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Abstract: Selenium (Se) is an essential trace element for human health, and humans mainly consume
Se through diet. China is recognized as a Se-deficient country, and the study of Se migration
and accumulation relationships between crops and soils is essential for Se-deficient areas. In this
experiment, the greenhouse pot experiment of Chinese cabbage (Brassica rapa L. ssp. pekinensis),
wheat (Triticum aestivum L.) and pepper (Capsicum annuum L.) were carried out with the Guanzhong
region of Shaanxi Province and common farmland soils from Beijing Province. The relationship
between the Se content in soil and crops organs (e.g., roots, stems, leaves, grain and fruit) and the
differences in the Se-enriching capacity of the organs were analyzed. The following results were
obtained: (1) all three field crops could absorb Se from soil, including Se-rich and -regulated soil and
reach the standard of Se-enriched vegetables; (2) different organs of Chinese cabbage had different
Se-enriching capacity, which can be arranged as leaf > stem > root, while the Se enrichment capacity
of wheat was root > leaf > stem > grain, and for pepper it was root > leaf > fruit > stem; (3) when the
soil Se regulation content reached 1.0–1.5 mg/kg, the utilization rate of Se in Chinese cabbage and
pepper were higher, but when the soil Se regulation reached 4.0–5.0 mg/kg, the utilization rate of Se
in wheat was higher.

Keywords: selenium Se-rich soil; farm crops; foreign aid Se fertilizer; Se-enrichment capacity

1. Introduction

Selenium (Se), an important trace element in the human body, is an important part
of some antioxidant enzymes and selenoproteins in the human body [1]. Se deficiency
can induce Keshan disease, skeletal muscle necrosis and cardiac dysfunction [2,3]. The
human body cannot synthesize Se, and obtains Se through diet and other means [4]. The
World Health Organization (WHO) sets the recommended intake of Se for healthy adults
at 55 µg/d [5]; however, dietary Se deficiency may affect approximately 1 billion people
worldwide [6]. Thus, the demand for dietary Se has increased in healthcare and agriculture
in recent years [7,8]. A certain range of Se intake can not only improve the function of
thyroid cells and immune cells as well as promote the production of thyroid hormone
metabolic enzymes [9]; it can also enhance the individual immunity, improve the production
of antibodies, increase the activation and proliferation of B lymphocytes and promote the
penetration of Se into the spleen and other immune organs [10]. It can also affect allergic
reactions by acting on immune cells [11].

Farm crops are the main sources of dietary Se [12]. The Se enrichment capacity of
different crops varies greatly, with field crops ranked as: cruciferous > ryegrass > legumes
> cereals [13]. Wheat has higher Se bioavailability and has been recommended as a good
source of Se in cereals [14,15]. The global Se content of wheat ranged from 0–8.27 mg/kg
(mean of 347.30 µg/kg) [16]. However, the Se content of wheat in China ranges from
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0–0.821 mg/kg (mean of 64.6 µg/kg) [17], lower than the global average. This is mainly
attributed to wheat varieties, basic soil properties, Se biofortification measures and weather
conditions [16,18]. In addition to the main food crops, vegetable crops also supplement
humans with scarce Se. Bañuelos et al. [19] showed that the Se content in Brassica campestris
(B. campestris) leaves reached 3.5 mg/kg. The Se-enriching capacity of B. campestris leaves
was higher than that of Indian mustard and Brassica rapa var. perviridis [20]. Peppers are
one of the main ingredients in Chinese recipes, but there were few reports of Se enrichment
studies on peppers in China. The total Se content of peppers in the Se-rich area of Fengcheng
City, Jiangxi Province, ranged from 0.026 to 0.046 mg/kg [21]. The intake of dietary Se
could be increased by enhancing the agronomic trait of Se content in crops [22]. Thus, the
soil Se content and Se enrichment capacity of crops were the main factors influencing Se
content in crops [23].

