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Abstract: Against the backdrop of global climate change, the frequency of drought events is increasing,
leading to significant impacts on human society and development. Therefore, it is crucial to study
the propagation patterns and trends of drought characteristics over a long timescale. The main
objective of this study is to delineate the dynamics of drought characteristics by examining their
propagation patterns in China from 1951 to 2020. In this study, precipitation data from meteorological
stations across mainland China were used. A comprehensive dataset consisting of 700 stations
over the past 70 years was collected and analyzed. To ensure data accuracy, the GPCC (the Global
Precipitation Climatology Center) database was employed for data correction and gap-filling. Long-
term drought evolution was assessed using both the SPI-12 (standardized precipitation index) and
SPEI-12 (standardized precipitation evapotranspiration index) to detect drought characteristics.
Two Moran indices were applied to identify propagation patterns, and the MK (the Mann–Kendall)
analysis method, along with the Theil–Sen slope estimator, was utilized to track historical trends of
these indices. The findings of this study reveal the following key results: (i) Based on the SPI-12, the
main areas of China that are prone to drought are mostly concentrated around the Hu Huanyong
Line, indicating a tendency towards drying based on the decadal change analysis. (ii) The distribution
of drought-prone areas in China, as indicated by the SPEI-12, is extensive and widely distributed,
with a correlation to urbanization and population density. These drought-prone areas are gradually
expanding. (iii) Between 2010 and 2011, China experienced the most severe drought event in nearly
70 years, affecting nearly 50% of the country’s area with a high degree of severity. This event may
be attributed to atmospheric circulation variability, exacerbated by the impact of urbanization on
precipitation and drought. (iv) The frequency of drought occurrence in China gradually decreases
from south to north, with the northeast and northern regions being less affected. However, areas
with less frequent droughts experience longer and more severe drought durations. In conclusion,
this study provides valuable insights into the characteristics and propagation patterns of drought
in China, offering essential information for the development of effective strategies to mitigate the
impacts of drought events.

Keywords: drought; Moran’s I Index; Mann–Kendall test; urban droughts; standardized precipitation
evapotranspiration index; drought characterization; evapotranspiration; GPCC
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1. Introduction

Due to the impact of climate change, the uneven spatial distribution of water resources
across different regions of the world has become increasingly severe in recent decades [1,2].
This is primarily due to recurrent episodes of frequent drought events, which have a devas-
tating impact on regional ecosystems and human social development [3]. It is important
to note that rising temperatures and declining precipitation exacerbate the severity and
duration of droughts [4,5]. Throughout history, China has experienced recurring droughts
that have caused significant damage to the economy and agriculture [6]. Alarmingly, over
the past 50 years, the agricultural damage rate caused by drought in China has increased
by approximately 0.5% per decade [7]. Moreover, some studies suggest that this trend
may continue until 2100 [8]. A severe drought event that occurred in China between 2009
and 2010 resulted in substantial economic losses amounting to nearly 46.53 billion CNY
Yuan [9]. Additionally, it left approximately 16 million people and 11 million livestock
without access to adequate drinking water [10–12]. Future climate projections indicate that
droughts are expected to become more severe, prolonged, and frequent [13–16]. Conse-
quently, it is crucial to develop a comprehensive understanding of drought characteristics.
Such understanding will aid in monitoring and predicting drought events, facilitating
the formulation of effective strategies to mitigate the hazards associated with drought.
However, to mitigate the potential worst-case scenario of drought effects, there is an urgent
need to delineate the characteristics of drought and its propagation patterns across China,
ensuring long-term sustainability.

Currently, existing studies relating to drought characteristics have been conducted in
China in order to understand its propagation patterns [17]. For instance, recent studies
have reported that the duration of extreme summer droughts in northern China has been
prolonged [18,19]. In another related study, Zhang et al. [20] reported a noteworthy trend
in drought along the northern parts of Xinjiang, while declining patterns in the southern
and eastern regions. The observed trends in drought in northwest China in the last
30 years have shown a marked trend towards wetting [21]. Meanwhile, projected tendencies
show that there may be an increase in drought occurrence in southern China [22], as a
result of the changes in dynamic and thermodynamic features that influence precipitation
patterns [23,24]. To detect and characterize drought, many drought indices have been
developed and used to assess drought effects. These include the Standardized Precipitation
Index (SPI) [25], the Standardized Precipitation Evapotranspiration Index (SPEI) [26], the
Palmer Drought Severity Index (PDSI) [27], the Soil Moisture Deficit Index (SMDI) and
Evapotranspiration Deficit Index (ETDI) [28], the Standardized Wetness Index (SWI) [29],
and the Evapotranspiration Deficit-Based Drought Index (SDEI) [30]. The SPI and SPEI
have been widely used in drought research around the world, such as in South Africa [31],
Zambia [32], China [33], Turkey [34], North Korea [35], Moldova [36], Syria [37], and
Nepal [38]. Different types of droughts, including meteorological, agricultural, hydrological,
and socio-economic, have been analyzed.

Previous studies have shown that using SPI and SPEI to assess drought conditions
has been particularly effective [33,39,40]. However, it has been observed that the SPEI
detects more severe drought events compared to the SPI [33]. Nevertheless, there have
been limited studies that utilize long-term data over mainland China, employing SPI and
SPEI at different timescales to examine drought characteristics, propagation patterns, and
historical trends [41,42]. Since droughts usually affect large areas, it is crucial to determine
whether the information on drought characteristics exhibits contrasting or interconnected
spatial patterns based on meteorological stations. These stations can accurately reflect
meteorological drought conditions compared to common gridded data. Therefore, a
comprehensive assessment of the spatiotemporal dynamics of drought between the SPI
and SPEI in mainland China is critical for understanding the impact of atmospheric water
demand on drought in the context of climate change. This aspect has not been well covered
in previous studies. Furthermore, as meteorological stations are often located within
urban areas or in the surrounding regions of cities, it is vital to detect the evolution of
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urban drought. This helps in understanding the influence of heat islands and atmospheric
evaporative demand on the evolution of urban drought over a 70-year period.

