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Abstract: Rainwater harvesting attracts growing interest from the field of municipal planning. When
considering a rainwater harvesting system as a design object, questions include whether the system is
designed for a single property or for a local water network serving multiple properties, what allows
for the inclusion of buffer tanks and resource balancing among participants in the network, how to
size the tanks, and how robust the system is in the face of changing demands. Knowledge-based
engineering provides methods and a tool set for such planning objects. For this article, the authors
applied techniques based on model-based and resource-based configuration and Bayesian decision
networks to propose a knowledge-based engineering system for residential, networked rainwater
harvesting and distribution systems. This enables designers to investigate the effects of different
catchment areas, adjust or minimize the storage tank sizes in the grid and evaluate their effect on the
individual harvest and the exchange with a central network buffer, evaluate the demands within a
neighborhood based on a detailed consumer model also over time, and test the sensitivities of the
single sinks and sources to the water grid. For urban planners, this offers the possibility, for example,
to make design obligations for housing construction or for the refurbishment of settlements.

Keywords: residential water systems; rainwater harvesting systems; knowledge-based engineering
systems; Bayesian networks; resource balancing

1. Introduction

The perception of water as a resource is undergoing dramatical change. As a conse-
quence of climate change, on the one hand, drought even in temperate latitudes and the
lowering of groundwater levels in many areas is an issue that now affects almost every-
one [1,2]. On the other hand, the increase in extreme weather events and climate-related
natural hazards poses a risk to more and more people [3,4]. It is not only the first United
Nations Water Conference in almost 50 years in 2023 that is drawing attention to what has
become a universal truth: water must be managed.

One source of water which has a significant impact on the sizing of water infrastructure
systems is rainwater [5–7]. Storm water discharge to protect other infrastructure from
damage, such as that seen, for example, in Los Angeles or Tokyo, is only one question for
urban planners [8–10]. The integration of rainwater into the urban water cycle is a subject
of water-sensitive urban design [11–13], with concepts such as green roof technology, living
walls, and sponge cities as instantiations [14–18].

Rainwater harvesting (RWH) and use is a cornerstone of many of these concepts and
contributes to influencing both peak water demands and storm water runoff [19,20]. In
addition to simply installing a rainwater tank on a property, understanding neighborhoods
or districts as local, decentrally managed water grids offers the possibility of resource
balancing, as participants with low consumption or additional municipal buffers can make
their harvest available to other participants in the network as needed [21].

Thus, when considering an RWH system as a design object, the questions are, first,
how to size it according to the provision and consumption of rainwater [22], second, how
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to make it robust to changing requirements and premises over a long service life [23], and
third, where to set the system boundaries for maximum benefit to all stakeholders. Current
design practice and standards such as EN 16941-1 [24] tend to focus on individual aspects
of the above. A widely used approach is the simulation of water mass balances based on
yield and demand for each time step of the simulation for an isolated RWH system [6].

Considering the above questions, an appropriate design tool for RWH systems should
generally be able to size the system components based on reliable and adequately resolved
data, support the designer in detecting sensitivities in design parameters, e.g., due to
changes in use patterns or premises, and compare different system configurations and
boundaries. For such design tasks, the field of Knowledge-Based Engineering (KBE) offers
methods and a comprehensive set of tools [25–27].

This article presents a modular KBE system for the design of residential rainwater
harvesting and distribution systems, in which the authors apply KBE techniques such as
model- and resource-based configuration and Bayesian decision networks. The following
contributions are associated with this: First, the authors propose a probabilistic consumer
model to make the prediction of water demand more robust and to also evaluate the effects
of different influencing parameters over time. Second, the impacts of a networked RWH
system in a neighborhood with a central buffer tank can be compared to those of isolated
RWH systems so that appropriate design recommendations or design obligations can
be made.

The article is organized as follows: First, in Section 2, the theoretical background
of KBE systems in general, Bayesian Networks as tool for modeling uncertainties, and
the sizing of RWH systems is presented. Section 3 then contains a description of the
Bayesian network consumer model concept as well as the mental model and premises the
authors used for system development. Afterwards, Section 4 presents the structure and
setup of the implemented system, before Section 5 shows the application of the system for
different configurations of a neighborhood as well as the generation of design knowledge
by analyzing sensitivities of parameter changes for the provision and consumption of water.
In Section 6, the application as well as the methodological approach are discussed before
Section 7 concludes the article.

2. Theoretical Background and Related Work
2.1. Knowledge-Based Engineering

The idea of KBE is associated with a paradigm shift in computer-aided product
modeling, away from documenting a single product variant to modeling solution spaces in
which a variant can be found that fits a set of requirements [28]. Thus, the purpose of KBE
is twofold: One is to automate the design or adaptation of products and their components
based on artificial intelligence, e.g., a reasoning system, which is able to consider the design
context, e.g., given requirements or restrictions [27,29]. The other is the automatic discovery
of design knowledge about an artifact, e.g., through systematic investigation and evaluation
of the sensitivities of design parameter changes and their dependencies with respect to
the resulting product’s properties [30,31]. Both qualify KBE as toolbox for realizing digital
twins and thus imply its utility for operating smart service systems [32,33].

Building a KBE system leads to two basic questions: first, how to model the solution
space, and second, how to explore it to accomplish a design task. The design task may al-
ready imply answers to the above questions [34]. In product configuration, for example, the
design task is to find a composition of predefined components to be assembled via known
interfaces [26,35]. Thus, the model of the solution space may consist of a representation
of the predefined components, their individual options and alternatives, and constraints
describing the relationship between the components as well as with user input as domain
knowledge. A common implementation approach is the formulation of a constraint satisfac-
tion problem (CSP) [36]. The exploration is then the solution of the CSP by the respecting
algorithms, which can be understood as control or inference knowledge in model-based
reasoning [37]. With respect to RWH system design, inputs to the CSP could be catchment



Sustainability 2023, 15, 8636 3 of 26

size, a rainfall pattern, and data about rainwater consumption so that the configuration
system outputs a tank, pumps, and other necessary equipment of suitable sizes. Such
systems can be found, for example, through individual RWH system manufacturer’s web
presences as online configurators or sizing tools. For end users, this is a convenient decision
support, as these tools are able to translate user requirements into the specification of a
system, without requiring deeper product knowledge [38–40].

