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Abstract: Urban blue–green landscapes (UBGLs) have an important impact on the mitigation of UHIs.
Clarifying the supply/demand relationship of the UBGLs’ cooling effect can serve as an indicator for
high-quality urban development. We established the cooling capacity supply–demand evaluation
systems of UBGLs by using multi-source data and a suitable landscape mesh size. Furthermore, we
utilized the coupling coordination degree (CCD) model and the linear regression equation method to
explore the spatial distribution of and variation in UBGLs’ cooling efficiency. The results showed the
following: (1) according to the UBGL/SUHI landscape pattern index and the Pearson correlation
coefficient of the land surface temperature (LST), the optimal mesh size was found to be 1200 m.
(2) According to the unitary linear regression calculation, the matching of the cooling capacity supply
and demand in the context of Qunli New Town showed obvious polarization; furthermore, Hanan
new town and old town are more balanced than Qunli new town. (3) According to the spatiotemporal
dynamic evolution of CCD, the proportion of moderate coordination- advancing cooling efficiency is
the highest, reaching 35.3%. Second are moderate imbalance–hysteretic cooling efficiency (18.4%) and
moderate imbalance–systematic balanced development (13.7%), with the old city highly coordinated
area as the center and the coupling coordination type (gradually outward) turning into a state of
serious imbalance, and then back into a state of high coordination. The findings of the investigations
enriched a new viewpoint and practical scientific basis for UBGL system planning and cooling
efficiency equity realizations.

Keywords: surface urban heat island spaces (SUHIs); urban blue–green landscapes (UBGLs); cooling
efficiency; supply level; demand level; coupling coordination degree (CCD); Harbin city

1. Introduction

Cities are the most densely populated regions on the planet. The drastic shift in urban
material spaces and the expansion of urban temperature differences are accompanied by the
rapid expansion of urban populations and urban scales. Combined with global warming,
the fast-paced urbanization process leads to an increasing intensity in urban heat islands
(UHIs) [1]. Artificial impervious surface and greenhouse gases enhance the surface sensible
heat flux [2,3]. This has negative effects on urban regional climates [4,5], hydrological char-
acteristics [6], physical and chemical soil characteristics [7], atmospheric environments [8],
energy metabolisms [9,10], and residents’ health [11–13]. The contradictions and conflicts of
urban gray infrastructures and blue–green infrastructures formed by impervious surfaces
have triggered a series of urban environmental problems [14], which have led to a further
aggravation in the intensity of UHIs and have thus formed a vicious circle [15–17]. UHIs
lead to many problems that are difficult to solve. Thus, effective measures to alleviate the
effects of UHIs have become a key concern for many researchers and urban planners.
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Urban blue–green landscapes (UBGLs) are ecological network systems composed of
green garden spaces, urban forests, three-dimensional green spaces, urban farmlands, and
bodies of water (which are an important part of urban spaces). With the advancement
of UHI research, the principle of forming urban cold islands from the low reflectance of
the solar radiation of UBGLs rather than the high reflectance of other urban buildings
has emerged. Therefore, it is believed that this approach is capable of suppressing, coun-
teracting, or even mitigating UHIs [18]. It should also be remarked that UBGLs have a
positive impact on additional soil, water conservation, improving urban resilience, and in
increasing urban well-being benefits [19]; these positive effects have become the consensus
for all urban thermal environment studies [20,21]. There will be more people in areas with
high temperatures, high levels of noise, as well as those with high levels of air pollution
and other aerosols, especially as the urban population grows. UBGLs’ inherent benefits
can be used—such as reducing carbon dioxide, releasing oxygen, lowering the land surface
temperature, reducing noise, reducing air aerosol content, etc.—to improve the quality of
the urban ecological environment and to improve the health and happiness of city dwellers.