Differences in climate (precipitation), bedrock and soil organic matter lead to differ-
ences in soil Se content in different regions [24]. The soil Se content is mainly obtained from
various parent materials of the crust [25]. Favorito, J.E. et al. [26] showed that the level of
Se content in the soil affected the Se content in plants. Hu et al. [27] applied sodium selenite
in a tea garden with low-Se soil, and the Se content of tea increased from 0.096 mg/kg
to 1.4 mg/kg. The average Se content of Chinese cabbage in the Se-rich area of Enshi
City, Hubei Province is much higher than that in the Se-deficient area of Suzhou, Jiangsu
Province [28,29]. In Se-deficient areas, the addition of 2.5 mg/kg sodium selenite (Na4SeO3)
nutrient solution significantly improves the total and organic Se content of Chinese cabbage,
and the organic Se conversion rate reaches 92.63% [30]. The application of sodium selenite
Se fertilizer increases the soybean Se concentration by an average of 0.01 mg/kg [31], and
Flammulina velutipes accumulates nearly 108 mg/kg of organic Se under the treatment with
20 mg/kg selenite treatment, accounting for more than 97% of the total Se [32]. In pot
trials, the total Se content of wheat grains with soil applied Se fertilizer (17.35 mg/kg) is
much higher than that of the control (2 mg/kg) [33]. However, the relationship between
the application of organic Se fertilizer and its optimal application rate on the enrichment of
Se in various crops remains unclear.

The degree of Se deficiency in China is relatively severe. The soil Se content in China
ranges from 0.01 mg/kg to 16.24 mg/kg, with an average of 0.171 mg/kg [34]. The total area
of Se-rich land (>0.4 mg/kg) reached 1.09 million km2, only accounting for approximately
11.2% of the total land area [35]. A discontinuous flaky low-Se belt is observed from
eastern Inner Mongolia to the Qinghai-Tibet Plateau, and the Se-deficient area accounts for
approximately 31.6% of the land area [35]. According to a survey conducted by the Chinese
Nutrition Society, the average Se intake of adults is only 26.63 µg/d, which is far below the
standard intake of Se (55 µg/d) [36]. Shaanxi Province is a major agricultural province in
China, and Guanzhong area is rich in natural Se-rich land resources.

In this study, the sensitivity of Chinese cabbage, wheat and pepper to the Se in soil
was investigated by conducting pot trials on natural Se-rich soil and field soil adding
Se fertilizer. In addition, the enrichment capacity of crop organs to Se was discussed by
analyzing the Se absorption and correlation of crop organs. The main objectives of this
study are (1) to determine the relationship between the crop Se content and the soil Se
content, (2) to clarify the Se enrichment effect of crop organs and (3) to reveal the optimal
Se application rate to crops. The findings herein help to explain the absorption of Se in soil
by crops, and provide a scientific basis for the development of Se-rich agriculture.

2. Materials and Methods
2.1. Study Area

The Guanzhong area is located in the middle of Shaanxi Province, with an area of
55,500 km2 [37]. It has four distinct seasons, sufficient sunshine and a temperate semi-arid
continental climate [38]. The annual average temperature is 13.7 ◦C, and the annual average
precipitation is 600 mm [37]. The Se-rich area of the topsoil is 8938.74 km2, accounting for
22.37% of the total area. The Se-rich area of the deep soil is only 53.32 km2, accounting
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for 0.13% of the total area [39]. The average Se content of topsoil in the Sanyuan–Yanliang
Se-rich area is 0.32 mg/kg, the Se content of the soil 1.4 m below is more than 0.3 mg/kg
and the average Se content in the Se-rich area of Zhouzhi–Huyi is 0.35 mg/kg [40].