For resource balancing, this approach was adapted to model resource provision and
consumption by constraints, keeping the resource concept abstract, e.g., so that installation
space or technical interfaces can also be considered as resources [41]. Framing this for
RWH systems, designers can use this approach to develop, simulate, and control a super
system of multiple properties each with its own catchment, tank, and pumping system and
mediate between the individual participants’ needs and water demands.

In contrast, a geometric knowledge-based computer-aided design model that adapts
the shape of a product or its components to changed requirements uses a variety of different
domain knowledge implementations, i.e., among others, parameter constraints, design
rules and templates, as well as more complex control strategies [28,42].

The aforementioned approaches belong to solution-centric, explicit solution space model-
ing. A fundamentally different strategy, popular in, e.g., architecture, is a process-oriented,
implicit modeling of the solution space. Here, the development of a KBE system focuses on
the automation of the design process itself rather than a variety of pre-formulated product
solutions [43]. Such approaches rely on an algorithmic formulation of, e.g., design rules of the
product and laws for deriving product properties based on requirements, but also include
transformation models from external data sources or numerical simulation [44,45]. The con-
cept has thus disseminated, e.g., into Design for Additive Manufacturing in the mechanical
engineering domain, as it aims to generate an individual product for each set of customer
requirements without relying on an existing configurable product model, which is particularly
favorable for complex geometries [46–48].

There are hybrid forms which combine the strengths of both concepts. One of them
is the propose-and-revise approach that uses an explicit solution space model to pro-
pose an initial system configuration which is near to matching the given requirements.
The algorithmic part then automatically alters the configuration according to a usually
rule-based reaction pool to improve requirement fulfillment [49,50]. Complementing such
systems with an automated parameter study then provides the ability to evaluate how a
design reacts to changes in the requirements and following them to formulate new explicit
design knowledge.

2.2. Bayesian Networks

The above argumentation of discovering new design knowledge by investigating the
effect of parameter changes on a design introduces another perspective for engineering
disciplines. KBE systems are also valuable for finding a design that is insensitive to a (lim-
ited) change in requirements, which opens up opportunities for dealing with uncertainties
in the requirements themselves, thus contributing to complexity management [51–53]. If
uncertainty is understood as a modeling object of a design artifact, it can be implemented
using implicit and explicit modeling. In the first option, designers do not model uncertainty
as such but represent the system to be analyzed as a model. This follows a multi-objective
optimization, such as Latin Hypercube Sampling, in which the sensitivity of changes in
the design variables can be inferred by varying the inputs to reveal the objective function
of the optimization [54]. In contrast, explicit modeling directly associates uncertainties,
e.g., in the form of probabilities, with parts of the model of the design artifact. Since such
probabilities are usually dependent, and approaches such as Bayesian networks (BNs) have
been formulated [55]. BNs are used when representing missing or uncertain data. They
find applications, e.g., in diagnosis tasks, which can model expert knowledge as the effect
of a cause with probabilities [56].
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Assume two statements A and B with the possible binary states true (T) and false (F).
If statement A is true and statement B can be deduced from statement A, then statement
B is also true. In contrast to this is induction, where it is a matter of inferring the error
from the symptom. This can then lead to uncertainty if, e.g., several errors trigger the same
symptom. If a statement A is not independent, but only true under the premise that another
statement B is true, this is called the conditional probability P(A | B) [57]. This conditional
probability may already represent intrinsic expert knowledge. BNs make use of connecting
this knowledge expressed by conditional probabilities into a knowledge base by using the
so-called Bayesian rule because evidence (B) is often perceived as an effect of an unknown
cause (A) and the goal is to determine the cause [58].

A key advantage of BNs is reasoning against the causal chain. Directed acyclic graphs
are used to visualize knowledge, with nodes corresponding to uncertain variables and
edges corresponding to the conditional probabilities of those variables. The probabilities
within the BN are based on random trials and represent intrinsic knowledge or uncertain
information. Korb and Nicholson [59] proposed a two-step approach for modeling a BN:
(1) building the structure (nodes with values and arcs) and (2) assigning the parameters
(probabilities). After the associated graph has been created in the first step, the probabilities
can be added. First, the size of the individual nodes must be defined. CPTs (conditional
probability tables) are used to implement the conditional probabilities [60]. These are arrays
in which the probabilities for the individual nodes are stored. To calculate the inference,
one can choose between several algorithms, for example the junction tree algorithm.

The example from [58] illustrates this with with the observation of wet grass (W) and
the possible causes of having applied a sprinkler (S) and rainfall (R). Both causes receive a
parent node, cloudy (C) (Figure 1). When evidence is added, the model is enriched with
prior knowledge. If the probability that the sprinkler is responsible for the wet grass is
to be determined, the probability W = 1.0 is set for the node wet grass. This results in
a probability of occurrence of 42.9 % for the sprinkler to be the source of the wet grass,
regardless of cloudy weather.

(a) (b)

Figure 1. Representation of a graph with associated probabilities, adapted from [58]: (a) BN without
evidence; (b) BN with evidence of wet grass.

In the literature, BNs are used in product development, e.g., to span a design solution
space by manipulating deterministic and probabilistic data to perform product architecture
generation and exploration. By using templates to model the random nodes, the design
variables, constraints, and confidence levels, among others, are represented so that the
compatibility of components for a product can be verified. In addition, BNs are used
for set-based collaborative design, where different design departments model, share, and
combine their promising regions in the design solution space for an unmanned aerial
vehicle to find solutions of common interest [61]. Wang et al. [62] also span a solution space
with BN to assist the engineer in the Design for Additive Manufacturing (DfAM) decision
process. To achieve this, they consider parameters of the manufacturing process in terms
of the machine and the part to be printed, as well as possible materials, based on which a
conclusion can be drawn about the product properties. BNs can also be built and updated
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by analyzing data so that they can be used to predict future designs based on data about
past products [63,64].

