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Abstract: Smart management of construction and demolition (C&D) waste is imperative, and re-
searchers have implemented machine learning for estimating waste generation. In Korea, the manage-
ment of demolition waste (DW) is important due to old buildings, and it is necessary to predict the
amount of DW to manage it. Thus, this study employed decision tree (DT)-based ensemble models
(i.e., random forest—RF, extremely randomized trees—ET, gradient boosting machine—GBM), and
extreme gradient boost—XGboost) based on data characteristics (i.e., small datasets with categorical
inputs) to predict the demolition waste generation rate (DWGR) of buildings in urban redevelopment
areas. As a result of the study, the RF and GBM algorithms showed better prediction performance
than the ET and XGboost algorithms. Especially, RF (6 features, 450 estimators; mean, 1169.94 kg·m−2)
and GBM (4 features, 300 estimators; mean, 1166.25 kg·m−2) yielded the top predictive performances.
In addition, feature importance affecting DWGR was found to have a significant impact on the order
of gross floor area (GFA) > location > roof material > wall material. The straightforward collection
of features used here can facilitate benchmarking as a decision-making tool in demolition waste
management plans for industry stakeholders and policy makers. Therefore, in the future, it is required
to improve the predictive performance of the model by updating additional data and building a
reliable dataset.

Keywords: machine learning; random forest; extreme gradient boost; construction and demolition;
waste generation

1. Introduction

Waste management-related issues are rising due to rapid urban growth [1]. Increas-
ing populations are translating into growing housing demands, rapid town growth, and
ultimately greater waste generation [2]. The construction industry was estimated to ac-
count for 35% of the total waste generation [3] and the considerable amounts of solid
waste and greenhouse gases emitted from construction and demolition (C&D), as well
as refurbishment, are posing a serious challenge to global environments [4]. C&D waste
generation has tended to increase steadily [5–7], with 70–90% of this total attributed to
demolition waste [8,9]. Accordingly, appropriate C&D waste management is essential
for urban sustainability, with the specific need for achieving maximum economic and
environmental values during building demolition [10]. To this end, accurate data regarding
waste generation amounts are required to estimate the scale of waste generation, economic
values, costs, and environmental impacts [11]. Moreover, C&D waste generation data can
be used to provide essential information on waste management to the relevant industry
stakeholders (e.g., clients, architects, engineers, contractors, planners, etc.; [12]).
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Smart management of C&D waste is an essential component of modern information
and communication technology. Accordingly, numerous researchers have implemented
artificial intelligence (AI) technology for predicting C&D waste generation. In particular,
early research on waste generation using machine learning (ML) has primarily focused on
the development of a single algorithm predictive model. For example, Jalali and Nouri [13],
Milojkovic and Litovski [14], Noori et al. [15], and Patel and Meka [16] developed a
municipal solid waste (MSW) generation predictive model by applying artificial neural
networks (ANNs). Noori et al. [17] and Dai et al. [18] developed a C&D waste generation
predictive model using support vector machine (SVM) algorithms; whereas other analyses
have employed linear regression (LR) to predict MSW [19–22].