2.2. Experimental Material

The Se-rich soil in the experiment was taken from the surface soil of Huyi North
District, Huyi South District, Jingyang County and Sanyuan County in the Guanzhong
area of Shaanxi Province, labeled as A1, A2, A3 and A4, respectively. Soil total phosphorus
content is 0.052–0.07%, total potassium content is 1.9–2.6%, slow-release potassium content
is 750–1160 mg/kg, organic matter is 1–1.5%, pH is 7.5–8.5. Se-regulated experiment soil
(denoted as B) was from farmland tillage surface soil in Beijing, and no Se content was
detected in the soil. The mechanical composition of soil was determined by Malvin MS
2000 laser particle size analyzer, and the Se content of the soil was determined by atomic
absorption spectrophotometry. According to China’s soil Se standard (0.1–0.2 mg/kg for
low-Se soil, 0.2–0.4 mg/kg for sufficient-Se soil, higher than 0.4 mg/kg for Se-rich soil [41]),
the soil was classified. The specific data are shown in Table 1.

Table 1. Soil basic properties.

Number Soil Sources
Particle Size Range (v/v %) Soil Se Content

(ω(B)/10−6)
Soil Category0.02–2 mm 0.002–0.02 mm 0–0.002 mm

A1 Huyi Northern
District 36.179 42.788 21.033 0.172 Low-Se soil

A2 Huyi Southern
District 90.138 7.681 2.181 0.258 Sufficient-Se soil

A3 Jingyang County 42.214 41.393 16.393 0.323 Sufficient-Se soil
A4 Sanyuan County 30.084 52.946 16.97 0.364 Sufficient-Se soil

B Ordinary
farmland soil 32.872 47.56 19.568

Chinese cabbage seeds were produced by Nanjing Qiutian Seed Research Institute,
wheat seeds were Zhoumai 21 developed by Zhoukou Agricultural Science Academy
in Henan Province and pepper seeds were from Jingyan Yinong (Beijing) Sci-Tech Co.,
Ltd (No.101, Floor 1, Building 33, Banjing Village Vegetable Research Center, Zizhuyuan
Street, Haidian District, Beijing). The Se fertilizer was obtained from Tangshan Jinguo
Agricultural Technology Development Company Ltd (Sluice commercial area of the eighth
farm in Caofeidian District). The main components were amino acids (100 mg/L), trace
elements such as iron, potassium, boron and zinc (≥20 mg/L), and organic Se synthesis
agent (>6 g/L).

2.3. Experimental Design

The pot experiment was carried out in a constant temperature and humidity green-
house at 26 ◦C. The test device is shown in Figure 1. A round plastic flowerpot with an inner
diameter of 22 cm and a depth of 20 cm was used for the cultivation of Chinese cabbage.
Eight treatments were set up. Four Se-rich soils with different Se contents (0.172, 0.258,
0.323, 0.364) were set as one group, marked as A1C, A2C, A3C and A4C, and the other
group was common farmland soils with different Se contents (1.0, 1.5, 2.0, 2.5), marked
as B1C, B2C, B3C and B4C. Pepper was planted in the same circular flowerpot, and four
treatments were set up. The same Se fertilizer content was added to the pot experiment,
labeled as B1P, B2P, B3P and B4P. Wheat was planted in a 40 cm × 15 cm × 20 cm-long
flowerpot, and eight groups were set up. Among them, the Se-riched soils with different Se
contents (0.172, 0.258, 0.323, 0.364) were labeled as A1W, A2W, A3W and A4W, respectively.
The other group was ordinary farmland soil with different Se fertilizer contents (1.0, 2.5,
4.0, 5.0), marked as B5W, B6W, B7W and B8W. The specific design is shown in Table 2. Each
treatment was repeated three times, a total of 60 pots.
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Table 2. Pot experiment treatment.

