TD0.3287 4.9730 ± 0.6162 9.2079% ± 0.7672%

AGB model based on RF with ntree = 900 and mtry = 12 3.8008 ± 1.1350 7.0671% ± 2.1095%
TB = 0.2117V0.9471AHM0.1056TD0.3718 6.4483 ± 1.5948 9.0377% ± 2.5060%

TB = 0.7295BA0.9420H0.4296AHM−0.1687TD0.4362 6.9059 ± 0.9002 9.5804% ± 0.8853%
TB model based on RF with ntree = 300 and mtry = 13 5.1963 ± 1.5904 7.2418% ± 2.2730%

Note: all parameters in the traditional regression models were significant at 0.05 level. See Table 1 for the
definitions of stand and climatic variables.

Figure 6. Distributions of residuals for the optimal models (a) climate-sensitive stand aboveground
biomass model, (b) climate-sensitive stand total biomass model.

4.2. Relationship between Stand Factors and Stand Biomass

Stand variables such as V, Ba, H, N, the stand density index (SDI), Dg, and age are
often used as key predictors within a stand biomass model [4,8,20,24,47,68]. The present
study showed that the cumulative relative importance of stand factors for predicting stand
biomass was close to 98% (Figure 4). Among the predictors, V was the most important,
with a relative importance of over 60%. This result also confirmed the validity of the
volume-derived biomass method widely applied based on the relationships between vol-
ume and biomass at the stand or forest level [3,69]. The results are supported by previous
studies which showed that stand biomass or carbon had strong positive correlations with
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Ba [70,71] and H [72,73]. In fact, the combination of Ba and H is equivalent to stand volume,
thereby strengthening the biomass–volume relationship. The present study also considered
the important S-shaped relationship between age and stand biomass (Figure 4), which is
in accordance with the general growth pattern of trees. However, age showed a weaker
relationship with stand biomass compared with V and other stand factors. This can be
attributed to V being a function of stand growth and therefore having a direct effect on
stand biomass. In contrast, age is a one-dimensional variable which mainly has an indirect
effect on stand biomass [74]. In addition, the stand biomass of larch plantations increased
with increasing N, which was consistent with the findings of previous studies [68,75]. Bio-
diversity and stand structure are also important drivers of stand biomass [76,77]. However,
the present study did not consider biodiversity due to the monoculture nature of Larix
plantations. Future studies can examine stand structure effects.

4.3. Relationship between Climate Factors and Stand Biomass

Forest biomass varied with climate, showing natural spatial variation closely related
to drought, temperature, or precipitation [78]. However, the influence of climate factors on
stand biomass in the present study was relatively weak compared with that of stand vari-
ables, with a cumulative relative importance of only 2%. This does not mean that the effect
of climate on stand biomass should be ignored. He et al. [21] found that not considering
climate variables resulted in large differences in estimated forest carbon sequestration at
large scales. In addition, previous studies reported that the inclusion of climate variables
improved model performances at the individual tree or stand level [12,13,19–21]. However,
these models considered different climate variables, including MAT (◦C), long-term av-
erage growing season temperature (◦C), January MAT (◦C), mean temperature of wettest
quarter (◦C), MAP (mm), total growing season precipitation (mm), precipitation of the
driest quarter and precipitation of the wettest quarter (mm) [12,13,19,20,23,79–81]. The
present study found that the four most important climate variables for explaining stand
biomass were AHM, CMD, MAP, and TD. AHM and CMD can reflect the humidity of
a forest area, which is important for estimating both AGB and TB. An increase in AHM
can lead to excessive temperature or increased evaporation, resulting in an increase in
CMD, which limits the water absorption efficiency of vegetation [82]. This in turn hinders
photosynthesis and ultimately leads to a decline in biomass (Figure 5). Correspondingly, a
rising temperature in wet areas can result in an increase in stand biomass, whereas an op-
posite pattern occurs in dry areas [83]. On the other hand, under situations of temperature
determining productivity in cold zones, forests will adapt to an excessively low temper-
ature of the mean coldest month by greatly increasing photosynthesis and accumulating
greater quantities of energy during the growing-season [84]. Therefore, temperature and
precipitation usually simultaneously influence stand biomass. Furthermore, the relation-
ship between climate variables and biomass was inconsistent. Luo et al. [80] proposed that
there were no significant correlations between stand biomass and MAP for Pinus yunna-
nensis, whereas a significant negative correlation existed between MAT and stand biomass.
However, Wang et al. [85] showed that stand biomass increased linearly with increasing
precipitation. This inconsistency may be due to species-specific sensitivity to climate. The
warming and precipitation-induced increase in tree productivity may be a direct effect of
either increased photosynthesis or an indirect effect resulting from increased rates of litter
decomposition. These effects led to an increase in the accumulation of biomass, which was
more obvious in arid areas [86]. Hence, the impact of climate change on stand biomass
varies among different tree species and regions, and it is undeniable that climate variables
have an important impact on forest biomass and should be included in biomass models.

4.4. Uncertainty Analysis on Stand Biomass Estimation

When using regression model to predict forest biomass at large scale, the sources of un-
certainty of estimated results included [87–91]: (1) measurement error of forest area [92,93];
(2) measurement error of independent variables [94,95]; and (3) the model error [94–96].
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Relevant studies showed that biomass model error was the main source of uncertainty in
biomass estimation [94]. In this study, we found that the stand biomass model without
climate variables (ntree = 950 and mtry = 3 for AGB, and ntree = 300 and mtry = 3 for
TB) established by using the same method had higher uncertainty than climate-sensitive
stand biomass models, and RMSE of climate-sensitive stand biomass models decreased
by 5.13% for AGB and 11.52% for TB, respectively. Therefore, using climate variables
as independent variables is an effective way to reduce biomass model uncertainty [79].
Furthermore, although the climate variables only had less than 2% contribution to stand
biomass, the estimation error would be large when scaling up from sample plot to large
scale regions using stand biomass models without climate variables, which was approved
by our previous study [21]. In addition, our study did not consider the seedling biomass
with trees’ dbh less than 5 cm because of the data limitations. According to the protocol
of NFI in China, only trees with dbh larger than 5cm were recorded. In the literature of
large-scale forest biomass estimation using NFI data, the minimum dbh was generally
5 cm [97–99]. Meanwhile, there are many examples of forests biomass assessment using
NFI data with trees’ dbh ≥5cm, such as Puliti et al. [33] and Hauglin et al. [34]. However,
the biomass of small trees also played an important role in the global carbon cycle and soil
preservation [100–104]. Stegen et al. [18] reported that the trees dbh less than 10 cm and
lianas could represent over 10% of a forest’s biomass [105]. Therefore, the seedling biomass
should be included for accurate forest biomass estimates in future study.

5. Conclusions

The present study developed climate-sensitive stand aboveground and total biomass
models for larch plantations in northern and northeastern China based on the RF algorithm.
The aboveground biomass and total biomass models showed good performances with R2

values of 0.9845 and 0.9836, respectively. Among the input variables, the cumulative relative
importance values of stand and climate factors in explaining stand biomass were >98%
and <2%, respectively. The partial dependences of stand biomass on climate and stand
variables were consistent with current understanding of the factors affecting tree growth.
These results will help increase the accuracy of forests biomass modeling and support
decision-making in forest carbon sequestration management. Therefore, RF is a potential
effective method for estimating stand biomass. The climate-sensitive forest biomass models
developed in this study are useful tools for assessing forest carbon sequestration services
under climate change and large-scale carbon stock mapping.
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