The selection of proper ML algorithms suitable for the data characteristics, the appli-
cation of data preprocessing and verification methods, as well as the selection of proper
hyper-parameters, are essential for developing an optimal ML predictive model [23–26].
Recently, studies have employed various other algorithms and adjusted hyper-parameters
to derive an optimal ML model (Table 1). Song et al. [10] developed a hybrid predictive
model by combining the gray model (GM) and support vector machine (SVR) to predict
C&D waste generation across 31 cities in China. The annual total area of construction
(ATAC) from 2015 to 2018 was used as input variables, and the average value of the relative
percent error of the GM-SVR model was <0.1 (i.e., good performance). Johnson et al. [27]
developed a predictive model for MSW (refuse, paper, and metal, glass, plastic—MGP)
generation in New York City using weekly MSW data from 2003 to 2015 and 28 features.
Here, a gradient boosting machine (GBM) algorithm was used, the best predictive perfor-
mance was achieved when all features were utilized. The coefficients of determination (R2)
for the model of refuse, paper, and MGP according to the GBM algorithm were 0.889–0.906,
0.744–0.791, and 0.685–0.694, respectively. Kontokosta et al. [23] constructed 41,412 time-
series datasets from 609 New York City Department of Sanitation subsections from 2013
to 2016 and developed a predictive model for total waste, refuse, and MGP by applying
31 features in a GBM algorithm. In addition, hyper-parameters (number of trees, 200; tree
depth, 6; learning rate, 0.1) were adjusted before applying the algorithm, and the R2 of
the GBM models were 0.87, 0.87, 0.73, and 0.78, respectively. Kumar et al. [28] predicted
plastic generation rates by collecting data from 120 households, where ANN, random
forest (RF), and SVM algorithms were employed, along with four features (education,
occupation, income, and house type). As for the predictive performance of the model, the
ANN (R2 = 0.75) and SVM (R2 = 0.74) outperformed RF (R2 = 0.66). Kannangara et al. [29]
developed a waste generation predictive model for MSW (1553 samples) and paper datasets
(1867 samples) using eight socio-economic features, and ANN–DT algorithms were used,
producing R2 values of 0.54, 0.72, 0.31, and 0.35 for MSW-DT, MSW-ANN, paper-DT, and
paper-ANN, respectively, concluding that the low predictive performance of DT was due
to the characteristics of a single model. Alternatively, Lu et al. [30] applied multiple linear
regression (MLR), GM, ANN, and DT analyses to predict construction waste generation
based on five features—population, GDP per capita, total construction output, floor space
of newly started buildings, and floor space of completed buildings completed—across
43 datasets. R2 of the test models were 0.977, 0.918, 0.777, and 0.764 for GM, ANN, MLR,
and DT, respectively. Akanbi et al. [24] developed models for building-level recycle, reuse,
and landfill waste generation using deep neural network (DNN) algorithms. A dataset
constructed from demolition records of 2280 buildings and five features—gross floor area
(GFA), building volume, number of floors, building archetype, and usage type—were
used for developing the model, producing R2 values of 0.9475, 0.9789, and 0.9944 for recy-
cle, reuse, and landfill DNN, respectively, corresponding to high prediction performance.
Ghanbari et al. [31] developed a municipal solid waste generation (MSWG) predictive
model based on timeseries data of MSWG, and four features (income, population, GDP,
and month) of Tehran, Iran from 1991 to 2013. Here, ANN, RF, multivariate adaptive
regression splines (MARS), and MARS-crow search algorithm (CSA) were applied, and
the predictive performance of the MARS-CSA model (R2 = 0.90) was superior to that of
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MARS (R2 = 0.88), ANN (R2 = 0.74), and RF (R2 = 0.77). Nguyen et al. [25] developed a
predictive model for MSW generation in residential areas of Vietnam, where the dataset
(189 MSW samples) collected from 2015 to 2017 across nine features—urban population,
total retail sales of consumer goods, average per capita monthly income, average per capita
size of the home, population density, average per capita monthly consumption expenditure,
total hospital beds, total residential land per province, and total solid waste collected per
day) were used. The K-nearest neighbor (KNN), RF, and DNN algorithms were applied
through hyper-parameters adjustment, and the resulting R2 were 0.96, 0.97, and 0.91, re-
spectively. Jayaraman et al. [26] developed an MSW predictive model using SARIMA
(season ARIMA) and XGboost (extreme gradient boosting) algorithms, in conjunction with
a timeseries dataset of MSW (1129 rows and 40 columns) from 2006 to 2018, revealing that
XGboost (R2 = 0.4145) was superior to SARIMA (R2 = −0.8885). Moreover, the prediction
performance of XGboost was improved by adjusting the tree number and max-depth.
Namoun et al. [32] developed a predictive model for daily household waste generation
using SVR, XGBoost, LightGBM, RF, extremely randomized trees (ETs), and ANN based on
weekly waste generation data from 2011 to 2021, producing R2 values of 0.692, 0.67, 0.745,
0.714, 0.7368, and 0.685, respectively.

Table 1. ML models applied to predict waste generation in previous studies.

Studies Waste Type Applied Algorithm Performance

Song et al. [10] C&D waste GM-SVR the average value of
relative percent error < 0.1

Johnson et al. [27] MSW GBM R2 value: 0.685–0.906
Kontokosta et al. [23] MSW GBM R2 value: 0.73–0.87

Kumar et al. [28] MSW ANN R2 value: 0.75
RF R2 value: 0.66

SVM R2 value: 0.74
Kannangara et al. [29] MSW ANN R2 value: 0.72

DT R2 value: 0.54
Paper ANN R2 value: 0.31

DT R2 value: 0.35
Lu et al. [30] C&D waste GM R2 value: 0.977

ANN R2 value: 0.918
MLR R2 value: 0.777
DT R2 value: 0.764

Akanbi et al. [24] C&D waste DNN R2 value: 0.948–0.994

Ghanbari et al. [31] MSW
Multivariate adaptive

regression splines
(MARS)

R2 value: 0.90

ANN R2 value: 0.74
RF R2 value: 0.88

Nguyen et al. [25] MSW KNN R2 value: 0.96
RF R2 value: 0.97

DNN R2 value: 0.91
Jayaraman et al. [26] MSW ARIMA R2 value: −0.89

XGboost R2 value: 0.41

Namoun et al. [32] Household
waste SVR R2 value: 0.692

XGboost R2 value: 0.67
LightGBM R2 value: 0.745

RF R2 value: 0.714
ET R2 value: 0.737

ANN R2 value: 0.685
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Data characteristics (e.g., types of independent and dependent variables, data size,
etc.) used in the above studies for C&D and MSW generation prediction were diverse;
whereas a single ML algorithm was mainly used in early studies, while these algorithms
appear to be expanding recently, likely due to the improvement of ML algorithms, data
processing (e.g., outlier and noise removal, data preprocessing, etc.), and verification
methods (e.g., k-fold or leave one out cross-validation) must be varied according to data
characteristics (e.g., types of independent and dependent variables, such as categorical or
numerical variables) and environment (e.g., the size of data). In addition, recent studies
have developed an optimized ML predictive model through the adjustment of proper
hyper-parameters.