Treatments
Soil Se
Content

(ω(B)/10−6)
Treatments

Soil Se
Content

(ω(B)/10−6)

A1C 0.172 A1W 0.172
A2C 0.258 A2W 0.258
A3C 0.323 A3W 0.323
A4C 0.364 A4W 0.364

Treatments Se fertilizer
(ω(B)/10−6) Treatments Se fertilizer

(ω(B)/10−6) Treatments Se fertilizer
(ω(B)/10−6)

B1C 1.0 B5W 1.0 B1P 1.0
B2C 1.5 B6W 2.5 B2P 1.5
B3C 2.0 B7W 4.0 B3P 2.0
B4C 2.5 B8W 5.0 B4P 2.5

Before loading, an appropriate amount of gravel is paved on the basin floor in advance
as a drainage filler to cover the drainage hole. Each pot is filled with soil according to the
designed bulk density. After filling the soil in pots, an appropriate amount of water was
added to balance the soil. Sowing began after 7 days, and Se fertilizer was applied in the
corresponding treatment before sowing. A total of 20 seeds were sown per pot at a depth
of 0.5 cm. After sowing, irrigate to field water holding capacity until emergence. When
the seedlings grew 2 true leaves, thinning was carried out, with 10 seedlings per pot for
Chinese cabbage and wheat, and 3 seedlings per pot for pepper. The soil moisture content
of all treatments was maintained at about 70% of the field water holding rate during the
crop growth period, and no other fertilizers were applied during the period.

2.4. Sample Collection and Indicator Determination

Determination of crop Se content: the crops were harvested according to each organ
(root, stem, leaf, fruit), with distilled water to clean the roots and leaves, which were dried
with absorbent paper. After weighing the fresh weight, the plant samples were killed
at 105 ◦C for 30 min, then dried at 75 ◦C to a constant weight, and the biomass of each
organ was measured by electronic balance. The samples were digested with HNO3-HClO4
(volume ratio of 4:1) and reduced with 6 mol/L hydrochloric acid, and then determined by
hydride generation–atomic fluorescence spectrometry (Beijing Jitian AFS-930 dual-channel
atomic fluorescence spectrometer) [42].
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Determination of soil Se content: soil samples were naturally air dried and sieved
(20 mesh). Using HNO3-HClO4 (volume ratio of 3:2): digestion, the subsequent steps were
the same as the determination of Se in crop samples.

Enrichment coefficient is used to represent the ability of crops to absorb Se from soil,
namely crop Se absorption rate [43]. The formula is as follows:

K =
Ccrop

Csoil

where K is the enrichment coefficient of Se; Ccrop is the Se content in crops (mg/kg); Csoil is
the Se content in soil (mg/kg).

2.5. Data Analysis

Data were organized with Excel 2019; SPSS software was used for statistical analysis.
Duncan’s ANOVA was used to determine whether the difference of crop Se content and
soil Se content among different treatments was significant, and the Se-rich ability of each
crop was analyzed.

3. Results
3.1. Uptake and Utilization of Se by Chinese Cabbage
3.1.1. Se Content of Chinese Cabbage in Soils with Different Se Content

Figure 2 shows the Se content of Chinese cabbage in Se-rich and -regulated soil. In
the low-Se-content soil (A1C), the Se content in Chinese cabbage was 0.01 mg/kg. In the
sufficient-Se-content soil (A2C, A3C and A4C), the Se content of Chinese cabbage was more
than 0.03 mg/kg. Notably, when the Se content in soil was more than 0.258 mg/kg, the Se
content of Chinese cabbage remarkably increased. Compared with A1C, the Se content of
Chinese cabbage in A2C, A3C and A4C increased by 3.49, 17.02, and 6.91 times, respectively.
With the increase of the soil Se content, the Se content in Chinese cabbage increased firstly
and then decreased, and the turning point was 0.323 mg/kg Se in soil (A3C).
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Figure 2. Se content of Se-rich soil and Se-regulated soil and Chinese cabbage. (A) represents the Se
content of Se-rich soil and Chinese cabbage; (B) represents the Se content of Se-regulated soil and
Chinese cabbage. Blackline interval represents Se-rich vegetable standard of Shaanxi Province.

