
Citation: Wu, B.; Wan, Y.; Xu, S.;

Zhao, C.; Liu, Y.; Zhang, K. A

Multi-Source Intelligent Fusion

Assessment Method for Dynamic

Construction Risk of Subway Deep

Foundation Pit: A Case Study.

Sustainability 2023, 15, 10162.

https://doi.org/10.3390/su151310162

Academic Editors: Jianjun Ma,

Mingfeng Lei, Yu Liang and

Yuexiang Lin

Received: 27 April 2023

Revised: 7 June 2023

Accepted: 14 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Multi-Source Intelligent Fusion Assessment Method for
Dynamic Construction Risk of Subway Deep Foundation Pit:
A Case Study
Bo Wu 1,2, Yajie Wan 1, Shixiang Xu 1,*, Chenxu Zhao 3, Yi Liu 4 and Ke Zhang 2

1 School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China;
wubo@gxu.edu.cn (B.W.); wanyajie1999@163.com (Y.W.)

2 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
2010302098@st.gxu.edu.cn

3 China Railway Beijing Engineering Group Co., Ltd., Beijing 100097, China; shengwuya2010@163.com
4 Jinan Rail Transit Group Co., Ltd., Jinan 250014, China; superhe2010@163.com
* Correspondence: 202260027@ecut.edu.cn

Abstract: The construction of a subway deep foundation pit is complex and risky, thus multiple safety
risk factors bring great challenges to evaluating the safety status accurately. Advanced monitoring
technology equipment could obtain a large number of monitoring data, and how integrating complex
and diversified monitoring data to assess the safety risk of foundation pits has become a new problem.
Therefore, an intelligent multi-source fusion assessment model is proposed. This model is mainly
used for solving risk probability distribution, deep learning, and intelligent prediction of monitoring
indicators, and then evaluating safety status by fusing various parameters of multiple indicators.
Thus, based on the data of deep learning and the measured multivariate data, the dynamic risk during
foundation pit construction can be obtained. Moreover, a typical case study was performed through
monitoring and carrying out the risk assessment which is located at the Martyrs’ Lingyuan Station
of Jinnan Metro Line R2, China. In this case, the PSO-SVM and LSTM models are used to predict
the deformation trend, and the monitoring data is reliable with high precision. After multi-index
fusion model calculation, the results show that the foundation pit structure is in a safe state, and the
evaluation situation is basically consistent with the site. Consequently, the prediction of the new
multi-source intelligent fusion risk assessment method is convincing.

Keywords: risk assessment; safety monitoring; subway deep foundation pit; multi-source fusion;
artificial intelligence

1. Introduction

The construction of subway deep foundation pit is characterized by complex operation
processes, strict geological conditions, many uncertain factors, and great construction
difficulty [1]. These typical characteristics are easy to cause large deformation and collapse
accidents, and even serious economic losses and casualties [2,3].

Therefore, it is significant to conduct the prediction of deformation and collapse,
perform the safety risk assessment, and take effective risk management measures to reduce
the incidence [4] of foundation pit collapse accidents.

Many scholars have carried out a lot of research in the field of deep foundation
pit projects [5]. Ye et al. [6] simulated the whole process of foundation excavation with
PALXIS 3D software and thus optimized the foundation structure to effectively suppress
deformation. Sun and Xiao [7] studied the deformation characteristics of the foundation pit
through field observation and centrifugal model tests. The above is the classical method to
study foundation excavation safety from the construction mechanics’ perspective. With
the development of artificial intelligence, machine learning has been developed rapidly,

Sustainability 2023, 15, 10162. https://doi.org/10.3390/su151310162 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151310162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su151310162
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151310162?type=check_update&version=1


Sustainability 2023, 15, 10162 2 of 16

such as the backpropagation neural network [8], regression analysis [9], and the Random
forests [10]. However, these methods are static modeling and have poor applicability to
highly nonlinear data. The pit monitoring data has nonlinear characteristics and good
adaptability, so an algorithm model that considers time effects is needed. The long short-
term memory neural network (LSTM) has unique advantages for nonlinear data and time
series. Zhang and Tian [11] used the LSTM model to predict the horizontal deformation
displacement of an underground wall, and the error was controlled within a certain range,
which confirmed the stability of the method. Such methods not only require a large
amount of data for training and validation but also are prone to overfitting in small sample
prediction. Song et al. [12] predicted the deformation of surrounding rock by particle
swarm optimization support vector machine (PSO-SVM) and verified that the model has
high prediction accuracy when the sample data is small.