The purpose of the present study was to select proper ML algorithms for a relatively
small dataset primarily composed of categorical variables and develop an ML model
for predicting demolition waste generation (DWG) in the end-of-life stage of building to
serve as decision-making support for proper waste management and plan establishment.
Specifically, the detailed purposes were to: (i) apply proper ML algorithms for model design,
(ii) evaluate the performance of various submodels, and (iii) derive an optimal demolition
waste generation rate (DWGR) predictive model in consideration of the data characteristics.

Subsequent to this introductory Section 1, the remainder of the paper is organized
as follows: Section 2 presents the methods and materials, together with a description of
the data used; Section 3 describes the results of the study; Section 4 discusses several key
points related to the findings; and, in Section 5, the main findings, applications, limitations,
and future research of this study were discussed.

2. Methods and Materials
2.1. Data Source Description

The demolition waste (DW) generation (kg·m−2) records surveyed from 782 build-
ings in three redevelopment areas (Project A and B in Daegu, and Project C in Busan,
Republic of Korea), within two cities were used in the present study. Table 2 presents the
building status and statistical analysis of the collected data according to location and build-
ing characteristics. The dataset included information on six building features—location,
structure, usage, gross floor area (GFA), as well as wall and roof materials—in addition
to the corresponding building DWG rates. These building features correspond to the
main factors affecting DWGR, and in this study, the six building features were used to
estimate DWGR. Accordingly, the correlation between DWGR and six building features
was expressed by Equation (1); whereas DWGR was defined by Equation (2):

DWGR = f (some or all of six features), (1)

DWGR =
∑ A of buildingi
GFA of buildingi

, (2)

where DWGR is in kg·m−2, A is the amount of a building (quantity in kg) and GFA is
in m−2.

Table 2. Building status and statistical analysis of raw data used in this study.

Category Numbers
GFA (m2) DWGR (kg·m−2)

Total Min Mean Max Total Min Mean Max

Location
1 343 31,542 21 92 275 450,310 298 1313 6034
2 356 40,653 19 114 1127 485,037 83 1362 8574
3 83 13,851 26 167 414 101,531 736 1223 1808
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Table 2. Cont.

Category Numbers
GFA (m2) DWGR (kg·m−2)

Total Min Mean Max Total Min Mean Max

Usage
1 595 54,929 19 92 514 767,578 83 1290 8574
2 172 28,706 22 167 1127 251,381 418 1462 5718
3 15 2410 28 161 790 19,510 607 1301 2474

Structure
1 87 20,783 47 239 1127 169,538 418 1949 6034
2 604 56,975 19 94 688 788,042 83 1305 8574
3 91 8288 24 91 206 80,889 298 889 2237

Wall
material

1 9 3693 48 410 1127 10,357 871 1151 4696
2 236 32,584 23 138 790 391,259 252 1658 6034
3 500 47,089 19 94 688 596,799 83 1194 8574
4 37 2679 24 72 137 40,056 517 1083 2591

Roof
material

1 289 43,565 21 151 1127 479,356 252 1659 6034
2 33 4414 76 134 282 38,877 252 1178 1808
3 178 12,439 23 70 206 227,923 306 1280 8574
4 282 25,627 19 91 688 292,314 83 1037 2527

Location: 1—Project A, 2—Project B, 3—Project C. Structure: 1—Reinforced concrete (RC), 2—Masonry, 3—Wood.
Usage: 1—Residential, 2—Residential and commercial, 3—Commercial. Wall material: 1—Concrete, 2—Brick,
3—Block, 4—Mud plastered and mortar wall. Roof material: 1—Slab, 2—Slab and roofing tile, 3—Slate,
4—Roofing tile.

2.2. Data Preprocessing and Dataset Size

To improve the predictive performance of the ML model, it is necessary to create a
stable dataset. In this study, data preprocessing including outlier removal and standardiza-
tion was performed to reduce data distortion and outliers’ impacts. Outliers were removed
from the raw data, according to Equation (3), and the number of samples in the dataset after
outlier removal was 690. The size of the dataset before and after data preprocessing and
the change in DWGR descriptive statistics are shown in Table 3. Accordingly, ensemble pre-
dictive models were developed, and the data were standardized according to Equation (4)
to create a dataset with the same scale:

Q1 − 1.5 × IQR < selecting data < Q3 + 1.5 × IQR, (3)

where IQR is interquartile range, equal to Q3 minus Q1; and Q1 and Q3 are the 25th and
75th percentile, respectively.

xstandardization =
x − x

σ
, (4)

where x is the element of data, x is the average data value, and σ is the standard deviation
of the data.