In Se-regulated soil, when the added Se in the soil increased from 1.0 mg/kg to
2.5 mg/kg, the Se content in Chinese cabbage increased from 0.43 mg/kg to 2.61 mg/kg
correspondingly. The results showed that the Se content in Chinese cabbage increased with
the increase of Se content in soil.
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3.1.2. Se Content of Chinese Cabbage Organs in Different Se Content Soils

Figure 3 shows the Se content in different organs of Chinese cabbage in Se-rich and
-regulated soil. In A1C, the Se content was not observed in roots and stems, but a small
amount of Se content was found in leaves. In A2C and A4C, the leaves accumulated higher
Se content at 0.05 mg/kg and 0.08 mg/kg, respectively. The amount of Se in the roots and
stems contended about 1/2 as leaves in A2C and A2C. In A3C, the Se accumulation in
leaves, roots and stems were highest than other treatments in Se-rich soil. In Se-regulated
soil (B1C–B4C), with the increase of Se fertilizer, the Se content in leaves increased from
0.55 mg/kg to 4.06 mg/kg, and the Se in the roots and stems was about 1/2 of leaves. In
B1C, B2C and B3C, the Se content was about the same in the stems and roots.
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Figure 3. Comparison of Se content in the soil and different parts of Chinese cabbage. (A) represents
the Se content of different parts of Chinese cabbage in Se-rich soil; (B) represents the Se content of
different parts of Chinese cabbage in Se-regulated soil. Blackline interval represents Se-rich vegetable
standard of Shaanxi Province.

3.1.3. Se enrichment Capacity of Chinese Cabbage for Soil Se

Figure 4 shows the Se absorption rate of Chinese cabbage in the Se-rich soil and Se-
regulated soil. In the Se-rich soil, the Se absorption rate of Chinese cabbage increased firstly
and then decreased with the increase of Se content in soil. The average utilization rate of
Se in the soil by the leaves was the highest, ranging from 13% to 35%. In A3C, the root
had the highest utilization rate of Se, but in other treatments, the leaves had the highest
utilization rate of Se. In the Se-regulated soil, the Se absorption rate of the leaves was
proportional to the Se content in soil approximately, but the root had a low tolerance to a
high concentration of Se, which would decrease with the increase of Se concentration in
the soil.
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3.2. Uptake and Utilization of Se by Wheat
3.2.1. Se Content of Wheat in Soils with Different Se Content

Figure 5 shows the Se content of wheat in Se-rich and -regulated soil. In the low-
Se-content soil (A1W), the Se content in wheat was 0.046 mg/kg. In the sufficient-Se-
content soil (A2W, A3W and A4W), the Se content of wheat was more than 0.05 mg/kg.
Notably, when the Se content in soil was more than 0.258 mg/kg, the Se content of wheat
remarkably increased. Compared with A1W, the Se content of wheat in A2W, A3W and
A4W increased by 0.17, 4.04, and 1.77 times, respectively. With the increase of the soil Se
content, the Se content in wheat increased firstly and then decreased, and the turning point
was 0.323 mg/kg Se content in soil (A3W).
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When the added Se in the soil increased from 1.0 mg/kg to 5.0 mg/kg, the Se content
in wheat increased from 2.77 mg/kg to 7.82 mg/kg correspondingly. The results showed
that with the increase of the soil Se content, the Se content in wheat increased firstly and
then decreased, which was consistent with the Se-rich soil experiment.