However, a single monitoring index prediction makes it difficult to objectively judge
the risk status of the whole pit and verify the accuracy of the classical assessment method.
Scholars have proposed a multi-information fusion approach. Wang et al. [13] proposed a
multi-source information fusion model based on a T-S neural network to analyze the type
of pit prediction alerts. Zhang and Li [14] extracted structural features with the projection
tracking method, while dealing with the complexity and uncertainty of foundation pit
construction by the SPA methods. Guo and Zhang [15] proposed a hybrid method of BIM
and the D-S evidence theory to achieve risk assessment as well as visualization of the tunnel.
Zhou et al. [16] proposes a novel risk analysis method combining complex networks and
association rule mining, and the proposed method reduces the likelihood of risk occurrence
in anomaly monitoring portfolios. Pan et al. [17] proposes an information fusion model with
multiple classifiers, which employs support vector machines and Dempster-Shafer evidence
theory to assess the health risk of subway structures under uncertainty. It is demonstrated
that the fusion model has good robustness. Xia et al. [18] uses LSTM combined with
monitoring data and risk evaluation techniques to evaluate the overall safety status of the
foundation pit.

Among the above information fusion methods, the D-S evidence theory is a common
approach in the field of information fusion, which is especially advantageous in distin-
guishing uncertain or ambiguous decisions. However, the traditional D-S evidence theory
ignores the problem of conflicting evidence in the fusion process [19] and is not suitable for
dealing with highly conflicting information.

This study intends to take the deep foundation pit of the Martyrs’ Cemetery Station
of Jinan Metro Line R2 as a case study. In response to the deficiencies in the research of
foundation pit deformation prediction methods, the PSO-SVM model is introduced as a
regression algorithm to predict the horizontal deformation of the foundation pit enclosure
structure on a rolling basis. The PSO-SVM prediction results are also compared with
the LSTM results to better verify the accuracy of the PSO-SVM model. Then, starting
from the analysis of the safety risk factors of the deep foundation pit enclosure structure
of the subway, a multi-indicator intelligent fusion dynamic assessment model of deep
foundation pit construction safety is constructed. The model is based on the predicted trend
of foundation pit deformation obtained from the PSO-SVM model with coupled analysis of
risk factors, and then improved D-S theory fusion. Finally, the dynamic evaluation results
of the safety risk of the foundation pit case are obtained. The results can provide a feasible
theoretical and methodological basis for foundation pit construction safety and engineering
disaster prevention and mitigation.

2. Multi-Indicator Fusion Dynamic Assessment Method

The multi-indicator fusion dynamic assessment method introduces the PSO-SVM and
the LSTM models to predict the horizontal displacement of the pile. According to the error
size comparison, a more suitable algorithm model is selected. According to the prediction
results, the CM is used to obtain the risk probability distribution, and the D-S evidence
theory is fused to get the risk level finally. If it is in a safe state, a rolling forecast is made
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for the next change period to update the construction state of the pit. Figure 1 shows the
flow chart of the assessment method.
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2.1. Prediction of the Horizontal Displacement of the Pile

Artificial neural networks [20] are the most widely used prediction methods, but they
suffer from phenomena such as overfitting [21] when there is less training data. Therefore,
PSO-SVM and LSTM models are used to predict the horizontal displacement of piles in
this paper.