Table 3. Changes in DWGR (kg·m−2) data statistics before and after data preprocessing.

Data Prepro-
cessing

Number of
Samples Minimum Maximum Average Median Standard

Deviation Variance

Before 782 83.34 8573.79 1327.97 1162.25 809.2 654,032.4
After 690 298.30 3024.04 1165.04 1138.30 407.7 166,016.7

2.3. Applied Machine Learning Algorithms

The input variables used in this study consisted of categorical variables across five
features—location, usage, structure, as well as wall and roof materials—and one numerical
variable, GFA. Accordingly, the non-parametric DT algorithm selected can handle both
categorical and numerical variables [29,32,33]; however, Kannangara et al. [29] found a
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single model of DT resulted in poor predictive performance, possibly due to overfitting
of big and complex models [34]. To address this limitation, the present study considered
DT-based ensemble algorithms and adopted two different ensemble techniques: bagging
and boosting. Ensemble learning has been shown to outperform individual base models in
various studies [35–37], due to its capacity to reduce the risk of selecting a poor classifier
through individual classifier votes [38]. In a bagging approach, multiple bootstraps are
created from a given training dataset, and an independent weak learner can be generated
for each bootstrap. Accordingly, bagging can improve the stability and accuracy of ML
algorithms [39]. Alternatively, boosting is an iterative and dependent-based learner that
creates a strong classifier from weak classifiers by weighting. In the following subsections,
the applied ensemble methods (i.e., RF, Extreme tree, GBM, and XGBoost) are described
in detail.

2.3.1. Random Forest

RF proposed by Breiman [39] is a representative bagging-based ensemble method that
generates bootstrap sampling. RF builds numerous subsets (bootstrap sampling) from
training data and trains the same algorithm multiple times. The final predictive result is
considered the average of all submodel predictions. With increasing tree numbers, RF can
avoid overfitting and is less affected by outliers. In addition, it has superior predictive
power compared to other ML algorithms, even when classes are imbalanced [39].

2.3.2. Extremely Randomized Trees

ETs is a recent bagging-based algorithm, where, unlike RF, ET uses whole origin data
as is to create weak classifiers without bootstrapping, allowing it to maintain lower bias
compared to RF models [40,41]. Moreover, instead of choosing the most discriminative split
in each node, ET picks the best among K randomly generated splits, as random selections
are advantageous for reducing variance and simultaneously, shortening the computational
time [40,41].

2.3.3. Gradient Boosting Machine

GBM is a boosting method, where its iterative approach generates weak learners
sequentially [42]. The GBM model has similar characteristics to the bagging approach, in
that it is composed of weak learners; whereas the primary difference between GBM and
RF is that the former’s model bias can be reduced by iteratively correcting errors made
in the former tree, and building new trees [42,43]. Alternatively, the RF model reduces
variance by averaging weak learners. The GBM model has been shown superior to RF in
terms of overfitting and computational costs [43]; however, as a sequential learning method,
boosting has the disadvantage of slow processing speeds due to difficult parallel processing.

2.3.4. Extreme Gradient Boosting

XGboost is a boosting-based ensemble tree algorithm generating boosted trees, and
operating in parallel so that it can more efficiently account for regression and classification
compared to GBM [44–48]. XGboost is well known for ‘regularized boosting’ technology;
whereas the implementation of standard gradient boosting has no such regularization
step [47]. Accordingly, such characteristics of XGboost can improve GBM model accu-
racy [47], and prevent overfitting [43].

2.4. Feature Selection and Hyper-Parameter Tuning

Several hyper-parameters must be carefully considered in the DT-based ensemble
model [49,50], including the number of estimators (n_estimators) required to obtain the
optimal performance (which is dependent upon the dataset’s properties; [51]), and the
number of features (n_features) when finding the best split [50]. Therefore, in the present
study, n_estimators and n_features were adjusted before applying each ensemble (i.e., RF,
ET, GBM, and XGboost) algorithm. Further, to select the optimal number of estimators for
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the submodels, bagging and boosting ensemble models (50 each) with 100, 150, 200, . . . 500
component submodels were established. Further, the submodels for n_features included
some or all of the six dataset variables. Each submodel contained 3 (3 features), 4, 5, and
6 variables. Recursive feature selection (RFE) was used for selecting submodel variables
with 3, 4, and 5 features; thus, in this study, 36 predictive submodels were created by one
ensemble algorithm with different numbers of estimators and features. For performance
evaluation, the optimal n_estimators and n_features were selected based on R2. Further-
more, this study tested various hyper-parameters to develop an optimal ensemble model
(Table 4).

Table 4. Hyper-parameters applied in ensemble model development for DWGR prediction.