In this study, we performed drought analysis using SPI and SPEI. SPI is a precipitation-
based index, and SPEI is a novel and ideal index used to analyze the combined impact
of precipitation and evapotranspiration on drought. Therefore, this study evaluated and
compared the drought characteristics of the two indices and the importance of different
stations for drought research to provide future drought researchers with some station selec-
tion options. The specific objectives include exploring the variability of climate variables,
investigating the time and spatial variation characteristics of SPI and SPEI for quantifying
drought, conducting Moran’s I Index analysis to provide valuable insights into the charac-
teristics and propagation patterns of drought in China, by analyzing the duration, severity,
intensity, and peak of drought in large areas, and producing maps of drought duration,
severity, intensity, and peak. Therefore, the main objective of this study is to evaluate
the dynamic characteristics of drought in China over the past 70 years, with a focus on
the following issues: (i) using the SPI/SPEI drought index to evaluate the spatiotemporal
characteristics of drought in China from 1951 to 2020; (ii) the spatial distribution of severe
droughts in China over the past 70 years; (iii) the spatial variation of the extreme drought
event that occurred in China during 2010–2011; and (iv) pattern analysis of SPI and SPEI
drought characteristics.

2. Materials and Methods
2.1. Study Area and Data Collection

China is situated in the eastern part of the Eurasian continent, spanning latitudes
3◦51′ N–53◦33′ N and longitudes 73◦33′ E–135◦5′ E. It covers a land area of approximately
9.6 million km2 (Figure 1). The country’s eastern side is bordered by the Pacific Ocean,
while its southwestern side is adjacent to the Qinghai–Tibet Plateau [43]. These diverse
geographical features give rise to unique climate characteristics, which can be classified
as monsoon climate and continental climate [44]. In China, precipitation is primarily
concentrated in the summer season across most regions, while its distribution varies
spatially. The eastern parts experience higher precipitation levels compared to the western
areas, with a gradual decrease in precipitation from the southeast coast to the northwest
inland. This pattern is attributed to the influence of winter monsoons, which are cold and
dry, during the winter season, while summer monsoons from the ocean bring warmth,
rain, and influence during summer. The vast eastern part of China is greatly affected by
the southeast and southwest monsoons, leading to abundant precipitation. Conversely,
the inland northwest is less influenced by the summer monsoon and receives sparse
precipitation.

For this study, precipitation data from 1951 to 2016 were obtained from the China
Meteorological data sharing service system at a monthly timescale (http://data.cma.cn/en,
accessed on 28 February 2018). The data were sourced from 756 benchmark ground
observation stations or automatic stations that covered most of the country. Due to the
limited duration of observed data at certain stations, data from 52 stations were excluded.
To address missing data, precipitation data at a monthly timescale from 1951 to 2020 were
acquired from the Global Precipitation Climatology Center (GPCC; Schamm et al. [45])
(http://gpcc.dwd.de/, accessed on 24 February 2023). This dataset was used to correct and
fill in the missing values, resulting in a final dataset spanning 1951–2020 with 700 stations
that had valid data. It is worth mentioning that the data underwent a homogeneity
test prior to their utilization in the analysis of drought indices. Additional information
regarding the distribution of missing values and the correction and filling process is given
in Appendix A (Figure A1), which indicates that the correlations between the GPCC data
and observed precipitation are very high. On the other hand, evapotranspiration data from
1951 to 2020 were obtained from a global grid dataset of monthly climate data developed
by the Climatic Research Unit (CRU TS v4.06) [46] at the University of East Anglia, UK
(https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 1 February 2023). The SPI/SPEI
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values calculated over a 12-month period for the entire study area are represented as a
two-dimensional array.
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Figure 1. Study area location and distribution of stations.

2.2. Drought Indices
2.2.1. Standardized Precipitation Index (SPI)

The SPI is a precipitation-based index [25]. Since the distribution of precipitation is non-
normal, the SPI first calculates the probability of the gamma (Γ) distribution of precipitation.
Then, it normalizes the probability of its Γ distribution and uses the resulting standardized
cumulative frequency distribution of precipitation for assessment and analysis, calculated
as follows:

Assume that the amount of precipitation in a given time period is a random variable x,
and when x is not 0 (x > 0, the probability density function of its gamma distribution is as
follows:

f(x) =
1

βγΓ(γ)
xγ−1e−

x
β (1)
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In the formula, γ and β are the shape function and scale parameter of the Γ distribution
function, respectively, calculated using the maximum likelihood method.

γ =
1 +

√
1 + 4A

3

4A
(2)

β =
x

4A
(3)

A = log10 (x)− 1
n

n

∑
i=1

log10 xi (4)

In the above equation, xi is the sequence of precipitation data and x is the climatic
mean of precipitation. Thus, the amount of precipitation x0 in a given year yields the
probability that the random variable x is less than the x0 event.

F(x < x0) =
∫ x0

0
f (x)dx (5)

Assume that the precipitation during a specific time period is 0.

F(x = 0) = m/n (6)

In the formula, m is the number of samples with 0 precipitation and n is the total
number of samples. The probability that x takes 0 value.

When 0 < F(x) ≤ 0.5, t =
√

ln 1
F2

SPI =
(

(c2t + c1)t + c0

[(d3t + d2)t + d1]t + 1

)
− t (7)

When 0.5 < F(x) ≤ 1.0, t =
√

ln 1
(1−F)2

SPI = t−
(

(c2t + c1)t + c0

[(d3t + d2)t + d1]t + 1

)
(8)

In the above equation, c0 = 2.515517, c1 = 0.802853, c2 = 0.0110328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308.

2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI)

The main steps in calculating the SPEI [26] can be summarized as follows:

• Calculating the difference between potential evapotranspiration (PET) and monthly
precipitation provides the monthly climatic water balance (Di) as follows:

Di = Pi − PETi (9)

Pi is monthly precipitation, and PETi is the monthly potential evapotranspiration.

• A Log-logistic probability distribution with 3 parameters (scale function (α), shape
function (β), and origin parameter (γ)) was used to linearly fit the Di series to obtain
the cumulative function of the probability distribution:

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(10)

• The cumulative probability density (P), subjected to standard normalization, is calcu-
lated as the value of the SPEI corresponding to each value in the series:
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SPEI = w− c0 + c1w + c2w2

1 + d1w + d2w2 + d3w3 (11)

w =
√
−2ln P (12)

If P > 0.5, then P = 1 − F(x); if P ≤ 0.5, then P = F(x). The values of the remaining
parameters are c0 = 2.515517, c1 = 0.802853, c2 = 0.0110328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308.