2.1.1. Theory of the LSTM Model

An LSTM model is a special kind of recurrent neural network designed to solve the
long-term dependence problem of general recurrent neural networks. This model can not
only handle time series data but also implement error correction by backpropagation and
gradient descent algorithms. The core of the LSTM model is to design cell states and various
gates. The gates are used to add or remove information to the cell state, continuously
transmitting the relevant information through a sequence chain for prediction [22]. Its
transmission is divided into two processes: (1) forward propagation of the input signal and
(2) backward propagation of the error signal. The detailed process is as follows. The basic
unit structure of LSTM is shown in Figure 2. The basic unit includes the forgetting gate,
the input gate, and the output gate.⊕ indicates the increased information, ⊗ indicates the
reduced information.
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The input gate it filters from input xt [23] while acquiring new knowledge and creating
alternative values for updating the state c̃t.

it = σ(Wi · [ht−1, xt] + bi) (1)

c̃t = tanh(Wc · [ht−1, xt] + bc) (2)

The forgetting gate ft is responsible for retaining the unit’s state at the previous
moment and discarding non-essential information.

ft = σ(W f · [ht−1, xt] + b f ) (3)

The old cell state ct−1 changes the new cell state ct by removing unnecessary information.

ct = ftct−1 + it c̃t (4)

The output gate ot filters the update status ct and calculates the final output based on
the latest status ct.

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ottanh(ct) (6)

where, Wc, W f , Wo represent the weights; bi, bc, b f , bo represent the corresponding deviation
vector; σ and tanh are the S-shaped function and Hyperbolic tangent function.

This study is based on Python language with PyTorch framework to build LSTM
containing three layers of network: Layer 1 is the input layer, containing 11 input units and
32 output units; Layer 2 has 32 input units and three output units; Layer 3 contains three
input units and one output unit. Among them, the 11 input units of the first layer represent
the monitoring data using the past 11; that is, the time step is 11. The other units are cell
units in the hidden layer.

2.1.2. Theory of the PSO-SVM Model

The support vector machine (SVM) is a machine learning method based on Vapnik-
Chervonenkis theory and the principle of structural risk minimization. This method
implements the transformation from an optimization problem to a quadratic programming
problem. The estimation function in the prediction process can be expressed as:

y(x) =
N

∑
n=1

wnk(x, xn) + w0 (7)

where wn is the weight of the model, k(x, xn) is a kernel function, and w0 is the initial weight.
An SVM model has two critical parameters, c, and g. The c is the penalty coefficient or

penalty factor, which shows the tolerance of the model to errors. The g indirectly affects the
data. Compared with the traditional method, the PSO algorithm has better global search
ability which cannot easily fall into local optimum. Therefore, the PSO algorithm is used to
optimize the SVM model to determine the optimal hyperparameters c and g. As shown in
Figure 3, the computational procedure of the PSO-SVM model is as follows.

Step (1) Train SVM models.
Step (2) Initialize the population and randomly generate Np individuals [24].
Step (3) Calculate each SVM model value’s fitness value with the PSO algorithm’s

fitness function.
Step (4) Update the speed and position of the individuals.
Step (5) Reach the set number and terminate the calculation.
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2.1.3. Rolling Prediction Algorithm

The rolling prediction method is used to predict the foundation pit displacement in
this paper.

Suppose S is the data set, the number of training samples p and the number of test
samples q. The detailed analysis is as follows. The schematic diagram is shown in Figure 4.

(1) For the first round of prediction, the time series S =
{

S1, . . . , Sp
}

is used as the
training sample to predict the surrounding rock displacement S =

{
Sp+1, . . . , Sp+q

}
for the next q days.

(2) For the second round of prediction, the time series S =
{

Sq+1, . . . , Sp+q
}

is used as the
training sample to predict the surrounding rock displacement S =

{
Sp+q+1, . . . , Sp+2q

}
for the next q days.