The cooling effect of urban blue–green spaces (UBGSs) has been studied in many
fields. At present, from the perspectives of architecture, landscape architecture, and civil
engineering, UBGL types or patches are usually studied by means of measurement and
numerical simulation [22,23]. In addition, their local microclimates (urban park green
spaces [24,25], plant communities [26,27], lake wetlands [22,28], etc.) are studied at the
micro-scale level to analyze the influence of the characteristic factors of different UBGL
types on LST. The research on UBGLs’ cooling effect is based on GIS technology, which is
combined with remote sensing image interpretation and other methods [29–31]; the cooling
effect is inferred from a macro-scale analysis of landscape ecology, urban meteorology, and
city planning theory. The association between the characterization of surface temperatures
and the related factors of UBGLs has been studied. The research on the cooling effect has
focused on the common influence of UBGLs and the construction land-cover type [32,33],
geometric structures [31,34], spatial layouts [33], and surrounding environments [34] in the
context of LST and against the background of urban expansion; such research found that
UBGLs show different cooling effects. According to more specific research, the greater the
UBGL coverage, the greater the cooling impact, and increasing UBGL areas is beneficial for
reducing the effects of UHIs [35,36]. There are different studies that have suggested that the
cooling impact of UBGLs becomes larger as the patch’s aggregation degree increases [37].
In general, the more compact the shape of the UBGLs, the stronger the cooling effect [38,39].
Furthermore, certain research has indicated that the landscape type of the area surrounding
the UBGLs is an essential component that influences the cooling effect [40,41].

Despite the fact that the breadth and depth of study on the cooling effect of UBGLs has
been conducted by numerous experts, the results obtained are still not significant enough
for practical urban landscape planning applications [21], and there are also problems
that need to be solved. Firstly, many of the research objects for UBGLs’ cooling effect
concentrate on a particular type of green space or water bodies, emphasizing the need
of using various cooling indicators to highlight UBGLs’ cooling supply capacity. As for
the cooling effect of UBGLs, we have paid much less attention to the trade-offs between
the supply and demand of UBGLs. Furthermore, either directly or indirectly by UBGL
alterations, human intervention processes harm the ecological environment. For UBGL
arrangement alterations, there is a paucity of monitoring on cooling efficiency feedback
to people. It is worth noting that many studies have revealed that the cooling ability of
UBGLs is strongly affected by the landscape pattern (with noticeable scale dependence);
furthermore, few studies have been conducted on the ability of different types of UBGLs to
significantly mitigate UHIs under reasonable scale effects. Therefore, we also need to grasp
a reasonable spatial characteristic scale in order to reflect the response of UHI to the cooling
capacity of UBGLs, so as to accurately measure the spatial relationship between UBGLs
and SUHIs, as well as to understand the supply and demand relationship between them.
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To determine the UBGL cooling efficiency quantification process for a city, we chose
Harbin, China as the research area. As a city with a great temperature difference across the
four seasons and one that is accompanied by relatively large urban ecological problems,
Harbin has accelerated its urban expansion in recent years. The expansion of surface urban
heat island spaces (SUHIs) has resulted in increasingly major ecological and environmental
challenges. In the meantime, with the constant influx of people and the rising demand
for cooling, we are eager to quantify and optimize UBGL cooling efficiency imbalance
areas according to the needs of supply and demand. This paper focuses on three questions:
(1) how can one select the best mosaic size for the cooling effect of UBGLs? (2) how can the
supply and demand relationship of UBGL’s cooling capacity be measured? and (3) how
can one identify and evaluate the areas with coordinated/misaligned cooling efficiencies in
the process of urbanization?

From the perspective of the main urban regions with frequent human activities, in
conjunction with the preceding research and the identified problems, this paper seeks to
build a grid scale to quantify the changes in the cooling supply and demand benefits of
UBGLs. The surface temperature of different mosaic sizes on different types of UBGLs is
used to index the sensitivity of reactions and stability, as well as to determine the ideal
dimension of the cooling effect. We defined the meaning of the cooling effect of the supply
level (CESL) of UBGLs and the cooling effect of the demand level (CEDL) of UBGLs, in the
context of SUHI landscapes, to describe the best mosaic arrangement for UBGL cooling
efficiency. By revealing the spatial differences of the supply and demand level, as well as
the coordination level, of UBGL cooling capacities, this paper provides a new perspective
and scientific basis for UBGS layouts and UHI mitigation.