The positive values indicate wet conditions, while the negative values indicate drought
conditions. Interestingly, the SPEI is superior to the SPI in terms of drought characterization
and climate change monitoring since the SPEI takes into consideration both temperatures
(used to compute PET). Nevertheless, it is important to mention here that the data were
obtained and computed at a 12-month timescale (i.e., SPEI-12 and SPI-12). Because the
shorter the calculation time of the SPI/SPEI, the quicker the response to changes in precipi-
tation, but the more sensitive it is to fluctuations in precipitation noise. Sometimes, when
results are calculated using an SPI/SPEI of less than 12 months, false drought signals can be
received, which are affected by short-term weather fluctuations. Results calculated using
an SPI greater than 12 months have a response time that is too long and cannot promptly
reflect short-term drought conditions, which is not conducive to timely drought response
measures. In contrast, SPI/SPEI 12 can balance the calculation timescale and response
time to appropriately reflect the region’s drought conditions to a certain extent. SPI-12 can
monitor droughts at seasonal and annual scales and better reflect the impact of seasonal
precipitation changes on drought.

2.3. Temporal Analysis (Trend Analysis and Magnitude Change)

The Mann–Kendall (MK) statistical test, which is recommended by the World Meteoro-
logical Organization (WMO) for analyzing hydro-climatic data [47], is widely utilized as a
non-parametric method for time series analysis. Unlike other tests, the MK test does not re-
quire the monitored data to adhere to specific distribution characteristics. The well-known
non-parametric MK test [48,49] is frequently employed for identifying trends in hydro-
meteorological time series data, such as rainfall, temperature, and drought indices [50].
This test is robust in detecting trends even when the temporal data do not follow a normal
distribution and are unaffected by outliers. In this study, the MK analysis was employed
to determine whether there was a statistically significant increasing or decreasing trend
in SPI/SPEI-12 within a 95% confidence interval (p < 0.05) over a specific time period.
Previous studies (e.g., Neeti et al. [51], Hamed et al. [52]) have noted that autocorrelations
in time series can influence the results of the MK test. Interestingly, this study observed
similar results despite accounting for autocorrelations. Additionally, the magnitude and
extent of the trends in SPI and SPEI time series were assessed using the Theil–Sen slope
estimator [53,54]. Finally, the results of the MK trend test for SPI and SPEI time series were
incorporated into ArcMap v10.8 software (Esri. Redlands, CA, USA) to generate a spatial
distribution of significant trends at individual locations. Furthermore, the Kriging method
was employed to analyze decadal changes in SPI/SPEI-12. In our evaluation, we explored
multiple models and semivariograms, ultimately determining that the exponential model
combined with Kriging yielded the best results with low prediction errors for Sen’s slope
of SPI/SPEI.

The MK test determines whether there is a time series trend in the observed data by
comparing the null hypothesis (H0) and the alternative hypothesis (H1). The statistical value
S and the standardized test statistic ZMK are computed in the MK test in the following way:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Xj − Xi

)
(13)
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sgn
(
Xj − Xi

)
=


+1 when

(
Xj − Xi

)
> 0

0 when
(
Xj − Xi

)
= 0

−1 when
(
Xj − Xi

)
< 0

(14)

Var(S) =
1

18

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]
(15)

ZMK =


S−1√
Var(S)

when S > 0

0 when S = 0
S+1√
Var(S)

when S < 0
(16)

The MK test formulas utilize Xi and Xj to represent the corresponding values in the
time series for years i and j. The length of the time series data is represented by n, while tp
represents the bundle value of the pth number. In the MK test, the trend of the time series
data is determined by ZMK > 0. If ZMK > 0, it indicates an increasing trend in the time
series data. Conversely, if ZMK < 0, it represents a decreasing trend. When |ZMK| > Z(1− a

2 )
,

the null hypothesis is rejected, and the time series data are deemed to have a significant
trend. The value of Z(1− a

2 )
can be obtained from the standard normal distribution table.

For instance, when a = 0.05, the corresponding value of Z(1− a
2 )

is 1.96.
The Theil–Sen’s slope [54] estimator is a non-parametric method for estimating the

slope of a linear regression model. It was introduced by Dutch economist Henri Theil [53]
and American statistician Arthur Sen in the 1950s. This method is robust to outliers and
does not require any assumptions about the distribution of the data. It can be particularly
useful when the data contain outliers or when the relationship between the variables is not
strictly linear.

The calculation of Sen’s method for linear slope is shown as follows:

medianbi =
Xj−Xi

j− i
, where j > i (17)

where Xj and Xi are the drought characteristic data values for years j and i (j > i), respec-
tively. In Sen’s slope, the N values of b are ranked from smallest to largest, among which bi
is the median of these N values, and Sen’s slope is defined as follows:

Q =

{
(b(N + 1))/2 N is odd

(bN + N + 2)/4 N is even
(18)

2.4. Drought Identification and Characterization

The Run theory, proposed by Yevjevich et al. [55], is a widely used method for char-
acterizing drought events [29]. A run is defined as a portion of a time series where all
values remain below a selected threshold [35]. For this study, a drought event is defined
according to McKee et al. [25] as consecutive negative SPEI/SPI values lasting at least one
month, with the lowest SPEI/SPI less than −1. Characterizing drought events is essential
for several reasons. Firstly, prolonged droughts can have a significant impact on agriculture,
vegetation growth, and the local environment [56]. Secondly, identifying drought events
starting from negative SPEI/SPI values can be useful for enhancing drought early-warning
systems.

The Run theory can be used to define and characterize a drought event based on its
duration (DD), severity (DS), intensity (DI), and peak (DP). DD is calculated as the number
of months between the start and end of the drought. DS is measured as the absolute
sum of SPEI/SPI values during the drought period. DI is determined by calculating
the average SPEI/SPI values within the drought duration, which is then divided by the
duration. DP refers to the lowest SPEI value during the drought peak time (DPT). To
analyze spatiotemporal drought characteristics, drought event indices are calculated based
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on the Run theory at each station. The total number of drought events (DE) can then
be determined, along with the mean drought duration (MDD), mean drought severity
(MDS), mean drought intensity (MDI), and mean peak value (MDP) at individual stations.
Regional drought mitigation can benefit from identifying the drought initiation season.