3.2.2. Se Content of Wheat Organs in Different Se Content Soils

Figure 6 shows the Se content in different organs of wheat in Se-rich soil and Se-
regulated soil. In general, the highest Se accumulation was in the roots and the lowest was
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in the grains in Se-rich soil. In A1W, there was no observable Se content in grain, but a
small amount of Se content in the stems, leaves and roots. In A2W and A4W, the roots’
Se content was 0.074 mg/kg and 0.23 mg/kg, respectively, which was higher than that in
leaves and stems. In A3W, Se uptake was highest in the roots (0.31 mg/kg) and lowest in
the grains. However, the grains and roots accumulated more Se fertilizer than the leaves
and stems in general.
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Figure 6. Comparison of Se content in the soil and different parts of wheat. (A) represents the Se
content of different parts of wheat in Se-rich soil; (B) represents the Se content of different parts of
wheat in Se-regulated soil.

When the amount of Se fertilizer added to the soil increased from 1.0 mg/kg to
5.0 mg/kg, the Se content in the grains increased from 3.04 mg/kg to 9.46 mg/kg and the
Se content in the roots increased from 3.86 mg/kg to 9.65 mg/kg. The Se content of the
leaves and stems was not very different.

3.2.3. Se Enrichment Capacity in Organs of Wheat

Figure 7 shows the Se absorption rate of wheat in the Se-rich soil and Se-regulated
soil. In the Se-rich soil, the rate of Se absorption by wheat showed a decreasing–increasing–
decreasing fluctuation with the increasing of Se content in the soil. The roots had the
highest average Se absorption rate, ranging from 28% to 96%, and the grains and stems had
the lowest average Se absorption rate. It was worth noting that the wheat in A3W had the
highest Se absorption rate. In the Se-regulated soil, the Se absorption rate of wheat showed
an increasing–decreasing–increasing fluctuation with the increasing of Se content in the
soil, although the trend was not significant.
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3.3. Uptake and Utilization of Se by Pepper
3.3.1. Se Content of Pepper in Soils with Different Se Content

Figure 8 shows the Se content in different organs of pepper in Se-regulated soil. The
Se content of pepper was 3.04 mg/kg to 5.51 mg/kg when the added Se fertilizer was
1.0 mg/kg to 2.5 mg/kg. With the increase of Se fertilizer added, the Se content of different
organs of pepper showed an increasing–decreasing–increasing fluctuating trend. When the
added Se fertilizer amount was 1.0 mg/kg to 2.5 mg/kg, the Se content of roots was the
highest, and leaves and fruits contented almost same amount of Se.
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3.3.2. Se Enrichment Capacity in Organs of Pepper

Figure 9 shows the Se absorption rate of pepper in the Se-regulated soil. In the Se-
regulated soil, the Se absorption rate of pepper showed an increasing fluctuation with the
increasing amount of Se fertilizer added. The roots had the highest average absorption
rate of Se, ranging from 23% to 32%. The stems had a lower average absorption rate of
Se. Notably, the fruit in B4P had the highest Se absorption rate of Se than other organs;
however, the roots in other treatments had the highest Se absorption rate of Se than
other organs.
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4. Discussion
4.1. Effect of Soil Se Content on the Se Accumulation of Vegetations

Increasing the Se content in the soil can promote the Se content and yield of vegeta-
tions [44]. In the present study, the Se content in vegetations generally increased with the in-
crease of Se content in soil. Yang et al. [45] found that the Se content in the aboveground and
underground parts of Chinese cabbage gradually increased with the increase of Se concentra-
tion in soil. Wheat fertilized with 0.2 mg/kg of Se in the soil had a Se content of 0.732 mg/kg,
which was higher than in fertilized soil with 0.05 mg/kg of Se (0.155 mg/kg) [46]. These
findings were consistent with the results of the present experiment.