2.3. Rainwater Harvesting Systems

RWH systems are used to collect and store rainwater, preferably from roof surfaces [65].
The collected rainwater is suitable both for indoor use, e.g., laundry, toilet flushing or
hot water purposes, and outdoor use, e.g., garden irrigation and cleaning [22]. RWH
systems consist mainly of rain gutters, which collect the water from the roof, piping
system, storage tank, and pump. Depending on the individual consumers and their water
quality requirements, additional filters or a first-flush diverter are recommended [66,67]. A
discussion of different RWH system configurations may be obtained from [7].

As an upper-level framework, the European standard EN 16941-1 was created to
harmonize different national codices of practice, such as the British BS 8515 or the German
DIN 1989-1, and to provide a reference for the design, installation, and maintenance of
RWH systems [24,68,69]. A critical point is the physical sizing of the rainwater storage
tank. The standards as well as the literature distinguish three different categories of sizing
methods, which differ in their complexity and precision.

Empirical relationship methods rely on correlations of easily measurable data, such
as mean annual rainfall, catchment size, and mean water demand per consumer. Usually
they are realized as simple look-up charts, e.g., catchment versus storage curves [23,65].
The applicability is somehow restricted in terms of precipitation levels, daily water demand,
and the adaption of the curves to other regions [6]. A well-known drawback is that such
simplified methods do not resolve rainfall patterns and demand variations more accurately
than one year. As a consequence, tank volumes are usually overestimated compared to
other methods [67]. The old version of DIN1989-1 included a related abbreviated procedure,
which has since been withdrawn.

The second category consists of approaches that use the continuous simulation of
water mass balances. The mass balances represent inputs, outputs, and losses of an RWH
system, making it possible to reason about the tank volume based on the calculated volume
of the stored water at each time step of the simulation [6]. Within this category, there are
several algorithmic models, e.g., the basic methods of yield before spillage or yield after
spillage [70]. A crucial point is the choice of the time step. EN 16941-1 allows a simplified
simulation with yearly values [24]. In contrast, the detailed simulation, as well as other
state-of-the-art simulation models, uses a daily time step [67]. Especially for small tank
sizes, an inadequate temporal resolution leads to a considerable underestimation of annual
rainwater yields [71].

Methods of the third category take into consideration a drawback of the other ap-
proaches, which is the uncertainty about future supply and demand patterns. Especially
on the supply side, probabilistic and stochastic procedures have been increasingly used
and are often subsumed as rainfall generators [6,65]. The probability of rainfall is analyzed
based on data on historical precipitation records and an estimation on the future devel-
opment of climate variables that allow predictions even on large time scales relevant to
water infrastructure systems [23,72]. These data are then commonly taken as input for the
calculation of mass balances [67].

A different point of view in designing an RWH system is the economic perspective.
With regard to an isolated system for an individual building, over- or underestimation
might not result in severe economic losses [5]. Nonetheless, increasing the tank size does not
necessarily increase efficiency, but leads to a possible increase in service costs and a decrease
in operational safety, e.g., when a cistern is not able to overfloat for self-cleaning [73].
However, when considering the RWH system as part of the water infrastructure, the
impacts on water supply and stormwater drainage are actually measurable and can be
calculated even up to the level of pipe diameters [19].
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3. Model Development

Although several approaches that account for uncertainty about future parameters
have been reported in the literature, they seem to focus heavily on the supply side [65].
The demand side is commonly modeled as average water consumption per person, supple-
mented by models for, e.g., garden irrigation during the summer months [66].

To assess the robustness of RWH systems, the authors aim to provide new impetus
by introducing a probabilistic consumer model and a comparative assessment of isolated
and networked RWH systems on multiple properties, allowing resource balancing between
the individual systems. Therefore, a BN will represent the user behavior and allow the
calculation of water demand. A model- and resource-based configuration approach for the
RWH system then enables the comparison of different system configurations and reasoning
about single design parameters.

3.1. Consumer Model

The consumer model consists of a BN with four layers, where the fourth layer repre-
sents a person’s total consumption based on their habits and behaviors. Figure 2 shows the
topology of the network and all influencing factors.

Digestive 
system diseases

Hair length

Sportiness

Hygiene

Work location

Car available?

Shower

Toilet

Laundry

Car cleaning

Consumption
per person

Age

Gender

Figure 2. Bayesian network for determining the total water consumption.

In the model, the single consumptions for shower, toilet, laundry, and car washing are
represented and divided into six discrete areas for a first approximation. Sensitivities of
±7.5 % are considered to better assess transitions between discrete areas. The attributes
of a person are set as nodes in the graph. Each node contains a CPT, where the size of the
table depends on the number of parent nodes. The conditional probabilities themselves
were deposited on the basis of real statistical data from market and opinion research, as
well as from economic and official statistics for the year 2021 with reference to the Federal
Republic of Germany. The CPTs for the part consumptions used for the model are included
in the appendix in Tables A7–A10. These part consumptions are in turn dependent on the
user’s characteristics, which can be divided into coarse and fine filtering. Coarse filtering
includes the distribution according to age and gender. Age was divided into six discrete
ranges (Table 1), which are not equally distributed to take in account the greater mobility
and fluctuation of residents of a younger age.

Table 1. Probability of Age of the Residents.

Age 0–5 6–13 14–24 25–39 40–59 ≥60

Probability 0.06 0.07 0.11 0.19 0.28 0.29

For fine filtering, the focus is more on the influencing factors for water consumption
itself. These include digestive system diseases, hair length, sportiness, hygiene, place of
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work, and availability of a car, all broken down to their impact on single part consumption.
E.g., if a person works more in a home office it is likely that this increases water consumption
from toilet flushing but reduces consumption from laundry. In the same way, a high
sportiness is likely to increase the consumption from showers and laundry. The CPTs for
the fine filtering are attached in the appendix in Tables A1–A6. For adapting the model
to other locations, the CPTs need to be updated with the probability distributions of that
location by substituting the corresponding values.