Algorithm Hyper-Parameter Definition Tested Value

RF

n_estimators The number of trees in the forest 100, 150, 200, 250, 300, 350, 400,
450, 500

min_samples_split The minimum number of samples required to
split an internal node 1, 2, 3, 4, 5

min_samples_leaf The minimum number of samples required to be
at a leaf node 1, 2, 3, 4, 5

max_depth The maximum depth of the tree Maximum possible

ET

n_estimators The minimum number of samples required to
split an internal node

100, 150, 200, 250, 300, 350, 400,
450, 500

min_samples_split The minimum number of samples required to be
at a leaf node 1, 2, 3, 4, 5

min_samples_leaf 1, 2, 3, 4, 5
max_depth The maximum depth of the tree None

max_leaf_nodes None

GBM

n_estimators The number of boosting stages 100, 150, 200, 250, 300, 350, 400,
450, 500

min_samples_split The minimum number of samples required to
split an internal node 1, 2, 3, 4, 5

loss Least squares Least squares
learning rate Amount of learning 0.01, 0.1, 1
subsample Rate of sampling data to control overfitting 1.0

XGboost

n_estimators The minimum number of samples required to
split an internal node

100, 150, 200, 250, 300, 350, 400,
450, 500

eta 0.3 step size shrinkage used in update to
prevent overfitting 0.3

max_depth The maximum depth of the tree 10
min_child_weight 1

max_delta_step 0
subsample 1

2.5. Model Validation and Evaluation

Leave one out cross-validation (LOOCV) was adopted as the model validation method.
LOOCV is a special case of k-fold cross-validation, with the number of observations k = n.
LOOCV is feasible when the sample size is small [52,53]; thus, it has been adopted in
numerous studies to evaluate algorithm performance when the number of instances is
small [7,54]. LOOCV uses all samples as testing and training data to ensure sufficient
subset sizes and has the advantage of obtaining more stable results than that of the k-fold
CV method for small datasets when compared to the validation set approach (e.g., 10-fold
or k-fold; [55–58]). Accordingly, LOOCV was employed as a model validation method in
consideration to the size of the dataset here (N = 690 samples).

Root mean square error (RMSE, Equation (5)), R2 (Equation (6)), and the coefficient
relationship (R, Equation (7)) were used to evaluate the performance accuracy of the
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ensemble predictive models, with high R2 and R values, and lower RMSE values indicating
improved performance:

RMSE =

√
∑n

i=1
(yi − xi)

2

n
, (5)

R2 = 1 − ∑n
=1(yi − xi)

2

∑n
=1(yi − xi)

2 , (6)

R =
∑n

i=1(xi − xi)
2(yi − yi)

2

∑n
i=1

√
(xi − xi)

2∑n
i=1

√
(yi − yi)

2
, (7)

where xi is the observed value of the generated DW, yi is the predicted quantity of the
generated DW, xi is the average observed quantity of generated DW, yi is the average
predicted quantity of generated DW, and n is the number of samples.

To build a good model, we need to find a good balance between bias and variance
such that it minimizes the total error and the best bias and variance balance was evalu-
ated through prediction model error [59]. Accordingly, the prediction error of the model
along with RMSE, R2, and R as performance evaluation indicators were considered here
to find the final ensemble model with the best predictive performance, as defined in
Equation (8); [59,60]:

Error value
[(

f (x)− f̂ (x)
)2
]
=
(

Bias
[

f̂ (x)
])2

+ Var
[

f̂ (x)
]
+ Var(ε) (8)

where var(ε) is the irreducible error, which is the variance of the noise term in the true
underlying function ( f (x)), which cannot be reduced by any model [60].

3. Results
3.1. Optimal Number of Estimators and Features

The R2 values corresponding to the number of features and estimators of RT, ET,
GBM, and XGboost algorithms are shown in Figure 1a–d. The 6-feature model exhibited
better predictive performance than the 5-, 4-, or 3-feature models, with the best predictive
performance achieved when the number of estimators was 450. Further, the 5-, 4-, and
3-feature models exhibited the best predictive performance at 350, 350, and 300, respectively.
For the ET model, the 6-feature model performed best when the number of estimators
was 400, while the 5-, 4-, and 3-feature models had the best predictive performance at
the number 350, 250, and 250 predictors, respectively. The GBM model achieved the best
predictive performance for the 4-feature, 400 estimator model, while the 6-, 5- and 3-feature
models showed the best results when the number of estimators was 400, 400, and 300,
respectively. Lastly, the XGboost model achieved the best results with the 6-feature 400-
estimator models, while the 5-, 4-, and 3-features models performed best when the number
of estimators was 300, 300, and 150, respectively. According to the above results, the RT, ET,
and XGboost models produced the best predictive performance using the 6-feature (i.e.,
all feature) model; however, the optimal number of estimators generated a different result
for each model. Further, the GBM model achieved the best predictive performance in the
4-feature model, and unlike the RT, ET, and XGboost models, it exhibited similar predictive
performances as the RF model, even with a small number of features.
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3.2. Feature Importance