The Se content of Chinese cabbage and wheat was significantly higher in the Se-
regulated soils than in the natural Se-rich soils, indicating that the addition of exogenous Se
was more beneficial to the uptake of Se in both vegetations. Tang et al. [47] also found that
the higher the addition of exogenous Se into the soil, the more obvious the Se enrichment
effect of Chinese cabbage. However, excessive levels of Se in the soil can also have some
negative effects. In this experiment, the Se content of the crop decreased under the A4C,
A4W and B4W. The results indicate that the uptake of Se by vegetation and even its growth
and development can be inhibited when the Se concentration in the soil exceeds a certain
range, which was consistent with the results of Guo [48] and Zhang et al. [49]. This
phenomenon occurred because the change in the permeability coefficient of certain ions in
the biofilm reduces the uptake of nutrients by vegetables [50], leading to a decrease in the
crop’s own Se content. Therefore, for areas with low Se content such as A2, organic Se or Se
fertilizer could be appropriately added to increase the absolute Se content, improve the soil
properties, and promote the increase of available Se in the soil.

4.2. Se Enrichment Capacity of Different Organs of Vegetations

The Se enrichment ability of each organ in different vegetation is different. In this study,
Chinese cabbage had the highest Se enrichment in its leaves, followed by stems and roots,
the Se enrichment ability of wheat was root > leaf > stem > grain and pepper showed root >
leaf > fruit > stem. This phenomenon was mainly related to the redistribution mechanism of
Se. After it was absorbed by roots, inorganic Se was transported to the aboveground tissues
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through the xylem, and then redistributed through the phloem [51]. During respiration
in the root system, a small proportion of the Se absorbed by the roots were translocated
to the above-ground branches and leaves, with the majority translocated to the roots [52].
Harvey et al. [53] found that Se mainly accumulates in the young leaves, pods, and main
roots of soybeans, with lower concentrations of Se in fine roots and stems. Wan et al. [54]
found that the edible parts of tomato and beet have lower Se content than their non-edible
parts. the distribution of Se in different parts of wheat under foliar spraying of Se can be
arranged as leaf > root > grain > glume > stem [55]. The above results prove this theory.

The addition of Se fertilizer also promoted the accumulation of Se in crops. When the
content of Se in soil reached 1.0–1.5 mg/kg, the utilization rate of Se was higher in Chinese
cabbage and wheat. When the content of Se in soil reached 4.0–5.0 mg/kg, the utilization
rate of Se in wheat was higher. The absorption and accumulation of Se by crops mainly
depend on the bioavailability of Se in soil [56]. The addition of Se fertilizer can regulate soil
properties, further improve the interaction between soil microbial community structure
and microbial vegetation, and increase the bioavailability of Se in soil, thereby increasing
the Se enrichment capacity of crops [57]. In summary, Chinese cabbage, wheat and pepper
were suitable for high-quality Se-rich field crops as a human Se supplement.

5. Conclusions

Chinese cabbage, wheat and pepper could absorb Se from Se-rich soil and Se-regulated
soil successfully, and the Se enrichment capacity in different organs was different. The
Se content in the leaves was the highest in Chinese cabbage in the Se-rich soil. The Se
content in the roots was the highest in wheat in the Se-rich soil and the Se content in the
grain met the standard of Se enrichment. Therefore, when planting vegetables in Se-rich
soil, cruciferous vegetables whose edible parts are leaves should be used. Wheat grain in
Jingyang county had a high Se content, and the crops in this area had the highest utilization
of soil Se. In the Se-regulated soil, wheat had a higher Se utilization rate when the soil Se
regulation content reached 4.0–5.0 mg/kg, and Chinese cabbage and pepper had a higher
Se utilization rate when the soil Se regulation content reached 1.0–1.5 mg/kg. Although
the individual organs of the three crops differed in their Se content, they all contained Se in
their edible parts to meet the Se intake required by humans.

Therefore, when targeting field crops in Se-rich areas, peppers and cruciferous large-
leaf vegetables with edible parts of leaves and cereals such as wheat can be chosen so
that the Se in the soil can be better utilized and more amounts of Se can be absorbed by
humans and animals after consumption. Based on the results of the trial, it is suggested to
plant Chinese cabbage in Sanyuan County and wheat in Jingyang County, so as to develop
Se-rich agriculture in Guanzhong area.
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