(3) For the second round of prediction, the time series S =
{

S(n−1)q+1, . . . , Sp+(n−1)q

}
is

used as the training sample to predict the surrounding rock displacement
S =

{
Sp+(n−1)q+1, . . . , Sp+nq

}
for the next q days.
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2.2. Basic Probability Distribution of the CM

The normal CM is a new uncertainty cognitive model proposed by academician
Li et al. [25]. The model not only has a weakly constrained generalized normal cloud
distribution but also can avoid the defects of fuzzy sets. The normal cloud model can
determine (Ex, En, En) by numerical characteristics. Ex is the expectation of cloud droplets
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and is a typical sample of a qualitative concept. En is the entropy of Ex, which represents
the uncertainty measurement of a qualitative concept. He is the hyper-entropy.

Supposing there is a set X if A is a qualitative concept related to X, (1) x ∈ X, (2) x is a
random instance of concept A, (3) x satisfies x ∼ N(Ex, En′2) En′ ∼ N(En, He2), x is the
grade of a certain degree of belonging to concept A satisfies the formula:

µ(x) = e
− (x−Ex)2

2(En′)2 (8)

Deformation risk factors of the foundation pit Ai enclosure structure are analyzed in
the decision-making process. Each risk factor should be further classified into different risk
states Aij(i = 1, 2, . . . , M; j = 1, 2, . . . , N) to explore helpful information. Each risk state
can correspond to a specific double limit interval, written as [bij(L), bij(R)]. The conversion
from the double limit interval [bij(L), bij(R)] to the standard cloud model (Exij, Enij, Enij)
can be achieved by Equation (9).

The values of Ex, En and He are shown below.
Exij =

bij(L)+bij(R)
2

Enij =
bij(R)−bij(L)

6 , (i = 1, 2, . . . , M; j = 1, 2, . . . , N)

Heij = h

(9)

The range of the constant “h” is taken as 0.01 [26].
In the framework of CM, the correlation measures the affiliation between the observa-

tions of the factor Bi and the CM for a particular risk state Bij. Equation (10) yields the basic
probability distribution (BPA) of the influencing factors under various risk situations.

mi(Bj) = exp(− (xi−Exij)
2

2(Enij
′)2 )

mi(Φ) = 1−
N
∑

j=1
mi(Aj)

, (i = 1, 2, . . . , M; j = 1, 2, . . . , N) (10)

where mi(Bj) is the belief measure; En′ represents a random number that satisfies
En′ ∼ N(En, He2), and mi(Φ) represent the BPAs value in uncertain situations; that is, the
focus element cannot be determined under the indicator Bi.

2.3. Improved D-S Evidence Theory Information Fusion

In this paper, the D-S evidence theory is used to combine the information of each mon-
itoring index to obtain the risk level of the enclosure structure. Dempster’s combinational
rule for multiple evidence is calculated with Equation (11).

m(B) =


1

1−k ∑
Bi∩Bj∩···∩Bk=B

m1(Bi)m2(Bj) . . . ml(Bk), ∀B ⊆ Θ, B 6= ∅

0, B = ∅
K = ∑

Bi∩Bj∩···∩Bk=∅
m1(Bi)m2(Bj) . . . ml(Bk) < 1

(11)

where the conflict factor K is defined as the normalization factor, I is the number of evidence
in the combination process, and i, j, k denotes the ith, the jth, and the kth, respectively.

When the value of K is close to 1, a considerable conflict will arise, and the evidence
aggregation rule of D-S will be invalid. For high-conflict evidence processing, the weighted
average rule and the D-S rule are combined to use a threshold ζ to indicate high-conflict
evidence. When K is greater than ζ, there is a high conflict of evidence, and the weighted
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average rule will replace the D-S evidence theory, as shown in Equation (12). Based on the
reference [27], the threshold ζwas set at 0.91 in this research.

d =
j=l
∑

j=1

√
K=L
∑

K=1
(mi(Bk)−mj(Bk))

2

wi =
di

i=l
∑

i=1
di

mi
∗(Bk) = wi•mi(Bk)

mi(Θ) = 1−
L
∑

k=1
mi
∗(Bk)

(12)

where l and L are the numbers of evidence, and the number of hypotheses, respectively,
and k is the kth hypothesis.