Six features—location, structure, usage, GFA, wall material, and roof material—were
utilized to estimate DWGR, and a difference in the contribution of features affecting the
performance of RF, ET, GBM, and XGboost predictive models was recorded. Figure 2a–d
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shows the feature importance analysis results of the models exhibiting the best predictive
performance using the optimal estimator number for each RF, ET, GBM, and XGboost
algorithm (6, 450; 6, 400; 4, 300; and 6, 400, respectively). For RF, the most influential feature
on DWGR was GFA (0.432), while the feature importance of location, roof material, wall
material, structure, and usage was 0.205, 0.186, 0.070, 0.074, and 0.033, respectively. For ET,
GFA importance (0.436) was highest, while that of location, roof material, wall material,
structure, and usage tended to be similar to that of RF. For the GBM model, the 4 feature
(GFA, location, roof, and wall material) had the greatest impact on DWGR, and the feature
importance of GFA was the highest at 0.443. Alternatively, the XGboost predictive model
exhibited a different trend of feature importance from RF, ET, and GBM (Figure 2d). In
the XGBoost predictive model, the most important feature on DWGR was roof material
(0.382), followed by wall material, structure, location, usage, and GFA (0.190, 0.173, 0.147,
0.069, and 0.040, respectively). This finding notably contrasts others, with regards to GFA’s
impact on DWGR in the three predictive models (i.e., RF, ET, and GBM). Accordingly, it was
revealed that if even a specific feature plays an important role in numerous ML algorithms,
its effect is in other models. Therefore, the application of suitable ML algorithms for data
characteristics, and the development of proper features for various ML algorithms, are
essential for developing ML models with optimal predictive performance.
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3.3. Performance Evaluation and Optimal Ensemble Model

Figure 3 displays the correlation results according to the feature combinations of the
four ensemble models for DWGR, and Table 5 shows the performance indicator results
of the model having the optimal number of estimators. The RF model achieved the best
predictive performance at the 6-feature level (RMSE, 253.727; R2, 0.6171; R, 0.7855), while
the 3-feature predictive model produced the lowest prediction performance (RMSE, 261.836;
R2, 0.6006; R, 0.7750). Similarly, in the ET and XGboost models, the best and worst predictive
performances were achieved in the 6- and 3-feature predictive models, respectively. In
contrast, the 4-feature predictive model (RMSE, 253.085; R2, 0.6142; R 0.7837) produced
the best GBM model; whereas the 5-, 4-, and 3-feature predictive models produced similar
results. Interestingly, the predictive performance of the 6-feature model was the lowest
(RMSE, 265.834; R2, 0.5806; R, 0.7620). Further, the accuracy of the RF 6-feature model
was best among the 16 ensemble models in terms of R2 and R values; however, the RMSE
results showed that the GBM 4-feature predictive model with an RMSE value of 253.085
was slightly better than the RF 6-feature model (RMSE 253.727). In addition, the GBM
4-feature predictive model (R2, 0.6142; R, 0.7837), presented prediction performances close
to the RF 6-feature model. Similarly to the above, the RF and GBM models were determined
to exhibit better predictive performances than either ET and XGboost algorithms based on
the RMSE, R2, and R performance evaluation results.
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Table 5. Comparison of model performance by RMSE, R2, and R.

Model n_Feature n_Estimator RMSE R Square R

RF

6 450 253.727 0.6171 0.7855
5 350 261.772 0.6002 0.7747
4 350 260.989 0.6026 0.7763
3 300 261.836 0.6006 0.7750

ET

6 400 269.396 0.5936 0.7704
5 350 277.334 0.5726 0.7567
4 250 278.221 0.5709 0.7556
3 250 277.690 0.5720 0.7563

GBM

6 400 265.834 0.5806 0.7620
5 400 254.362 0.6103 0.7812
4 300 253.085 0.6142 0.7837
3 300 254.020 0.6114 0.7819

XGboost

6 400 281.262 0.5565 0.7460
5 300 287.480 0.5539 0.7442
4 300 287.790 0.5537 0.7441
3 150 288.590 0.5516 0.7427
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Model prediction error was also investigated to obtain the best variance–bias balance,
together with the accuracy performance evaluation ensemble models (Figure 4). Since
the prediction error of the GBM (4, 300) predictive model was the lowest (64,052), it was
considered the best in terms of variance–bias tradeoff. The prediction errors of RF (6,
450), GBM (3, 300), and GBM (5, 400) models were 64,377, 64,526, and 64,700, respectively,
notably similar to GBM (4, 300). Conversely, the prediction error was >72,574 and >79,122
for the ET and XGboost models. Accordingly, the GBM (4, 300), RF (6, 450), GBM (3,
300), and GBM (5, 400) predictive models were deemed the most appropriate model for
achieving optimal variance–bias balance based on the prediction error.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