MDD =
∑N

i=1 DDi

N
(19)

MDS =
∑N

j=1 DSj

N
, DS = ∑DD

i |SPEIi| or DS = ∑DD
i |SPIi| (20)

MDI =
∑N

j=1 DIj

N
, DI = ∑DD

i |SPEIi|
DD

or DI = ∑DD
i |SPIi|

DD
(21)

MDP =
∑N

j=1 DPj

N
, DP = max

1≤i≤DD
|SPEIi| or DP = max

1≤i≤DD
|SPIi| (22)

The Formula (23) shows the calculation of drought severity and frequency using
various parameters. Here, the drought duration for a single event is denoted as DDi, while
i represents a month within the drought event and SPEIi and SPIi denote the SPEI and
SPI values in that particular month, respectively. Additionally, DS, DI, and DP refer to
drought severity, intensity, and peak value for a single drought event, respectively. During
the study period, the number of observed drought events is represented by N, and j
depicts one particular event. Furthermore, MDD, MDS, MDI, and MDP signify the mean
duration, severity, intensity, and peak value of droughts during the specified time frame.
By analyzing the percentage of drought locations in relation to the total number of study
stations, we can identify areas that are more susceptible to droughts. This calculation also
provides the percentage of stations affected by drought (SED) and is based on research
conducted by Alsafadi et al. [57].

SED(\%) =
mi
Mi
∗ 100 (23)

The spatial extent of the drought, denoted by SED, is defined as the area where the
number of drought stations (mi) with SPI/SPEI < 0 or a specific intensity in month i is
counted, out of the total number of stations (Mi) included.

2.5. Analysis of Spatial Autocorrelation Patterns (Moran’s I Index)

To assess spatial autocorrelation patterns of drought characteristics in mainland China,
the global Moran’s I Index was utilized [58]. The standardized Z value was used to test
the significance level of the global Moran’s Index. The calculation formula [59] can be
expressed as follows:

I =
n

∑n
i=1 ∑m

j=1 wij

∑n
i=1 ∑m

j=1 wij(xi − x)2

(xi − x)
(

xj − x
) (24)

ZS =
I − E(I)√

VAR(I)
(25)

where I represents the global Moran’s Index, n is the total number of stations, x is the
average value of a drought characteristic for all stations, xi and xj represent the values
of drought characteristics for the i-th and j-th stations, respectively, and wij is the weight
coefficient assigned to stations i and j. E(I) and VAR(I) represent the expected value and
variance of the Moran’s Index. The global Moran’s Index ranges between −1 and 1. A posi-
tive value of the global Moran’s Index greater than 0 (p < 0.05) indicates significant positive
spatial autocorrelation among the drought characteristics of neighboring stations. On the
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other hand, a negative value less than 0 (p < 0.05) indicates negative spatial autocorrelation.
At a significance level of 0.05, if |ZS| > 1.96, it indicates a significant global Moran’s Index.

Anselin’s local Moran’s I Index [60] is used to perform clustering and analysis of
discrete values, expressing the spatial aggregation characteristics of drought and the differ-
ences in regional drought autocorrelation [61].

To reflect the drought clustering types among different regions, the equation of local
Moran’s Index can be calculated as follows:

Ii =
(xi − x)

∑i(xi − x)2 ∑
j

wij(xi − x) (26)

The significance level of the local Moran’s Index can be tested by calculating the Z
value using the above formula. If the local spatial autocorrelation is significant, it indicates
that there is a certain clustering relationship between the drought characteristic value in a
station and that in the surrounding stations. The clustering relationships can be classified
into four types: high-high clustering (H-H), low-low clustering (L-L), high-low outliers
(H-L), and low-high outliers (L-H).

3. Results and Analysis
3.1. Temporal and Spatial Variability of Droughts

The Mann–Kendall (MK) test was used in this study to track the temporal trend of the
SPI and SPEI, and the SPI trend results indicated that 477 of the 700 stations had significant
positive/negative values, accounting for 68.14% of all stations: 41.3% of total stations had
significant negative trends, while 23.4% of total stations had significant positive trends. On
the other hand, there were 552 significant stations in the SPEI data, accounting for 78.86%
of all stations: 64.3% of total stations had significant negative trends, while only 14.57% of
total stations had significant positive trends.

According to Figure 2a, based on the trend results of SPI-12 per decade, most of
the sites near the Hu Huanyong Line [62] show a downward trend, while the northwest,
Qinghai–Tibet Plateau, and southeastern regions of China show an upward trend. Most
areas in Beijing, Tianjin, Liaoning Province, Henan Province, and Shandong Province
show a downward trend. The highest positive Sen’s slope values are distributed in the
northeastern Qinghai–Tibet Plateau and eastern Xinjiang, while the lowest Sen’s slope
values are distributed around Liaoning Province, Beijing City, and Tianjin City. Overall,
the trend of SPI-12 in mainland China is mostly upward, with a few areas showing a
downward trend, and the magnitude of the upward trend is high, while the magnitude of
the downward trend is low.

Interestingly, according to the trend of SPEI12 per decade, there are more sites showing
a downward trend in mainland China compared to SPI-12 trend results (Figure 2b), except
for some areas in the Qinghai–Tibet Plateau, northern Xinjiang, and southeastern China
showing an upward trend. While, the vast majority of sites north of the Qinling–Huaihe
Line [63] show a downward trend, and areas such as Yunnan Province, Sichuan Province,
and Chongqing Municipality show a downward trend. In the areas where the upward
trend is apparent, the most evident upward trend is in the northeastern Qinghai–Tibet
Plateau, similar to the results of SPI-12. However, in the areas where the downward trend
is evident, the most significant downward trend is in southern Xinjiang, western Inner
Mongolia, Beijing, Tianjin, southern Liaoning Province, and eastern Shandong Province.
Among them, the trend of SPI-12 and SPEI-12 is opposite in southern Xinjiang and western
Inner Mongolia, while the trend is the same in Beijing, Tianjin, southern Liaoning Province,
and eastern Shandong Province.