2. Materials and Methods
2.1. Overview of the Study Area

Harbin (126◦8′14′′~126◦56′7′′ E, 44◦31′16′′~45◦55′30′′ N) is the provincial capital of
Heilongjiang Province. It is located in the continental monsoon climate zone, with long
winters and short summers. The average winter temperature is about −20 degrees Celsius
and the average summer temperature is about 23 degrees Celsius [42,43]. Harbin is not only
the core area for economic development in Northeast China, but it is also an important city
for population import and export, and it had a permanent population of 9.614 million [43].
Due to the large urban population base and frequent urban construction activities, a
large number of green land, farmland, wetland, and other land use types have become
construction land. From 2011 to 2015, urban construction was for the creation of new
towns and new industrial areas. The land structure of new construction land was mainly
residential land, land for roads and transportation facilities, industrial land, and land
for logistics and warehousing, which all accounted for 73% of the space. In order to
represent the SUHI landscapes and UBGLs directly, we chose the main urban areas (Daowai,
Nangang, Xiangfang, Songbei, Pingfang, and Daoli Districts) with frequent population
activities and prosperous urban construction in Harbin as the study area; these areas have
a total area of 1651.44 km2 (Figure 1).
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Figure 1. Geographical location of the main urban area of Harbin.

2.2. Data Collection

The remote sensing image data of the Landsat TM/OLI_TIRS satellite, with a spatial
resolution of 30 m and cloud cover of less than 0.5%, were downloaded from the USGS
website (https://earthexplorer.usgs.gov/) for the dates of 12 August 2001 (Summer),
6 September 2007 (Late Summer), 4 September 2015 (Late Summer), and 4 September
2021 (Late Summer). We used ENVI 5.3 and ArcGIS 10.6 to preprocess these images, such
as radiometric calibration, atmospheric correction, and image clipping. The population
density data were derived from the global Open Space Population Research data website
(https://www.worldpop.org/), with a resolution of 100 m× 100 m. The night light datasets
were derived from DMSP-OLS and NPP-VIIRS data (https://payneinstitute.mines.edu/
eog/), the spatial resolutions of which were about 1000 m and 750 m, respectively.

2.3. Methods
2.3.1. Overall Workflow

First, in this study on the main urban area of Harbin city as the research area, we
obtained the spatial distribution of surface urban heat island intensity (SUHII) data and
land use (LULC) data through the 2001, 2007, 2015, and 2021 remote sensing data. And we
identified the grid scale with the most significant correlation between the different LULC
types and LST. Then, by utilizing the mosaic units to restructure the LULC data and SUHIs,
and by combining them with the cooling capacity supply–demand evaluation system, we
obtained the supply–demand dataset. At last, the cooling efficiency of the UBGLs was
measured from the perspectives of the coupling relationship and coordination by using
the linear regression equation and the coupling coordination model (CCD), respectively
(Figure 2).

https://earthexplorer.usgs.gov/
https://www.worldpop.org/
https://payneinstitute.mines.edu/eog/
https://payneinstitute.mines.edu/eog/
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2.3.2. Acquisition of LST and SHUIs

The Landsat remote sensing data and the radiative transfer equation (RTE) method
inversion of LST were used. The retrieval precision of this method has been proven to be
more accurate as its precision can reach 0.6 Celsius [28]. We corrected the Landsat remote
sensing data of the four base years into a UTM coordinate system, and then obtained the
LST using the RTE algorithm. The calculation process of the LST inversion is as follows:

Lλ = [εB(Ts) + (1 − ε) Latm, i ↓]τ + Latm, i ↑ (1)

where Lλ represents the thermal radiation intensity of the thermal infrared band; B(Ts)
is the ground radiance; ε is the surface emissivity; L↑ and L↓ are the upward radiance
and downward radiance, respectively; and τ represents the atmospheric transmissivity.
According to Plank’s law, B(Ts) can be calculated as

B(TS) = [Lλ − Latm, i ↑ −τ(1− ε)Latm, i ↓]/τε (2)

Ts = K2 / ln(K1 / B(Ts) + 1) (3)

where Ts is the LST; the K1 and K2 of the Landsat 5-TM sensor data are 607.76 Wm−2sr−1µm−1

and 1260.56 K, Band 6, respectively; and the K1 and K2 of the Landsat 8-TIRS sensor data
are 774.89 Wm−2sr−1µm−1 and 1321.08 K, Band 10, respectively. The RTE method was
performed with ENVI 5.3 software.