5 300 287.480 0.5539 0.7442 
4 300 287.790 0.5537 0.7441 
3 150 288.590 0.5516 0.7427 

Model prediction error was also investigated to obtain the best variance–bias balance, 
together with the accuracy performance evaluation ensemble models (Figure 4). Since the 
prediction error of the GBM (4, 300) predictive model was the lowest (64,052), it was con-
sidered the best in terms of variance–bias tradeoff. The prediction errors of RF (6, 450), 
GBM (3, 300), and GBM (5, 400) models were 64,377, 64,526, and 64,700, respectively, no-
tably similar to GBM (4, 300). Conversely, the prediction error was >72,574 and >79,122 for 
the ET and XGboost models. Accordingly, the GBM (4, 300), RF (6, 450), GBM (3, 300), and 
GBM (5, 400) predictive models were deemed the most appropriate model for achieving 
optimal variance–bias balance based on the prediction error. 

Combining the performance evaluation results of the ensemble models above, the RF 
(6, 450) predictive model was deemed the best model in terms of R2 and R values; whereas 
the GBM (4, 300) predictive model was best in terms of RMSE and prediction error. Ac-
cordingly, the RF (6, 450) and GBM (4, 300) predictive models were considered the most 
optimal for predicting DWGR (kg·m−2) based on the variable data of the five categorical 
and one numerical features. The observed and predicted values by the RF (6, 450) and 
GBM (4, 300) models are shown in Figure 5, where the mean observed value was 1171.2 
kg·m−2, and the means of the RF (6, 450) and GBM (4, 300) models were 1169.94 and 1166.25 
kg·m−2, respectively. The observed and predicted values by the GBM (3, 300), GBM (5, 400), 
ET (6, 400), and XGboost (6, 400) models are shown in Figures A1–A4. 

 
Figure 4. Comparison of model prediction error values by variance–bias tradeoff. Figure 4. Comparison of model prediction error values by variance–bias tradeoff.

Combining the performance evaluation results of the ensemble models above, the
RF (6, 450) predictive model was deemed the best model in terms of R2 and R values;
whereas the GBM (4, 300) predictive model was best in terms of RMSE and prediction
error. Accordingly, the RF (6, 450) and GBM (4, 300) predictive models were considered
the most optimal for predicting DWGR (kg·m−2) based on the variable data of the five
categorical and one numerical features. The observed and predicted values by the RF (6,
450) and GBM (4, 300) models are shown in Figure 5, where the mean observed value was
1171.2 kg·m−2, and the means of the RF (6, 450) and GBM (4, 300) models were 1169.94
and 1166.25 kg·m−2, respectively. The observed and predicted values by the GBM (3, 300),
GBM (5, 400), ET (6, 400), and XGboost (6, 400) models are shown in Figures A1–A4.
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4. Discussion

Building characteristics (e.g., GFA, usage, structure, location, etc.) were determined as
the major key factors affecting DWGR [61]. Poon et al. [62] and Lu et al. [9] presented the
correlation between GFA and DWGR, while Banias [63] that between usage and DWGR.
Andersen et al. [64], Bergsdal et al. [65], and Bohne et al. [66] studied the effects of regional
factors on DWGR; whereas the results of the present study indicated the highest feature
importance of GFA and location for the developed RF, ET, and GBM models, in notable
agreement with the existing research results (Figure 2a–d). Notably, the feature importance
of wall and roof materials was higher than that of structure and usage in the present
study; however, the wall and roof materials were not considered as major factors affecting
DWGR in the previous studies. Further, the wall and roof materials exhibited higher feature
importance than the GFA, usage, location, and structure in the XGboost model; accordingly,
the feature importance of input variables in this model was quite different from that of
the RT, ET, and GBM models, and there was a significant difference in the factors affecting
DWGR from those presented in previous studies.

Section 2.3 presents a review of the existing research literature, and indicates that ET
is an improved bagging method compared to RF in terms of bias and variance; whereas
XGboost is a superior boosting method than GBM for accuracy improvement and overfitting
prevention. The results of the predictive models employing the RF, ET, GBM, and XGboost
ensemble algorithms in this study (Figures 3 and 4; Table 5), however, were varied. The
predictive performance of RF and GBM models in the present study was better than that of
ET and XGboost models in terms of accuracy and prediction error. The existing research
has employed DT-based ensemble algorithms [32], together with LightGBM, ET, RF, and
Xgboost for time series datasets to estimate daily household waste generation. Specifically,
Namoun et al. [32] found that LightGBM and ET algorithms exhibited better predictive
performances than RF and XGboost. According to the results of a study applying a DT-
based ensemble, except for C&D waste generation, Byeon [67] developed a predictive
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model to identify hypokinetic dysarthria by employing a DT classification and regression
tree (CART), RF, GBM, and XGboost algorithms. The authors found that GBM (accuracy
83.1%) and RF (accuracy 83.8%) models achieved better predictive performances than
the XGboost (accuracy 81.1%) and DT (accuracy 70.3%) models, where 16 input features
(14 numerical, 2 categorical) were used. Ahmad et al. [68] used DT, ET, SVR, and RF to
estimate useful solar thermal energy with 9 input features (8 numerical, 1 categorical),
producing predictive performances (R2) of 0.957, 0.954, 0.930, and 0.903 for RF, ET, DT, and
SVR, respectively, indicating the strength of the RF and ET models. Papadopoulos et al. [41]
applied the GBM, RT, and ET algorithms using 8 numerical input features to estimate
energy (cooling and heating) load, and revealed that the GBM model exhibited the best
predictive performance in terms of mean square error (MSE) scores. In the case of heating
load prediction, ET and RF produced similar results; whereas for the cooling load, ET was
superior to RF.