In the first stage of implementation, binary values were assumed for the user charac-
teristics, so that the more probable value was assumed for the update of the BN. Based on
this, the conditional probabilities of the consumers are updated. The initial level of the BN
represents the statistically likely consumption for an individual. The inference of the BN
is performed using a junction tree algorithm, which takes the nodes as intersections and
divides the graph into small decision trees so that it can update the probabilities step by
step. Therefore, from the BN, which is modeled as a directed acyclic graph (DAG), first, an
undirected graph, named moral graph, is constructed, where the parent nodes of a common
child are connected [56,74]. Subsequently, more edges are added to divide the graph into
triangles of nodes. From these triangles, clusters are determined which consist of subsets
of nodes from the triangulated graph. In the last step, a junction tree is formed from the
clusters, which allows minimization of computational time [75]. Figure 3 shows first a BN
in the form of a DAG, second the undirected triangulated graph, and third the junction tree
derived from it.

(a) (b) (c)
Figure 3. Steps of a junction tree algorithm (adapted from [75]): (a) Bayesian network; (b) triangular
graph; (c) junction tree.

Based on the determined junction tree, the conditional probabilities can be calculated.
According to Huang and Darwiche [75], the junction tree is initialized with the probabil-
ities of the nodes and the observations are introduced so that this junction tree can be
regarded as inconsistent. Propagation using message passing, for example, can ensure
consistency within the junction tree. In the last step, the conditional probabilities have
to be marginalized and normalized so that the sum of the posterior variables is 1 again.
This form of algorithm works well for smaller BNs, as in this example, where few discrete
values are used. As soon as the BN becomes larger or even continuous, the inference
must be performed using sampling algorithms. Now that the BN has been modeled, the
user-induced water consumption can be determined by updating the probabilities for the
user property nodes. For example, if it is known that the person is female and between 14
and 24 years old, the probability of long hair increases from 29.87% to 70% and so does the
assumed water consumption for showering.

As an simplified alternative to the BN, a second calculation model uses a virtual tree
diagram, which is composed of the properties of a resident to show a statistically probable
water consumption. For this purpose, the calculated path probabilities of all possible
property combinations of a person are determined. The six combinations with the highest
probability are set as possible standard residents.
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3.2. System Dynamics Model and Premises

The basis of the KBE system for networked rainwater harvesting and distribution
systems is a model of the respective water grid. In this context, the representation of stocks
and flows emphasizes the resource-based modeling approach that considers sources and
sinks of the network as well as different characteristics for inflows and outflows. Figure 4
shows a single residential unit as a System Dynamics model, while Figure 5 presents the
System Dynamics model for a neighborhood consisting of 10 properties, each instantiating
the single residential unit model above. At this stage, it was not the aim to fully reproduce
the urban water cycle, e.g., as introduced in [11], but to visualize the grid and the premises
explained below.

Figure 4. System Dynamics Model for Isolated View of Residential Unit.

Rainwater, cleaning water, and tap water are assumed to be the main sources for water
collection considering a single residential unit, while toilet flushing, shower, laundry, car
cleaning, and garden irrigation are assumed to be the main consumers. Rainwater was
modeled on the historical data from the German Weather Service (DWD) on a day-based
resolution for the past 5 years (1.1), so that seasonal fluctuations could also be taken into
account. These data are publicly available and can later be automatically retrieved from the
KBE system after the designer enters the location of the RWH system to be designed. To
model the actual yield of rainwater, the roof yield coefficient (2) represents different roof
types and is stored as an efficiency table based on the values of EN 16941-1. Additionally,
the authors introduce a catchment yield coefficient (2.1) as different commercially available
rainwater collectors have their own efficiencies, which are also stored as tables based on
real provider data. As an option, a first-flush diverter (3) reduces the yield from each
rainfall event by 0.33 l

m2 , according to [66], so that no contaminants enter the storage tank.
The second source of water is a household internal water cycle that reuses water,

e.g., from cleaning vegetables, where no chemical detergents occur. Therefore, it is assumed
that the water is collected in a small tank in the kitchen and then manually transferred into
the storage tank. Cleaning water depends on the number of people and the probability
of cooking in the household itself (4.1) and how often the water is supplied to the tank,
e.g., twice a week (4.2).
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Figure 5. System Dynamics Model for a Neighborhood.

The tap water (5) represents the water from the mains water supply, e.g., provided
by the local distributor. Tap water is added when the consumption (5.1) exceeds the
collected water from the other sources. Its amount is a design parameter to be minimized
by the system. To be able to integrate further water sources into the system, a respective
placeholder is included. The water from all sources is first led into the water tank (7) before
it is transferred from there to the various sinks. Losses due to leakage and evaporation (7.1)
could be considered to model the efficiency of the RWH system but are neglected in this
stage of implementation as they are not considered as a design-determining variable. To
clean the water tank in regular cycles, the tank is allowed to overflow (8). The overflow is
considered as a design variable here, in the sense that the cistern should overflow at least a
given number of times per year by a given volume. This is included in the later calculation
of the mass balances.

As for user-induced consumers, the model integrates toilet (9), shower (10), laundry
(11), and car cleaning (12) with their daily water demand, based on either values from stan-
dards or provider data. The influencing factors (10.1, 11.1, and 12.1) map the characteristics
from the consumer model described above. The garden (13) is considered a context-specific
consumer, as it depends on the garden size and needs to be watered differently depending
on the outdoor temperature (13.1). The current implementation uses an average irrigation
demand of 2.5 L per square meter per day, which is integrated into the mass balances when
the temperature is above 15 ◦C. To be able to expand the system on the consumer side, it is
also possible to model additional consumers (14). For evaluating different scenarios for tank
size and for resource balancing procedures, an additional buffer tank (15) is implemented
in the model.

Another System Dynamics model represents the super system of a neighborhood
with ten residential units (Figure 5). The use of a central buffer to balance resources
between individual housing units plays a key role in this. Note that the central buffer does
not have its own catchment, such as sidewalk gutters, but is fed only by the connected
residential units. Each residential unit contains its own water tank, into which the entire
water collection of the residential unit enters as input and the total consumption of the
residential unit leaves the tank as output. Surplus water can be fed into the buffer tank
by the individual housing units and can also be retrieved when the buffer tank is filled
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(15.1). In addition, the piping network (15.2) has to be filled before the water reaches the
consumers so that the length and pipe dimensions are also stored.