Sustainability 2023, 15, 10875 10 of 25Sustainability 2023, 15, x FOR PEER REVIEW 10 of 26 
 

 
Figure 2. The decadal change and trend of SPI-12 (a) and SPEI-12 (b) in China mainland between 
1951 and 2020. The red line indicates the Hu Huanyong Line, and blue line indicates the Qinling–
Huaihe Line. 

3.2. Percentage of Stations Affected by Drought 
The SPI-based spatial extent of drought or percentage of stations affected by drought 

illustrates the vulnerability of different drought classes over mainland China. According 
to Figure 3, the percentage of stations impacted by all drought classes decreased during 
the study period, and this decrease was statistically significant (p < 0.05) for mild drought, 
moderate drought, and severe drought. However, the percentage of stations influenced 
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3.2. Percentage of Stations Affected by Drought

The SPI-based spatial extent of drought or percentage of stations affected by drought
illustrates the vulnerability of different drought classes over mainland China. According
to Figure 3, the percentage of stations impacted by all drought classes decreased during
the study period, and this decrease was statistically significant (p < 0.05) for mild drought,
moderate drought, and severe drought. However, the percentage of stations influenced by
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wet conditions (i.e., SPI > 0) showed an upward trend from 1951 to 2020, with an increase of
1% per decade (p < 0.05). A comparison between the different drought classes suggests that
the decreases in the percentage of stations impacted by mild drought, moderate drought,
and severe drought were stronger than those of extreme and very extreme droughts. For
example, the percentage of stations influenced by mild drought decreased by −0.47%
per decade, while severe drought and moderate drought decreased by 0.28% and 0.14%,
respectively.
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Table 1. Drought categories based on McKee’s scheme [25].

SPI and SPEI Values Drought Category

>0 No drought (ND)
0 to −0.5 Mild drought (MiD)
−0.5 to −1 Moderate drought (MoD)
−1 to −1.5 Severe drought (SD)
−1.5 to −2 Extreme drought (ED)

>−2 Very extreme drought (vED)

Figure 4 illustrates the vulnerability of different drought classes in mainland China
between 1951 and 2020. Interestingly, the results are opposite to those reflected by the SPI.
During the study period, except for mild drought, the percentage of stations impacted by
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all other drought classes exhibited an increasing trend, and this increase was statistically
significant (p < 0.05). The percentage of stations affected by mild drought exhibited a
decreasing trend, with a decrease of−0.17% per decade (p < 0.05). However, the percentage
of stations influenced by wet conditions (i.e., SPEI > 0) showed a downward trend from
1951 to 2020, with a decrease of −2.8% per decade (p < 0.05). A comparison between
the different drought classes suggests that the increases in the percentage of stations
impacted by moderate, severe, and extreme droughts were stronger than those of very
extreme droughts. For example, the percentage of stations influenced by moderate drought
increased by 0.6% per decade, compared to 1.12% and 0.94% for severe and extreme
droughts, respectively. Notably, during the extraordinary drought period from 2010 to 2011,
the percentage of stations impacted by severe drought (−1 < SPEI < −1.5) and extreme
drought (−1.5 < SPEI < −2) was both around 20%, and the percentage of stations affected
by very extreme drought (SPEI > −2) was around 10%.
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3.3. SPEI-12-Based Spatial Extent of 2010–2011 Extreme Drought

According to Figure 5, a severe drought event occurred in China from September 2010
to December 2011. The panel in the upper left shows that in August 2011 (Figure 5a), based
on SPEI12 data, severe drought in mainland China was mainly concentrated in southern
China, such as Shaanxi, Shanxi, Henan, and Anhui provinces. The drought did not weaken
in September and October 2011, and the number of extremely dry stations increased. By
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November and December 2011, the drought had retreated to southern China south of the
Qinling–Huaihe Line, and the overall drought level in China began to decrease. The bar
chart in the lower right corner shows the percentage of multi-class affected by drought.
The percentage of stations with no drought decreased from 18% at the beginning to 17% in
October and then increased to 22% in December. Almost 80% of China’s meteorological
stations were in a state of drought. The proportion of extreme drought increased from
17% in August to 21% in October and then decreased to 17% in December. The proportion
of extremely severe drought increased from 7% in August to 11% in September and then
decreased to 7% in November and increased to 9% in December.
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Figure 5. Spatial–temporal variability of SPEI-12 and spatial extent of the extreme drought event that
occurred in mainland China from 2010 to 2011. Note: Subpanels from (a–e) indicate the temporal
evolution of the 2010 to 2011 extreme drought event.

3.4. SPI-12 and SPEI-12-Based Spatial Patterns of Drought Characteristics

To analyze the SPI-12-based spatial autocorrelation of the total number of drought
events (TDE) between 1951 and 2020, the global Moran’s I Index was used. The z-score
was 22.366, so there is a less than 1% likelihood that this clustered pattern could be the
result of random chance. Based on the local spatial autocorrelation of the TDE and using
Anselin’s local Moran’s I Index, the results indicated the presence of four spatial patterns.
The northwest, Qinghai–Tibet Plateau, and northeast China have fewer events with two
main clustering patterns (Low-Low cluster and High-Low outlier), which means that these
regions have a lower frequency of drought events, while the southern region has more
total drought events with two main clustering patterns (High-High cluster and Low-High
outlier), which means that these regions have a higher frequency of drought during the
studied period (see Figure 6a,c).
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Figure 6. Total number of drought events (a,b) and the clustering patterns of the drought events (c,d)
in mainland China over the past 70 years based on SPI-12 and SPEI-12 between 1951 and 2020.

As presented in Table 2, it can be seen that the global spatial autocorrelation of the
total drought events (TDEs) based on SPEI12 analysis has a z-score of 27.166, indicating that
there is less than 1% chance that this clustering pattern is the result of random chance. On
the other hand, as shown in Figure 6b,d, and based on the local spatial autocorrelation of
TDE, four spatial patterns were identified. In contrast to SPI results, drought occurrences in
China have increased, especially in the northern regions. Drought events in the northwest,
Qinghai–Tibet Plateau, and northeast regions are less frequent with two clustering patterns
(Low-Low cluster and High-Low outlier). In southern China, drought occurrences are more
frequent, with also two clustering patterns (High-High cluster and Low-High outlier).