3. A Case Study
3.1. Project Profile

The Martyrs’ Lingyuan Station of Jinnan Metro Line R2 is a two-story underground
island station with a reinforced concrete box-type structure. The station platform width is
14 m, and the effective platform length is 120 m. The standard section of the station has a
net width of 21.3 m, while the expanded section has a net width of about 24.0~30.6 m. The
total outsourced length of the main structure of the station is 331.55 m. The roof cover of the
station is about 4.0~6.0 m. The burial depths of the footings of the different sections of the
station are as follows: standard section, 18.92~19.64 m; small mileage shield shaft section,
20.6 m; large mileage shield shaft section, 19.94 m; interchange nodes, 25.47 m. The station’s
geomorphological unit is a mountain plain with relatively flat terrain. The steel supports
are arranged continuously along the longitudinal direction of the pit using double-split
I-beams. The geology within the construction area of the station is mainly miscellaneous
fill, loess, pulverized clay, gravel, and residual soil. The structure and geological section of
the station are shown in Figure 5.
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Figure 5. Structural and geological profile of the station.

3.2. Prediction of the Horizontal Displacement of the Pile

The layout of the field monitoring data is shown in Figure 6. The monitoring data of
the deep horizontal displacement of pile ZQT045 at 5 m from the measured inclination
point of axis 30~34 of the foundation pit is selected as the training sample. To verify the
applicability of the PSO algorithm, the grid search-support vector machine (GS-SVM) is
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added to this study for its prediction. According to the principle of the rolling forecast
method in Section 2.1.3, assuming p = 11, q = 3, the predicted values of the horizontal
displacement of the pile are obtained, as shown in Table 1. The predicted values of GS-SVM,
PSO-SVM, and LSTM algorithms and the error comparison are shown in Figures 7 and 8.
According to Equation (13), the mean absolute error can be obtained to compare the model
accuracy. The GS-SVM model utilizes a grid search approach to find the optimal search
range [2−8, 28]. The optimal values of c = 111.4305 and g = 3.3532 are determined, as shown
in Figure 9. The PSO-SVM model parameter settings: acceleration c1 = 1.5, c2 = 1.7; velocity
v = 3; factor k = 0.6; population size n = 20. After continuously updating the positions of
the particle swarm x, the optimal values of the SVM parameters c = 66.4605 and g = 2.8642
are obtained, and the optimal adaptation curve is shown in Figure 10. The LSTM algorithm
optimizes the parameters through the Adam optimizer to determine the initial learning rate
lr = 0.01, and the training effect is best after 200 epochs. In epoch: 126 loss: 0.00884; epoch:
151 loss: 0.001; epoch: 176, loss: 0.0006; epoch: 199 loss: 0.005 loss function loss reaches
the minimum, stop training. From Table 1, the average errors of GS-SVM, PSO-SVM, and
LSTM algorithms are 2.37%, 1.68%, and 2.04%, respectively. The maximum relative errors
of the GS-SVM algorithm, PSO-SVM algorithm, and LSTM algorithm are 4.8%, 4.82%, and
4.48%, respectively.

MAE =
1
n∑

∣∣∣( x1

x2
− 1) ∗ 100

∣∣∣ (13)

where, x1—predicted value, x2—true value, and n is the number of samples.
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Table 1. Prediction results of the horizontal displacement of the pile.