4. Implementation

The system was implemented in MATLAB, version R2022a, as it offers many toolboxes,
a high number of numerical algorithms, and a simple visualization [60]. Figure 6 shows
the basic program flow chart.

Figure 6. Program sequence of the script.

After starting the program, the input window opens, where the user can select the
location (Figure 7a). The possible locations result from the location list of the measuring
stations of the German Weather Service (DWD). The script downloads the corresponding
local precipitation and temperature data and prepares them in the targeted resolution. In
addition, the approach for the consumption calculation is requested in this tab where the
designer selects between the BN and the simplified virtual tree diagram. Furthermore, the
designer chooses whether the multifamily house mode (MFHM) should be activated. If so,
the frame of reference changes from a neighborhood with ten properties to a multifamily
house with ten flats so that the demand of the residents can be calculated accordingly.
In the MFHM, only the roof area of house one is considered, and the interconnection
of several tanks is deactivated. Figure 7b shows the input window for the respective
houses/apartments, where the number of inhabitants, roof area, roof coefficient, size of the
garden, and the single consumers of rainwater are requested. The last option allows the
developer to compare different scenarios, e.g., when no car cleaning is allowed, and thus
investigate the sensitivity of such measures on the system’s behavior.

Afterwards, the yield is calculated using the building specifications, the precipitation
data, and first-flush diversion. The system also instantiates the household’s internal water
cycle. Depending on the number of people, it is therefore estimated that between 12 and
30 L of cleaning water is produced per week and returned to the storage tank. Based on
statistics for the monthly number of home-cooked meals, a weighted random generator
maps cooking behavior week by week for each household.
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(a) (b)
Figure 7. Input windows for location selection and entering house parameters: (a) location selection;
(b) house parameters.

In the next step, the demand for the units is calculated. The system populates the
residential units based on the chosen demand calculation method. The consumption per
day and person for toilet flushing (24 L), showering (35 L), laundry (15 L), and car cleaning
(400 L) are assumed as a starting point. These values are factorized by the generated user
portfolios so that the user-induced influence can be considered to a greater extent. To
create the BN in MATLAB, version R2022a, a library called Bayes Net Toolbox (BNT) was
used, which was developed by Kevin Murphy in 1997 and kept up to date until 2014 [60].
The graph of the BN is represented in BNT as a matrix, where the rows and columns
represent the nodes and the entries within the matrix represent the connection between
these nodes as arcs. Once each consumer’s individual factors are determined based on user
characteristics, they are added together to create a total water consumption per person.
This step is performed for all individuals in a household, which in turn leads to a total
water consumption for a residential unit. Once all water consumptions per person and
per unit have been determined, all occupant profiles and the resulting consumptions of all
houses are saved in a text file for documentation purposes.

The context-specific consumptions are then calculated according to the user-induced
factors. For the application example, the temperature distributions for the selected location
are analyzed to calculate the water consumption for garden irrigation at temperatures
above 15 ◦C. As an intermediate result, the water consumption per household is output in
a monthly resolution so that, on the one hand, tank sizes can be determined on this basis
and, on the other hand, resource balancing can be performed.

Considering the calculated yields and consumption, the monthly tank volumes are
calculated based on the mass balances for the residential units according to EN 16941-1,
the self-sufficiency period is also considered as a design variable and set to a default of
21 days following the standard. Finally, the median volume of the individual monthly
volumes is selected. Yields, consumption, and tank volumes are plotted per house and
displayed as bar graphs. The tank must overflow regularly to drain off contaminants on
the water surface, the so-called floating layer, such as leaves and pollen. It is assumed that
the tank should overflow three times a year and drain two percent of the nominal volume.
To accomplish this, the year is divided into three sections and the maximum fill level is
determined in each section. The difference between the current tank content and the target
volume (the 102%) is then covered with tap water. A monthly approach is taken for the final
assessment of tank size for a unit so that fluctuations and outliers can be compensated for.

Up to this point, the program has viewed each RWH system as an isolated individual.
For the networked view of the water grid, the program follows the model shown in Figure 5
with the central buffer tank. For resource balancing, a daily resolution is used to better
analyze when and how much water can be exchanged and how many days can be covered
with the buffer tank. A balanced matrix is created in which all relevant data are stored.
The consumptions are divided into A, B, and C categories. The classification is based on
the priority with which the individual consumptions are to be covered. A consumptions
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are toilet, shower, and laundry and should be covered with high priority. B consumptions
are for garden irrigation and are fed when there is still water left after feeding the A
consumptions. C-category water is used for car washing. It has the lowest demand priority
and is fed only when A and B consumptions are covered. In the case of water rationing, B
and C consumers can be blocked.

To be able to investigate and evaluate the aspect of resource balancing, two scenarios
are distinguished, one being the allocation of shared water evenly according to per-head
consumption and the other being allocation using prioritization. For the per-head allocation
scenario, the current amount of water in the buffer tank is allocated proportionally to the
total number of users. If a deficit remains in the user’s balance despite the allocated amount
of water, the tank must be refilled with tap water. If the household has more water than it
needs, the unused balance remains in the buffer tank.

The prioritization scenario considers both demand and the composition of the single
sources and sinks, so that a bonus or malus can be set. For example, for the bonus, small
differences are served first or the water that is supplied from external sources and cleaning
water is subtracted from the difference so that the delivery of additional water is rewarded
with a higher score. If the user uses most of their water for B and C consumption, they will
again receive less water as a malus. The daily score is stored in the balanced matrix. On
each day that households request water from the buffer tank, these requests are sorted by
their score and served in order until all requests are met or the buffer tank is empty.

5. Evaluation and Application Examples

The system was tested on a neighborhood consisting of 10 one-family houses located in
Hanover, Germany. Figure 8 shows the composition, numbering, and in the grey fields the
individual yield areas in square meters. Moreover, the indicated population was generated
by the consumer model following the BN approach, broken down by gender and age.
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Figure 8. Neighborhood with 10 one-family-houses populated according to gender and age.

According to EN 16941-1, the weather data for the last five years were taken as input
from the German Weather Service. Figure 9 shows the mean precipitation and temperature
data for these five years, as well as the daily precipitation and temperature for 2020, which
are the median of the data set (Table 2). Because the extreme precipitation events are cut off
in the mean, but these data are relevant to the resource balancing considered later, the 2020
data were used for the following simulations.
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Figure 9. Weather Scenario Hannover 2020 (data according to DWD).