Due to the limitation of cloud cover, there are minor differences in the seasonal
effects of the remote sensing images in the four base years. Based on the results of the
normalization of the LST (NLST), the mean–standard deviation (STD) method was adopted
for the NLST (−1, 1) [44] to classify the thermal landscapes into five grades (Table 1). In
this way, the gradient division can not only avoid the error caused by different time phases,
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but can also make the temperatures more comparable. According to previous research, (5)
and (4), these should be understood to be SUHIs [45].

Table 1. Classification standards of the land surface urban heat island intensity (SUHII) grade.

SUHII Degree Grading Basis

Extreme SUHI area (5) SUHII > µ + STD
SUHI area (4) µ + 0.5 STD < SUHII ≤ µ + STD

Medium-temperature area (3) µ − 0.5 STD < SUHII ≤ µ + 0.5 STD
Weak SUCI area (2) µ − STD < SUHII ≤ µ − 0.5 STD

SUCI area (1) SUHII ≤ µ − STD
Note: µ represents the mean normalized land surface temperature (mNLST).

2.3.3. Selection of Optimal Mesh Size

In order to derive a reasonable mosaic size, we used the correlation between the
different types of UBGLs and the LST (SUHII). After the radiometric calibration and
atmospheric corrections of the 2001, 2007, 2015, and 2021 remote sensing images, using
ENVI 5.3 software, were conducted, we used the method of combining the remote sensing
parameters and the support vector machine algorithm to divide the pixels into different
LULC types for the purposes of visual interpretation and supervised classification. The
LULC were classified into 8 categories: cultivated land, forestland, grassland, ditch area,
lake area, pond area, river area, and non-blue–green space (it includes bare land and
construction area).

Since the cooling effect of UBGLs has a strong scale dependence, it is particularly
important to select the optimal scale for the mosaics [34,46,47]. We needed to find an
appropriate grid size. Therefore, after the mosaic grid was determined as the basic unit,
sample points were generated according to the grid graph data in order to meet the needs
of the statistical analysis [48]. In this study, we tried to resample the grid cell as an integral
multiple of 30 m to determine the correlation between the UBGL pattern indicators and
the LST. We used mosaics with side lengths of 300 m, 600 m, 900 m, 1200 m, 1500 m, and
1800 m to test the optimal mosaic scale. Through the trend and variation ranges of the
Pearson correlation coefficient, the optimal grid element that was sensitive and stable to
the response degree of LST to the UBGL/land use landscape type was determined; thus,
the next stage of the research was ready to begin.

2.3.4. Quantitative Evaluation of CESL and CEDL

In this paper, the cooling efficiency of the UBGLs depends on the coordination between
the UBGL cooling effect supply level (CESL) and the demand level of the SUHI for the
UBGL cooling effect (CEDL). In order to comprehensively reflect the distribution charac-
teristics of the landscape patterns in the main urban areas, and to effectively reduce the
information redundancy so as to better quantify the spatial differentiation of the landscape
spatial pattern, the experience of previous studies on UBGL/SUHI and the existence of the
collinearity between certain indicators were combined. Based on the grid–cell scale, we
selected six landscape pattern indicators for research: PD, LSI, AREA_MN, COHESION,
ENN_MN, and AI (Table 2).

(1) Construction of the CESL evaluation system

The CESL reflects the cooling capacity provided by UBGLs to relieve SUHI, which
depends on the UBGL conditions, as well as the LULC. Combined with the actual situation
of the study area, according to the correlation analysis results between the different UBGL
types and the LST (Table 3), the indicators with statistical significance were screened as the
CESL indicators. Therefore, the comprehensive index system of CESL consists of 2 main
indicators and 5 secondary indicators, namely AREA_MN, COHESION, AI, ENN_MN,
and PLAND.
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Table 2. The selected influencing factors in this study.

Landscape Pattern Index Formula Definition

Patch density
(PD)

1
A

M
∑

i=1
Ni

The number of landscape
patches per unit area

Landscape shape index
(LSI) 0.25E

√
A

The shape index of
landscape patches

Mean patch area
(AREA_MN) A/N

The average value of patch
area of a certain type of

landscape

Patch cohesion index
(COHESION)

1−

n
∑

j=1
pij
∗

n
∑

j=1
pij
∗
√

aij
∗

[1− 1√
z

]−1
× 100

Physical connectivity of
the same type of plaque

Euclidean nearest
neighbor index

(ENN_MN)
hij

The dispersion degree of
patch distance of the same

type

Aggregation index (AI) 100aij/max(aij)
The degree of landscape

patches gathered and
connected

Table 3. Summary of Pearson correlation between the UBGL pattern index and the LST.