Accordingly, previous studies using DT-based ensembles demonstrated various results
regardless of the type of algorithms due to the difference in the characteristics of data used
in each study (e.g., input feature types or sample size). Further, this may also be related
to the considerable variation of the models’ predictive performances depending on the
selection and adjustment of hyper-parameters before the algorithm applications in each
study. Thus, the proper selection of algorithms and hyper-parameters in consideration of
data characteristics are important issues during the development of ML models, and the
process of deriving the optimal ML model in consideration of these issues becomes a key
factor associated with predictive performance results. Considering these facts, this study
developed an optimal ML model for predicting DWGR. To this end, a new set of input
variables was developed, including the input variables used for DWGR prediction in previ-
ous studies [64–66]. In addition, this study applied DT-based algorithms considering the
characteristics of the dataset and developed submodels applying various hyper-parameters.
Based on this, a prediction model was developed with hyper-parameters for the final
optimal performance model for DWGR prediction.

5. Conclusions

In this study, DT-based ensemble algorithms (i.e., RT, ET, GBM, and XGboost) were
applied in consideration of data characteristics (relatively small-sized dataset consisting
of categorical variables) to estimate DWGR (kg·m−2) in the end-of-life stage of a building.
To develop a model, submodels were created according to the input features (GFA, loca-
tion, usage, structure, wall materials, and roof materials), and the number of estimators.
Subsequently, the optimal DT-based ensemble models were derived using performance
indicators, such as R2, R, RMSE, and prediction error. The findings of this study are
summarized as follows.

(1) RF and GBM exhibited superior predictive performances compared to ET and XGboost
for the relatively small, categorical data environment.

(2) The most suitable models were RF (6 features, 450 trees) and GBM (4 features,
300 trees), where the predictive performance of the former was: R2, 0.6171; R, 0.7855;
RMSE, 253.727; prediction error, 64,377; and latter was R2, 0.6142; R, 0.7837; RMSE,
253.085; and prediction error, 64,052. The mean observed value was 1171.2 kg·m−2,
while the means of the RF (6, 450) and GBM (4, 300) models were 1169.94 and
1166.25 kg·m−2, respectively. The GBM model presented excellent performance,
even with 3- and 5-features, or 300 and 400 estimators. The mean of the GBM (3, 300)
and GBM (5, 400) predictive models was 1167.14 and 1165.22 kg·m−2, respectively.

(3) A different result in feature importance was observed in the RT, ET, GBM, and XGboost
models. In particular, the feature importance of GFA (0.432) had the greatest impact
on RT, ET, and GBM models, followed by location, roof materials, and wall materials.
For XGboost, the highest feature importance of 0.382 was determined to be the roof
material, followed by wall material, structure, location, and usage; whereas the lowest
feature importance was GFA.
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The features used in this study correspond to the building exterior and characteristics
that can be easily obtained from the building register provided by administrative agencies.
This can facilitate decommissioning engineers or company officials for the rapid collection
of applicable modeling features and is beneficial for benchmarking the DWGR predictive
models here. In particular, the proposed GBM model could be employed to estimate
DWGR, even with 4-features. Therefore, it was concluded that the proposed methods here
can be easily used as a decision-making tool in demolition waste management plans for
decommissioning engineers and companies.

As the model developed in this study was derived using a relatively small dataset, the
limitation in ML modeling results due to dataset size was unavoidable. As the data used
in this study referred to the field-collected values acquired through a direct survey before
building demolition, future limitations in terms of time and manpower will be encountered.
Thus, additional research should be conducted to derive a model that can improve accuracy
through data collection methods such as surveys in future development. In addition, the
performance of the model developed in this study can be seen as another limitation of this
study that it is difficult to say that the R2 value has an excellent predictive performance
of about 0.62. It is difficult to see this reason as a problem of the type of ML algorithm
selected or data preprocessing technology, and it is judged that there is a high possibility
that distortion of the collected data has occurred by the investigators who participated in
the data collection. In this respect, it seems necessary to properly control the uncertainty
problem caused by the data collection method, and it seems that various DWGR data
collection methods should be applied to secure reliable data.
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