Monitoring
Time/Day

Measured
Value/mm GS-SVM Relative

Error % PSO-SVM Relative
Error % LSTM Relative

Error %

12 43.286 43.648 0.836 43.737 1.041 43.945 1.523
13 43.246 43.750 1.165 44.495 2.889 45.186 4.487
14 43.336 44.250 2.109 44.670 3.078 45.880 5.871
15 43.416 44.130 1.645 43.261 0.358 43.350 0.152
16 43.636 44.260 1.430 43.168 1.074 44.136 1.146
17 43.946 44.429 1.099 43.062 2.011 42.857 2.478
18 43.216 44.485 2.936 43.898 1.579 43.912 1.611
19 43.726 44.551 1.887 43.569 0.358 43.356 0.847
20 44.886 44.395 1.094 43.095 3.990 43.022 4.153
21 45.976 44.627 2.934 43.892 4.534 46.676 1.522
22 46.166 44.730 3.111 43.946 4.808 48.393 4.823
23 45.466 44.500 2.125 43.994 3.237 48.259 6.142
24 44.766 45.850 2.421 44.684 0.184 46.714 4.352
25 44.696 45.010 0.703 44.177 1.161 45.267 1.278
26 44.586 44.610 0.054 44.013 1.285 45.339 1.688
27 44.296 45.243 2.138 44.480 0.415 44.510 0.482
28 44.246 45.601 3.062 44.391 0.327 44.411 0.372
29 43.896 44.702 1.836 44.406 1.162 44.402 1.154
30 44.496 44.769 0.614 44.772 0.621 43.738 1.704
31 45.086 44.473 1.360 43.802 2.849 43.726 3.017
32 45.496 44.210 2.827 44.962 1.174 43.842 3.635
33 45.746 44.129 3.535 45.725 0.047 45.700 0.101
34 45.636 44.140 3.278 45.695 0.129 46.629 2.176
35 46.566 44.238 4.999 45.568 2.144 45.476 2.341

mean absolute error 2.05 1.686 2.377
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3.3. Combining Displacement Prediction with Multi-Metric Fusion Dynamic Risk Assessment
3.3.1. Monitoring Indicators

The project location of the monitoring program at Jinan Metro Line R2 Martyrs’
Cemetery Station is shown in Figure 6, including the deep horizontal displacement of
the piles, surface settlement, column settlement, etc. These monitoring indicators can
directly reflect the safety status of the foundation pit enclosure [28,29]. Therefore, the
three monitoring indexes of pile horizontal displacement, surface settlement, and column
settlement are used to analyze the safety state of the foundation pit retaining structure in
this paper. According to the norms [30–32], the daily accumulated deformation and the
rate of change in the monitoring data are selected as the judgment indicators, as shown in
Table 2. Referring to the control value of the foundation pit supporting structure and the
early warning management system in the open excavation method monitoring scheme of
Martyrs’ Lingyuan Station of Jinnan Railway Line R2, the determination index is divided
into four levels, as shown in Table 3.

Table 2. Safety Classification Standards.

The Risk Level of
Envelope Deformation Security Status I Tracking Status II Alarm Status III Hazardous Status IV

Cumulative
variation/control value < 0.6 0.6 ≤ x < 0.8 0.8 ≤ x < 1.0 > 1.0

Change rate/control value < 0.6 0.6 ≤ x < 0.8 0.8 ≤ x < 1.0 > 1.0

Table 3. Safety Classification of Monitoring Indicators.

Monitoring Projects Monitoring Indicators Security Status I Tracking Status II Alarm Status III Hazardous Status IV

Horizontal displacement
of the pile body

Cumulative value (mm) < 18 18 ≤ x < 24 24 ≤ x < 30 > 30
Speed (mm/d) < 1.0 1.8 ≤ x < 2.4 2.4 ≤ x < 3 > 3.0

Surface Settlement
Cumulative value (mm) < 10 10 ≤ x < 20 20 ≤ x < 30 > 30

Speed (mm/d) < 1.2 1.2 ≤ x < 1.6 1.6 ≤ x < 2.0 > 2.0

Column Settlement
Cumulative value (mm) < 12 12 ≤ x < 16 16 ≤ x < 20 > 20

Speed (mm/d) < 1.8 1.8 ≤ x < 2.4 2.4 ≤ x < 3.0 > 3.0

3.3.2. Risk Probability Distribution Level

The double limit interval state of the risk index is determined according to the safety
level standard in Table 3 and then converted into a standard cloud model according to
Equation (9) to obtain the parameter value (Ex, En, En), as shown in Table 4. In the
conversion process from the middle layer to the cloud model, the beginning of specific
factors and the end of the cloud model should be specially processed. Taking the cumulative
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value of the deep horizontal displacement of the pile as an example, if its cumulative value
is lower, the index risk level is lower.