Table 2. Global Moran’s I Index of drought characteristics spatial patterns.

Index
SPI SPEI

TDE MDD MDP MDS MDI TDE MDD MDP MDS MDI

Moran’s Index 0.250 0.196 0.0189 0.202 0.113 0.304 0.200 0.122 0.156 0.080
z-score 22.366 17.648 2.051 18.12 10.267 27.166 18.233 11.054 14.629 7.421
p-value <0.001 <0.001 0.040 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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As shown in Table 2, the z-score of spatial autocorrelation of MDD based on SPI-12
analysis is 17.648, indicating that the probability of this clustering pattern being the result
of random factors is less than 1%. From Figure 7a, it can be observed that the duration of
drought in northern China is longer than that in the southern region. On the other hand,
as shown in Figure 7a,e, four spatial patterns were identified based on the local spatial
autocorrelation of MDD. In northwestern Xinjiang, southeastern Qinghai–Tibet plateau,
and northeastern China, the duration of drought is longer, exhibiting two cluster patterns
(High-High cluster and Low-High outlier), indicating that the duration of drought is longer
in northern China. In southern China, except for the middle and lower reaches of the
Yangtze River, the duration of drought is shorter, exhibiting two cluster patterns (Low-Low
cluster and High-Low outlier).

According to Table 2, the SPI-12-analysis-based MDP exhibits a spatial autocorrelation
z-score of 2.051, suggesting that the likelihood of this clustering pattern resulting from
random factors is 4%. No significant clustering features can be observed in Figure 7b.
On the other hand, based on the local spatial autocorrelation of the MDP as shown in
Figure 7b,f, meaningful results were only observed in northern China, where four spatial
patterns appeared. In Xinjiang, central Inner Mongolia, and southern northeast China, two
clustering patterns (High-High cluster and Low-High outlier) were observed, indicating rel-
atively small MDP and drought impacts in these regions. In Qinghai and Shanxi provinces,
two clustering patterns (Low-Low cluster and High-Low outlier) were observed, indicating
an increase in MDP and drought impacts in these provinces over the past 70 years.

Table 2 displays that the SPI-12-analysis-based MDS has a z-score of 18.12 for spatial
autocorrelation, which implies that the probability of this clustering pattern resulting from
random factors is below 1%. A west-high and east-low trend can be observed along the
Hu Huanyong Line in Figure 7c. On the other hand, four spatial patterns of local spatial
autocorrelation based on MDS are observed in Figure 7c,g. Two clustering patterns (High-
High cluster and Low-High outlier) are observed in the northwest of Xinjiang, southeast
of the Qinghai–Tibet Plateau, and northeast of China, indicating that these regions have
a higher severity of drought. Two clustering patterns (Low-Low cluster and High-Low
outlier) are observed in the area south of the Qinling–Huaihe Line and east of the Hu
Huanyong Line, but no clustering pattern is found in the middle and lower reaches of the
Yangtze River, indicating that the severity of drought in these regions is relatively low.

Table 2 displays a z-score of 10.267 for the spatial autocorrelation of MDI as determined
by the SPI-12 analysis. This suggests that the likelihood of this clustered pattern being
caused by chance factors is below 1%. From Figure 7d, It is difficult to observe the clustering
trend of drought intensity. On the other hand, as shown in 7d,h, based on MDI’s local spatial
autocorrelation, only four spatial patterns were observed in northern China, indicating
meaningful results. In the middle and lower reaches of the Yangtze River, two clustering
patterns were found (High-High cluster and Low-High outlier), indicating that the drought
intensity in this region is relatively low, which is the lowest in China. In the southern part of
the Qinghai–Tibet Plateau, Shaanxi Province, Shanxi Province, Henan Province, Shandong
Province, and the southern part of Heilongjiang Province, two clustering patterns were
found (Low-Low cluster and High-Low outlier), indicating that the severity of drought in
these regions is relatively high.

Based on Table 2, the SPEI12 analysis indicates that the spatial autocorrelation z-score
for MDD is 18.233. This suggests that it is highly unlikely for this clustering pattern to
be the result of chance factors, with a probability of less than 1%. From Figure 8a, it can
be observed that the duration of drought in northern China is longer than that in the
south. On the other hand, as shown in Figure 8a,e, four spatial patterns were identified
based on the local spatial autocorrelation of MDD. In Xinjiang, Qinghai, Beijing, Tianjin,
Hebei, Liaoning, and eastern Shandong, two clustering patterns (High-High cluster and
Low-High outlier) were identified, indicating that drought duration in these areas is longer.
In southern China, two clustering patterns (Low-Low cluster and High-Low outlier) were
identified, indicating that drought duration in these areas is shorter.
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According to the SPEI-12 analysis, the spatial autocorrelation of MDP is represented
in Table 2 by a z-score of 11.054. This value suggests that the likelihood of the observed
clustering pattern happening randomly is extremely low, with a probability of less than 1%.
No significant clustering features were observed in Figure 8b. On the other hand, as shown
in Figure 8b,f, four spatial patterns of MDP’s local spatial autocorrelation emerged. In Inner
Mongolia, Liaoning Province, and Yunnan Province, two clustering patterns (High-High
cluster and Low-High outlier) were observed, implying that MDP values were low and
extreme drought values were minimal in the past 70 years. In southern Tibet, Sichuan
Province, Henan Province, and Fujian Province, two clustering patterns (Low-Low cluster
and High-Low outlier) were observed, indicating that MDP values were low during the
most extreme drought periods in the past 70 years.

As per the SPEI12 analysis, Table 2 presents a spatial autocorrelation z-score of 14.629
for MDS, implying that the observed clustering pattern is highly unlikely to have arisen
by chance, with a probability of less than 1%. From Figure 8c, it was found that the
severity of drought in northern China is greater than that in southern China. On the other
hand, as shown in Figure 8c,g, four spatial patterns were observed based on the local
spatial autocorrelation of MDS. Two clustering patterns (High-High cluster and Low-High
outlier) were found in the northwest region, Jing-Jin region, southern Liaoning, and eastern
Shandong, indicating that drought is more severe in these areas. Two clustering patterns
(Low-Low cluster and High-Low outlier) were found in southern China, indicating that the
severity of drought in the region is relatively low.