5.1. Comparison of the Demand Calculation Approaches for an Individual RWH System

To evaluate the influence of the demand calculation approach, the neighborhood
referred to in Figure 8 was populated once using the BN approach and once by using
the virtual tree diagram. Figure 10 shows the monthly evaluation for a household with
four people, indicating the capacity of the tank, the amount of rainwater and cleaning
water collected as income, and the calculated demand. This constellation is consumption-
dominant, so that a self-sufficient supply of rainwater is not always given.

Figure 10. MATLAB evaluation of a four-person household in House 4.

Additionally, Table 2 shows the annual yield and calculated demands for House
4 for the years 2018 to 2022. Comparing the two demand calculation approaches, the
consumption in the chance calculation by using the virtual tree diagram is on average 15%̇
higher than in the BN approach.
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Table 2. Overview of the evaluation results of House 4.

2018 2019 2020 2021 2022 Average

Yield chance/BN [l/a] 31,625 42,382 35,658 46,953 32,910 37,906

Demand chance [l/a] 72,672 67,872 70,272 70,272 67,872 69,792
Demand BN [l/a] 63,156 58,356 60,756 60,756 58,356 60,276

Tank Volume [l] 1489 2052 1784 2461 1638 1885

The consumer model also allows designers to create demand projections over time. In
another scenario, the BN approach created an initial population of a two-person household
consisting of a male aged 24 and a female aged 22, neither of whom owns a car. The data
for the projection over 40 years can be taken from Table 3. In year 9, the first child is born
and two years later the second. In year 5, the first car is purchased, which remains in the
household until year 37. Since with two children one car is no longer sufficient, another car
is bought in year 12, which is sold after 18 years.

Table 3. Projection over 40 years of a household.

Year 1 5 10 15 20 25 30 35 40

Age Man 24 28 33 38 43 48 53 58 63
Age Woman 22 26 31 36 41 46 51 56 61

Age First Child (male) 1 6 11 16 21 26 31
Age Second Child (female) 4 9 14 19 24 29

First Car No Yes Yes Yes Yes Yes Yes Yes No
Second Car No No No Yes Yes Yes No No No

Figure 11 shows the water consumption for shower, toilet, laundry, and car washing
in this projection. It can be seen that peak water demand is more than twice that of the
initial setup.

Figure 11. Water Consumption of a Household over 40 years.

5.2. Initial Networked Water Grid in the One-Family-House Neighborhood

The neighborhood shown in Figure 8 is considered for this simulation with a net-
worked water grid. To enable the exchange of surplus water, a central buffer tank with
a capacity of 10,000 l was included in the simulation. At the beginning of the simulation



Sustainability 2023, 15, 8636 15 of 26

period, the buffer tank is completely filled. The self-sufficiency period was selected as
21 days in accordance with the above standard. The area of the garden to be irrigated was
assumed to be 30 m2 for all one-family houses. Irrigation is activated when a temperature
of 15◦ is reached for five days. Table 4 shows the simulation data of the one-family-house
neighborhood and the calculated replenishments from buffer and mains water supply, as
well as the calculated tank size for each property.

Table 4. Simulation data of the one-family-house neighborhood

Design Variables Autarky Period of 21 Days
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1 100 1 35,682 10,920 80.89 3516 210
2 100 2 36,489 22,080 80.36 3381 840
3 100 4 35,759 36,960 314.63 10,596 1680
4 95 4 34,369 60,061 2112 27,721 1784
5 40 4 14,936 71,611 15,268 41,234 796
6 100 4 36,669 48,750 989.68 16,485 1884
7 100 4 36,333 60,301 2413 25,095 1926
8 100 4 36,249 67,501 2907 31,948 1901
9 100 5 36,183 102,150 12,700 54,457 1842

10 100 6 36,183 93,931 10,983 48,458 1842

∑ 338,852 574,265 47,849 262,891 14,705

To assess the resource balancing, Figure 12 shows the balance sheet for the entire neigh-
borhood. In particular, it can be seen that Houses 1 and 2 generate a surplus throughout the
year, which is due to the small number of inhabitants, whereas Houses 5 and 10 consume
significantly more than they generate, either due to a small yield area or due to a high
number of inhabitants.

Figure 12. Balance sheet (sources and sinks) of the initial one-family-house neighborhood.

The daily resolved capacity of the central buffer tank is shown in Figure 13. The peak
that occurs above the 10,000 l mark is due to the high rain amount around day 40 (refer to
Figure 9). It indicates the overflow of the tank for cleaning purposes. The high water de-
mand of the neighborhood becomes visible, as the injected water is immediately consumed
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in the following rain-free days. For the long self-sufficiency period of 21 days, the size of
the buffer tank of 10,000 l is significantly large.

Figure 13. Buffer tank volume of one-family-house neighborhood (Autarky Period = 21 Days).

Figure 14 shows the daily resolved filling level of the tank of House 4. In addition, the
replenishment from the mains water supply (red) and the buffer tank (green) is plotted
over the entire year. It is noticeable that the major part of the replenishment is tap water.
The regularly occurring small declines in the replenishment curves, such as on day 98 and
on day 105, result from the weekly refeeding of cleaning water into the storage tank and
thus visualize the household internal water cycle mentioned in Section 3.2. It now could be
considered to reduce the size of the storage tank of House 4 as the mean filling level is way
below 50%.

Figure 14. Tank capacity of House 4 (Autarky Period = 21 Days).

5.3. Optimized Networked Water Grid in the One Family House Neighborhood

The system now basically offers three avenues for optimizing the RWH systems within
the grid. The first is to examine the exclusion of single sinks, like e.g., car cleaning. Since
this is not a true design variable but rather a calculation scenario, it is not considered
below. The second is to include additional yield areas such as carport or terrace roofings.
And the third is to adjust the self-sufficiency period to increase the exchange between the
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single properties and the buffer. To increase the yield in the given neighborhood, House 4,
House 5, and House 10 will receive additional water harvesting options such as terrace
roofing (15 m2) and a carport with two parking spaces (25 m2 each). Houses 8 and 9 also
expand the catchment area with a double carport. Figure 15 shows the updated balance
sheet. The mean value has improved compared to the initial configuration, although it is
still far in the negative range, so a further increase in the yield area would be advisable.