Table 4. CM Parameter Values of Risk Monitoring Indicators.

Indicators
I II III IV

Ex En He Ex En He Ex En He Ex En He

Hhorizontal
displacement of the pile Cumulative value 9 3 0.01 21 1 0.01 27 1 0.01 35 1 0.01

Deformation rate 0.5 0.2 0.01 2.1 0.1 0.01 2.7 0.1 0.01 3.5 0.1 0.01
Surface Settlement Cumulative value 5 3 0.01 15 1 0.01 25 1 0.01 35 1 0.01

Deformation rate 0.6 0.2 0.01 1.4 0.1 0.01 1.8 0.1 0.01 2.5 0.1 0.01
Column Settlement Cumulative value 6 2 0.01 14 0.7 0.01 18 0.7 0.01 22 0.7 0.01

Deformation rate 0.9 0.3 0.01 2.1 0.1 0.01 2.7 0.1 0.01 3.5 0.1 0.01

When the cumulative value is lower than 9 mm (or higher than 35 mm), the pile-deep
horizontal displacement cumulative value affiliation in the CM is defined as 1, as shown in
Figure 11 [27].
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3.3.3. Multi-Indicator Fusion Analysis

(1) Indicator Forecast

The 30~34 axis of the foundation pit is the layout project of the Martyrs Cemetery
Station of Jinan Metro Line R2 in Figure 4. The cumulative deformation of different
monitoring indicators is projected, including surface settlement displacement (DBC121),
deep horizontal displacement of piles (ZQT044), and column settlement (LZC14). The
projected cumulative horizontal deformation of ZQT044 at depths of 12 m, 12.5 m, and
13 m is depicted in Figure 12a–c. According to actual daily monitoring data, ZQT044 is
safe from 21 August to 9 September. The rolling prediction was performed, and it was
discovered that the cumulative deformation predicted by ZQT044 over the next three days
at a depth of 13 m is nearing the control value. The cumulative deformation forecast for
surface settlement DBC121 and column settlement LZC14 is not anomalous, as illustrated
in Figures 13 and 14.
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(2) CM + D-S Evidence Theory

The predicted displacement values and deformation rates of each risk monitoring in-
dex obtained on September 9 are taken as normal clouds and substituted into Equation (10)
to calculate the BPA values, as shown in Table 5. The conflict factor K is calculated according
to Equation (11) for the cumulative value of each index and the deformation rate BPA value:
K1 = 0.99; K2 = 0.342; K3 = 0.03. The K1 tends to 1, highly conflicting, and the weighted
fusion using Equation (12) yields d = [0.3; 0.3] and w = [0.5; 0.5]; K2, K3 < δ, can be fused by
Dempster rule to obtain probability values for individual monitoring indicators. It can be
seen from Table 6 that the evaluation results of a single information source are different.
The K = 1 is greater than ε, highly conflicting, and d1 = 0.2. d2 = 0.1; d3 = 0.1; w1 = 0.2;
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w2 = 0.4; w3 = 0.4; the probability of deformation risk level of the final envelope structure
is obtained. The state of the foundation pit is determined by the safety criterion table, as
shown in Table 7.

Table 5. Multi-indicator Fusion Results.

Indicators Monitoring Values The Risk Level of Envelope Deformation

m (I) m (II) m (III) m (IV)

Horizontal displacement
of the pile Cumulative value/mm 26.49 0 0 0.998 0

Deformation rate/mm·d−1 −0.45 0 0.9027 0.009 0.092
Surface Settlement Cumulative value/mm 7.74 0.658 0.34 0 0

Deformation rate/mm·d−1 0.08 1 0 0 0
Column Settlement Cumulative value/mm 11.50 0.9756 0.023 0.002 0

Deformation rate /mm·d−1 −0.24 0.992 0.008 0 0

Table 6. Improved D-S fusion.