As presented in Table 2, the z-score for spatial autocorrelation of MDI, using the
SPEI12 analysis, is 7.421, signifying that the likelihood of this clustering pattern being a
result of random factors is less than 1%. From Figure 8d, it can be seen that drought is
more severe in northern China than in the south. On the other hand, based on the local
spatial autocorrelation of MDI, only meaningful results were observed in northern China,
where four spatial patterns appeared, as shown in Figure 8d,h. Two clustering patterns
(High-High cluster and Low-High outlier) were observed in southern Xinjiang, northern
Gansu, the middle and lower reaches of the Yangtze River, Liaoning Province, and northern
Inner Mongolia, indicating relatively lower drought intensity in these areas over the past
70 years. Two clustering patterns (Low-Low cluster and High-Low outlier) were observed
in some areas of northwest Xinjiang, southeastern Qinghai–Tibet Plateau, Heilongjiang
Province, western Shandong Province, and Chongqing City, indicating higher drought
intensity in these areas.

Overall, the characteristics of drought in China are that the frequency of drought in
the northern region is low and its duration is long, while the frequency of drought in the
southern region is high and its duration is short. Additionally, various drought indicators
analyzed based on SPEI12 are more concerning than those analyzed based on SPI-12.

4. Discussion
4.1. Inconsistency in Distinguished Trend Patterns of SPI/SPEI over China

It is significant to analyze the impacts of drought and identify and characterize factors
such as intensity, severity, spatial extent, and duration at regional and national scales [64].
The benefits and drawbacks of using a particular drought index might vary greatly. Drought
due to a lack of precipitation can be more accurately reflected by the SPI. In some investiga-
tions of drought in China, Tan et al. [65] and Li et al. [33] found that the SPEI was more
applicable than the SPI. To evaluate recent historical trends for these drought indices, this
article used Mann–Kendall statistical test and Sen’s slope method based on SPI-12 and
SPEI-12. Our findings revealed significant differences in the change trends of drought-
prone areas based on SPI and SPEI in mainland China, specifically when considering the
SPEI-based water balance. These differences can be attributed to the inclusion of additional
climatic factors, such as temperature and evapotranspiration, in the calculation of SPEI. As
a result, the distribution of drought events and their temporal trends in China, as indicated
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by SPEI, raise greater concerns related to the effects of global warming. These results align
with the findings reported by Alsafadi et al. [51] and Mohammed et al. [66] in other regions.

In China, some studies have reported the same findings. It is worth noting that there
are many differences in the results of SPI-12 and SPEI-12, such as spatiotemporal variability
of drought. For example, Feng et al. [67] documented that both SPI-12 and SPEI-12 show a
trend towards increasing in some regions of the Qinghai–Tibet Plateau and the southeastern
coast of China. Although the Qinghai–Tibet Plateau is high in altitude, low in temperature,
and low in precipitation, evaporation is also low, which explains why SPI and SPEI show
similar trends based on this region. In some sparsely populated areas of the southeastern
coast, the SPI shows positive trends higher than that presented in SPEI positive trends. This
may be due to increasing precipitation extremes indices as explained by Wang et al. [68].
The risk of extreme events may increase. Interestingly, the results based on SPI-12 also show
a positive trend in some areas, such as southern Xinjiang, Inner Mongolia, and Heilongjiang.
This aligns with the findings reported by Li et al. [69] in Northwest China from 1960 to 2018,
while SPEI-12 shows a negative trend. This may be due to drought caused by increasing
population densities and industry development in southern Xinjiang, which may have
indirect effects on the evolution of drought [70].

As such, one of the reasons for drought intensification is the effect of urbanization
on extreme precipitation and drought events. The Hu Huanyong Line, as an important
boundary line for the distribution of China’s population, coincides very well with the
boundary line between trends towards drying and trends towards wetting in this study,
indicating that drought may be closely related to the impact of urbanization and human
activities on temperature and evapotranspiration. The urban heat island effect may affect
urban precipitation patterns. For example, in the Yangtze River urban belt in China, the
downstream propagation of urban heat island signal alters the general circulation pattern,
thermal distribution, and moisture transportation at local and regional scales [71,72]. The
urbanization pattern of cities has a key effect on precipitation intensity and gives rise to
extreme precipitation. On the other hand, high temperatures increase evaporation rates,
while cooling requires more evaporation, further exacerbating drought conditions [73,74].
There is a significant spatiotemporal variability in the distribution of drought in China.
The most severe drought occurs in the northwest, followed by the western part of the
southwestern region and the northern part of the North China Plain [42]. On the other
hand, urban development often uses impermeable materials (such as asphalt and concrete)
instead of natural vegetation and permeable soil surfaces, which weaken the heat exchange
between the air and the ground surface, trap urban heat, and increase evaporation [75,76].
This study shows that the area affected by drought based on SPI-12 gradually exhibits
insignificant decreases per decade, while SPEI-12 shows the opposite trend, which also
reflects the impact of urbanization caused by China’s economic development on the changes
in drought. In densely populated urban areas, urban drought is caused by the increase
in water demand from a large population and various urban departments [77], which is
consistent with the conclusion of this study, namely, the drought line coincides with the
population density line.