Figure 15. Balance sheet (sources and sinks) of the optimized one-family-house neighborhood.

The effect on the buffer tank is also visible (Figure 16). Now, there are more overflows
and the periods when the tank is completely empty are reduced. However, the inflow and
outflow continue to occur at less than regular intervals.

Figure 16. Buffer tank volume of the updated neighborhood (Autarky Period = 21 Days).

Figure 17 shows the filling level of the rainwater tank and the replenishment of House 4
with the increased yield area. The size of the rainwater tank increased about 65 %, so the
demand could be met independently for longer. As a result, the replenishment from the
buffer tank and the in particular the mains water supply can be almost halved compared to
the first scenario.
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Figure 17. Tank capacity of House 4 with increased yield are (Autarky Period = 21 Days).

In addition to increasing the yield area, shortening the self-sufficiency period is another
lever. Figures 18 and 19 show the related data. It is clearly visible that the exchange
between the rainwater tanks on the individual properties and the buffer tank has increased
significantly. Nonetheless, the buffer tank still is used only to a little degree during the
summer months.

Figure 18. Buffer tank volume of the updated neighborhood (Autarky Period = 7 Days).

Due to the generally smaller tank sizes, the replenishment both from the buffer tank
and from the mains water supply has increased. In the case of House 4, the tank is now
977 l , and has nearly halved compared to the 1784 l in the initial scenario and decreased by
only a third compared to the increased yield area with self-sufficiency period of 21 days.
Nonetheless, the mean filling level is still below 50%.
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Figure 19. Tank capacity of House 4 with increased yield (Autarky Period = 7 Days).

Table 5 summarizes the data for the simulated scenarios. It is noticeable that even
for the reduced self-sufficiency period the amount of water that needs to be taken from
mains water supply is reduced by 50,000 l compared to the initial configuration of the
neighborhood, but with tank capacities more than halved. There seems to be a proportional
correlation between the self-sufficiency period and house tank sizes.

Table 5. Quarter data of one-family-house neighborhood with increased yield area.

Design Variables Autarky Period of 21 Days Autarky Period of 7 days
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1 100 1 35,682 10,920 254.74 3343 210 1461 3823 70
2 100 2 36,489 22,080 83.25 3378 840 1518 6573 280
3 100 4 35,759 36,960 585.51 10,325 1680 2847 12,832 560
4 160 4 57,334 60,061 908.26 15,412 2932 3598 20,580 977
5 105 4 37,902 71,611 8884 28,443 1993 13,083 28,531 664
6 100 4 36,669 48,750 3058 14,417 1884 5216 17,025 628
7 100 4 36,333 60,301 6640 20,868 1926 9306 22,638 642
8 150 4 53,915 67,501 1985 21,538 2822 5757 24,707 941
9 150 5 53,849 102,150 1286 40,308 2764 18,668 40,805 921

10 165 6 59,148 93,931 8310 34,466 3,040 13,569 36,027 1013

∑ 443,080 574,265 31,995 192,498 20,091 75,023 213,541 6096

6. Discussion

The above examples show the applicability of the implemented KBE system for the
design of networked RWH systems. The consumer model allows conclusions to be drawn
about the total water consumption of a household based on the composition and behaviors
of its inhabitants. It thus allows the demand side of the mass balances to be simulated with
a consideration of uncertainties in the requirements and extends the possibilities from the
standards and most of the systems in the literature. A question that remains is the quality of
the data used for modeling the probabilities. For this work, statistical assumptions obtained
from available databases allowed the differentiation of different profiles according to age,
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gender, and individual habits. The installation of smart meters and recording their data on
the resource streams within the water cycle of a standardized sample neighborhood would,
of course, make the sizing more accurate. Additionally, the choice of the weather data set
also has a direct impact on the calculation and represents an uncertainty for the inflow
prediction. In the above scenario, the median data set of the last five years was chosen, but
calculations can also be performed and compared for the median, wettest, and driest years.
Complementing this with a fully functional rainfall generator, such as that mentioned in
Section 2.3, would then allow for assessing the robustness of the RWH systems, e.g., with
calculated mass balances ten, twenty, and forty years in the future.

The actual premises result in different avenues for model refinement. Regarding
the catchment, the implementation of a first-flush model, such as that proposed in [66],
instead of the fixed value, as well as a model for the gutter capacity, which limits the
catchment during heavy rain, such as that mentioned in [20], seems promising to raise
the precision of the inflow prediction. Regarding the consumers, a model for predicting
the garden irrigation to a more sophisticated level, that distinguishes different types of
beds and fields and integrates evaporation to calculate the irrigation water demand more
precisely, would be interesting, as well as in the sense of an integrated simulation of a smart
irrigation control. Additionally, a calculation of the evaporation rates of pools or ponds in
the garden and the thus required replenishment is conceivable. Finally, the efficiency of the
RWH system in terms of leakage and losses could be integrated. In the context of model
refinement, it would generally be interesting to determine the effects of data resolution. As
is known from the literature, especially for small storage tanks below the size of a cubic
meter, a resolution at a sub-hour level improves the calculation quality of the mass balances
significantly. In the above examples, several tanks pose this challenge.

In thinking about a completely decentralized water supply and the degree of self-
sufficiency for a quarter, it is also possible to consider a wider range of sources and sinks.
The goal must then be to further reduce or even replace the amount of tap water from the
mains water supply. In addition to the obvious options of further increasing yield, drilling
a well on the individual properties or connecting a well to the buffer tank, local wastewater
treatment facilities are particularly interesting from the point of view of sustainability
to increase water recycling. An alternative way to increase utilization here would be to
sequence the different consumers. For example, the initially collected rainwater can be used
for showering, and after the surfactants have been filtered out the water could still be used
for toilet flushing or garden irrigation. As for additional sinks with a focus on residential
districts, the necessary regular flushing of the sewage system could be integrated and
also linked to times when the buffer tank is well filled. However, new applications from
the construction sector might also be interesting, especially under the aspect of ecological
building, e.g., the idea of adiabatic building cooling. In this natural cooling principle,
rainwater is injected into the exhaust air of the building and cools it by evaporation. An
air-to-air heat exchanger thus cools down the building’s supply of air. As a result, the
energy required for building air conditioning can be reduced by up to 70%. Per cubic meter
of rainwater, 700 kWh of cooling capacity is possible [76].