Basic Probability Assignment m (I) m (II) m (III) m (IV)

Horizontal displacement of the pile m (A) 0 0.45 0.51 0.05
Surface Settlement m (B) 1 0 0 0
Column Settlement m (c) 0.99 0.01 0 0

d = [0.2; 0.1; 0.2]; w = [0.2; 0.4; 0.4];
Improved D-S 0.8 0.1 0.1 0.01

Table 7. Safety criteria table.

Foundation Pit Grade I II III IV

State of foundation pit Security Tracking Alarm Hazardous

3.4. Discussion
3.4.1. Forecasting Results

According to the inclinometer point ZQT044, the deformation is increasing due to the
excavation stage. The average relative errors of the horizontal displacement of the pile are
9.65%, 10.55%, and 10.19%, respectively. The predicted results of the surface settlement and
column settlement displacement are consistent with the measured values. The prediction
results of the algorithm are no more than 15%, and the error is small. Obviously, in the case
of less monitoring sample data, the PSO-SVM model has a good prediction effect.

3.4.2. Evaluation Analysis

As shown in Table 6, the deep horizontal displacement of the pile is in grade III
(Alarm). The surface subsidence displacement is in grade I (Security). The settlement
displacement of the column is in grade I (Security). The improved D-S theory is used to
integrate all types of information, including conflict information, and the foundation pit
enclosure structure is shown as level I (Security).

According to the construction log record on September 9, the site personnel set the
risk level status of the enclosure structure as Class I safety status, there was no abnormality
at the site, and the workers continued to erect the steel support. As shown in Figure 15.
This assessment result status is consistent with the multi-indicator fusion result. The
accumulated value of horizontal displacement of the pile body is close to the control
value alone, which is prone to bias and cannot objectively and accurately determine the
comprehensive risk level of the enclosure structure.
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A single monitoring indicator does not reflect the status of the process. A multi-
indicator monitoring approach allows for the integrated consideration of changes in
multiple key indicators, as well as representational information (including conflicting
information) for all monitored indicators. This provides a comprehensive understanding of
the construction and reduces the cost and saves the decision-making time of the decision-
makers on-site. Meanwhile, when three single information sources are evaluated differently,
the improved D-S theory fully considers the credibility of the model when merging highly
conflicting information sources. By correcting the weights and weakening the conflicting
information, the calculated results are more representative of the actual situation.

4. Results

The factors affecting the safety of deep foundation pit construction are multiple and
complex. Therefore, a new multi-information fusion intelligent safety assessment method
is proposed to evaluate the safety of foundation pit construction. A typical case study is
conducted for the application and validation of the new method.

(1) Artificial intelligence algorithms are introduced into the case to predict envelope
deformation. The cloud model and D-S theory are used to fuse multiple indicators.
The intelligent multi-indicator fusion assessment model for the dynamic safety of deep
foundation pit construction is constructed by coupling and analyzing the deformation
prediction results with the risk index information.

(2) The PSO-SVM model outperforms the LSTM model in the case of less on-site construc-
tion monitoring data. The comparison with the actual results validates the prediction
method. This dynamic assessment of safety integrates information on the character-
istics of the monitored items and provides a more in-depth analysis of the risk of
envelope deformation, thus improving the accuracy and robustness of the assessment
results. This method is also applicable to other metro station cases when monitoring
sample data are small.

(3) During the excavation of foundation pits, the risk changes dynamically, which is diffi-
cult for a single indicator to reflect the deformation of the site envelope. Therefore, it
is significant to build the multi-indicator information model to improve accuracy. This
method uses different monitoring indicators as the information source to obtain the
risk level prediction. This method of dynamically assessing the extent of deformation
can provide early warning signals for decision-makers.

(4) Due to the complexity and uncertainty of the deep foundation pit project, the artificial
intelligence model used at present is more applied to the prediction of trend terms and
has not been able to consider the situation of unexpected events and contingencies. It
also fails to realize the intelligent integration of the dynamic assessment of the whole
process of construction, which needs more practice in optimization and improvement.
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