4.2. Extreme Drought and Spatial Patterns of Drought Characteristics

During the period from 1961 to 2000, the extreme drought event in September 1965
was the most severe, affecting nearly half of China’s land area [78]. In this study, and based
on the 1951–2020 period, we found that the most severe drought in China occurred in
2010–2011 affecting nearly 80% of China mainland. The frequency of drought in China
gradually decreases from south to north, with fewer occurrences in the northeast and
northern regions. However, the duration and severity of drought in these regions are longer
and more severe [79]. Mokhtar et al. [40] calculated the drought in Tibetan Plateau, China
from 1980 to 2019 using SPEI and found that extreme and extremely high severity droughts
have affected more than 30% of the area studied. In addition, the drought’s geographical
distribution spanned 80–90% of the region under study between 2015 and 2019.
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For more insights, this study explained the spatial patterns of drought characteristics
in China (Figures 7 and 8) between 1951 and 2020 using the global Moran’s Index and
local Moran’s Index. The study found that in the northwest and northeast regions of
China, droughts are long-lasting, with high severity, with low frequency, low peak, and
low intensity, while in the southern regions of China, droughts are short-lasting, with
low severity, with high frequency, high peak, and high intensity. In general, drought may
be caused by ocean and atmospheric circulation patterns. ENSO refers to the natural
phenomenon of abnormal warming of sea surface temperature in the central and eastern
Pacific [80]. This phenomenon usually occurs every 2–7 years and has important impacts on
the global climate system [81]. The occurrence of El Niño and La Niña may be closely related
to the increase in spring and summer drought frequency in northern China [82]. During
the development stage of ENSO, precipitation in northern China is generally low, which
may lead to drought. The precipitation in northern China usually concentrates in summer,
and when ENSO affects the summer in northern China, it will reduce summer precipitation
in northern China, causing the duration of drought to become longer, corresponding to the
long duration of drought in northern China in this study. The increase in autumn drought
frequency in southern China is mainly due to the influence of ENSO [83]. ENSO events
affect summer droughts in the middle and upper reaches of the Pearl River and autumn
droughts in the Pearl River Delta [84], which may affect the peak and frequency of droughts
in southern China, making the peak of droughts in southern China high with frequent
occurrence.

In the past 40 years, China’s total grain output has increased by 74%, exceeding the
population growth by about 34% [85], but the increase in severe drought occurrence in
China will double the loss rate of crop yield caused by drought [86,87]. Meanwhile, drought
can lead to water shortages and food crises, affecting social stability and exacerbating
economic difficulties and unfairness in rural areas [88,89]. For example, drought in high-
latitude regions is also worth attention; for example, in Heilongjiang Province—as a major
agricultural province in China—the risk of agricultural drought will continue to exhibit
a decreasing trend [88]. Inner Mongolia Autonomous Region, as a major province in
livestock production and forest areas in China, is located on the edge of the East Asian
monsoon climate and the continental climate. The detected drought tendency may bring
critical negative impacts on ecological systems and carbon storage [90]. Therefore, the
government should control the unnecessary expansion of the livestock industry and ensure
its sustainable development.

5. Conclusions

The present study systematically investigated drought characteristics with emphasis
on its propagation patterns and historical trends over China during the last 70 years. To
achieve this, the study employed observed station data derived from 752 synoptic stations
distributed across the study domain. As the first step, the datasets were processed with
missing data corrected using gridded observations obtained from the GPCC database.
Eventually, 700 stations with valid datasets were used to compute the SPI and SPEI at
12 timescales (i.e., SPEI-12 and SPI-12). Trends analysis was estimated using the non-
parametric approach of MK analysis, whereas the magnitude of the trends was detected
using the Theil–Sein Slope estimator. Furthermore, the study employed the Run theory
framework to characterize drought patterns in terms of mean drought duration, severity,
intensity, and peak during the study duration over China. Ultimately, we used global
Moran’s I Index and Anselin’s local Moran I Index to construct the drought propagation
patterns and reflect the drought clustering types over different regions across the study
area. Our findings reveal a noteworthy increase in the magnitude of drought trends, with
68.14% (78.86%) of total station data depicting upward/downward SPI (SPEI) values. The
drought trends result over China is more concerning based on the SPEI, where 64.3% of total
stations had significant negative trends, while only 14.57% of total stations had significant
positive trends, which indicates the warming effects in the last decades. Particularly,
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droughts in northern China have lower frequency but longer durations, while droughts in
southern China have higher frequency but shorter durations. Interestingly, northeastern
Qinghai–Tibet Plateau depicts upward tendencies based on SPI and SPEI, while opposite
trends (negative trends) are observed in regions of Yunnan Province, Sichuan Province,
and Chongqing Municipality in addition to Shandong and Hebei, Shanxi, and Henan
provinces and Beijing and Tianjin cities. Meanwhile, the spatial extent of drought based on
SPI/SPEI-12 shows a contrasting pattern with SPI-12, indicating a decline in the percentage
of stations impacted by different drought categories, except extreme and very extreme
droughts, while SPEI-12 depicts an increase in the percentage of stations impacted by all
other drought classes, except for mild drought. Finally, during the clustering analysis, we
established that drought events occur less frequently in eastern Xinjiang, western Gansu,
and western Inner Mongolia. This may be due to the fact that these regions are relatively
drier compared to other areas in China, and as such, the conditions required for drought
to occur are higher, resulting in a lower frequency of drought events. On the other hand,
southern China experiences more drought events. It is important to note that drought is
relative and not absolute.

The study findings suggest several recommendations aimed at assisting decision-
makers in effectively managing drought events. These recommendations can be summa-
rized as follows:

(i) Management of Water Resources: Enhance the management and protection of water
resources. This can be achieved by implementing measures to modernize irrigation
systems, thereby improving water efficiency and reducing water loss.

(ii) Water Conservation Measures: Implement water conservation measures across vari-
ous sectors, including residential, agricultural, and industrial areas. Examples of such
measures include promoting the use of water-saving toilets, advocating for garbage
classification, and encouraging the installation of household water storage tanks in
dry regions with extended drought periods, particularly in northern China.

(iii) Scientific Farming: Focus on the development of drought-resistant crops and the
adoption of more scientific farming techniques. This includes improving crop drought
resistance and yield through the implementation of flexible agricultural management
measures.

(iv) Appropriate Planting Methods: During drought periods, it is crucial to choose appro-
priate planting methods, such as using insulation to cover crops or employing drip
irrigation technology. These methods can help conserve moisture and reduce water
usage.

(v) Strengthen Monitoring and Early Warning Systems: Enhance monitoring and early
warning systems for drought. This involves promptly identifying drought situations,
predicting the severity and extent of drought, and implementing suitable protective
measures based on the information gathered.

(vi) Resource Sharing: Strengthen international cooperation and establish multilateral and
bilateral resource-sharing mechanisms to collectively address the challenges posed by
drought.

In addition, future research directions could involve studying the relationship between
drought and its influence on socioeconomic, cultural, and agricultural development in
specific provinces. This would enable a better understanding of the impact of drought
on human society and facilitate more effective countermeasures. By implementing these
recommendations and undertaking further research, decision-makers can enhance their
ability to manage and mitigate the impacts of drought events, contributing to the resilience
and sustainability of communities and regions affected by drought.
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