A further step in the development of the presented KBE system beside model refine-
ment is the extension with configurable instrumentation data, including commercially
available tanks, the choice of available pumps in accordance to the water demands of the
individual consumers, and a calculation of necessary pipe diameters. In this way, the KBE
system would output a basic bill of materials with the main components of the water grid.
Coupling this to a 3D computer-aided design system and adding information about the
geometric configuration of the properties, their buildings, and down pipe positions, for
example, would then allow for building a design generator for water grids. The piping is
then part of the output geometric data and could further be used for hydraulic simulations
and for visualization of the resource streams in the grid itself. Adding relevant data about
maintenance intervals, wear parts, and consumables, such as filter inlays, for the single
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water grid components, would then allow the quality of service cost estimations to be
improved [77].

7. Conclusions

The authors successfully applied methods and tools from KBE to the design objects
of RWH systems with different system boundaries. Designers are able (1) to investigate
the effects of different catchment areas or alternatively calculate needed catchment areas
according to the occurring demands, (2) to adjust or minimize the storage tank sizes and
evaluate their effects on the individual harvest and the exchange with the central buffer,
(3) to evaluate the demands within a neighborhood either with respect to maximum peak
water demands or the temporal development over the yearly projection, and (4) to test
the sensitivities of the single sinks and sources to the water grid. For urban planners, this
offers the possibility, e.g., to make design obligations for housing construction or for the
refurbishment of settlements.

In this increment, the KBE system is intended as design support system in which the
necessary measures for optimization and the comparison of different system configurations
are still performed by a human designer. However, the optimization of the local water
network still requires experience. Some of the individual design variables influence each
other, while individual measures such as shortening the self-sufficiency period appear
counterintuitive at a first glance. To fully automate the design, the different viewpoints
that occur in the design need to be mapped into the system. Following the principle of
distributed artificial intelligence, a multi-agent system approach could be an interesting
option. It would additionally allow the discussion and negotiation of the individual agents
to be followed, in order to find the global optimum of the system configuration and to be
explainable and trustworthy. The multi-agent system approach could also be of interest for
the online management of existing water networks, e.g., integrating revenue models for
surplus water offered to other network participants.
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Appendix A

Table A1. Conditional Probability Table for the Irritable Bowel Node.

Age 0–5 6–13 14–24 25–39 40–59 ≥60

Yes 0.033 0.033 0.083 0.093 0.105 0.119

No 0.967 0.967 0.917 0.907 0.895 0.881

Table A2. Conditional Probability Table for the Hair Length Node.

Gender Female Male

Age 0–5 6–13 14–24 25–39 40–59 ≥60 0–5 6–13 14–24 25–39 40–59 ≥60

Short 0.5 0.3 0.3 0.4 0.7 0.75 0.9 0.7 0.7 0.7 0.85 0.9

Long 0.5 0.7 0.7 0.6 0.3 0.25 0.1 0.3 0.3 0.3 0.15 0.1

Table A3. Conditional Probability Table for the Sportiness Node.

Age 0–5 6–13 14–24 25–39 40–59 ≥60

Yes 0.2 0.75 0.6 0.3 0.3 0.25

No 0.8 0.25 0.4 0.7 0.7 0.75

Table A4. Conditional Probability Table for the Hygiene Node.

Gender Female Male

Age 0–5 6–13 14–24 25–39 40–59 ≥60 0–5 6–13 14–24 25–39 40–59 ≥60

Yes 0.75 0.75 0.75 0.75 0.8 0.7 0.6 0.6 0.6 0.65 0.65 0.6

No 0.25 0.25 0.25 0.25 0.2 0.3 0.4 0.4 0.4 0.35 0.35 0.4

Table A5. Conditional Probability Table for the Work Location Node.

Gender Female Male

Age 0–5 6–13 14–24 25–39 40–59 ≥60 0–5 6–13 14–24 25–39 40–59 ≥60

At
Home 0.8 0.5 0.3 0.75 0.5 0.7 0.8 0.5 0.3 0.45 0.45 0.75

Away 0.2 0.5 0.7 0.25 0.5 0.3 0.2 0.5 0.7 0.55 0.55 0.25

Table A6. Conditional Probability Table for the Car Node.

Age 0–5 6–13 14–24 25–39 40–59 ≥60

Yes 0.0 0.0 0.552 0.675 0.791 0.813
No 1.0 1.0 0.448 0.325 0.209 0.187
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Table A7. Conditional Probability Table for the Shower Node.

Work Location Home Away
Hygiene Yes No Yes No
Sportiness Yes No Yes No Yes No Yes No
Hair Length long short long short long short long short long short long short long short long short

0–19 0.5 1.0 0.5 1.0 1.0 1.0
20–39 0.16 1.0 1.0 1.0 0.5 0.5
40–59 1.0 1.0 0.84
60–79 0.16 1.0 1.0
80–99 0.84
>100 1.0

Table A8. Conditional Probability Table for the Toilet Node.

Irritable Bowel Yes No
Work Location Home Away Home Away
Hygiene Yes No Yes No Yes No Yes No

0–19 1.0 1.0 1.0
20–39 1.0 1.0
40–59 0.5 1.0
60–79 0.5
80–99 0.5
>100 0.5

Table A9. Conditional Probability Table for the Laundry Node.

Hygiene Yes No
Sportiness Yes No Yes No

0–19 1.0 1.0 1.0

20–39 1.0

Table A10. Conditional Probability Table for the Car Cleaning Node.

Car Available Yes No
Work Location Home Away Home Away
Gender Female Male Female Male Female Male Female Male

0–19 1.0 1.0 1.0 1.0 1.0 1.0
20–39 1.0
40–59 1.0
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