Type
Landscape

Pattern
Index

2001 2007 2015 2021

UGL

PD −0.020 −0.048 −0.035 0.030
LSI 0.187 ** −0.001 −0.006 0.432 **

AREA_MN −0.446 ** −0.430 ** −0.343 ** −0.337 **
COHESION −0.603 ** −0.639 ** −0.638 ** −0.120 **
ENN_MN 0.353 ** 0.412 ** 0.403 ** 0.048

AI −0.708 ** −0.589 ** −0.635 ** −0.316 **

UBL

PD −0.295 ** −0.201 ** −0.174 ** −0.122 **
LSI −0.198 ** −0.142 ** −0.153 ** −0.234 **

AREA_MN 0.040 −0.025 −0.202 ** −0.532 **
COHESION 0.078 0.125 * −0.130 ** −0.488 **
ENN_MN 0.086 −0.047 0.035 0.225 **

AI 0.193 ** 0.151 ** −0.046 −0.377 **

UBGL

PD −0.025 ** −0.056 * −0.048 0.022
LSI −0.146 ** −0.026 −0.041 0.361 **

AREA_MN −0.443 ** −0.422 ** −0.366 ** −0.476 **
COHESION −0.613 ** −0.656 ** −0.752 ** −0.640 **
ENN_MN 0.413 ** 0.480 ** 0.510 ** 0.378 **

AI −0.697 ** −0.598 ** −0.718 ** −0.684 **
Note: ** indicates p < 0.01 and * indicates p < 0.05.

(2) Construction of the CEDL evaluation system

The CEDL reflects the level of cooling capacity required to mitigate SUHIs, which
is determined by SUHI conditions, the LULC, the population, and the economic level.
Similarly, according to the correlation analysis results of SUHI landscapes and the LST
(Table 4), the significantly related indicators were selected as the CEDL indicators. Pop-
ulation density refers to the number of people per unit area, which reflects the human
demand for alleviating the cooling effect of SUHIs. The intensity of economic activities and
human activities reflects the financial strength of a city. The higher the regional financial
strength, the stronger the measures taken to alleviate SUHI (such as the construction and
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management capacity of urban green spaces and water bodies, the purchasing power of
indoor cooling facilities, etc.), and the easier it is to avoid the harm caused by SUHIs [21].
Furthermore, as important indicators reflecting human activities, the urbanization level,
economic activities, and night light data were normalized due to the different times of
DMSP-OLS and SNPP-VIIRS data. Therefore, we selected 3 main indicators and 8 sec-
ondary indicators for SUHI landscapes, which are LSI, AREA_MN, COHESION, ENN_MN,
AI, PLAND, POP_density, and DN.

Table 4. Pearson correlation between the SUHI landscape pattern index and the LST.

Type
Landscape

Pattern
Index

2001 2007 2015 2021

SUHI

PD −0.038 0.004 −0.001 0.013
LSI −0.218 ** −0.155 ** −0.315 ** −0.164 **

AREA_MN 0.525 ** 0.827 ** 0.872 ** 0.853 **
COHESION 0.242 ** 0.525 ** 0.486 ** 0.508 **
ENN_MN −0.106 ** −0.385 ** −0.335 ** −0.432 **

AI 0.238 ** 0.506 ** 0.498 ** 0.479 **
Note: ** indicates p < 0.01.

(3) Indicator processing and weight calculation

According to the above results, we calculated the average values for each index of
the CESL and CEDL in each grid. Due to the different index dimensions selected, the
minimum–maximum normalization method was adopted to process each index value in
order to eliminate the differences in the dimensions and the orders of magnitude of each
positive and negative index.

N+ =
X−minX

maxX−minX
(4)

N− =
maxX− X

maxX−minX
(5)

where N+ is the normalized value of the positive indicator, N− is the normalized value of
the negative indicator, X is the original value of each indicator, maxX is the maximum value
of each indicator, and minX is the minimum value of each indicator.

This study standardized the various indexes of comprehensive evaluation. The entropy
method is an objective weighting method that determines the weight of an index according
to the amount of information contained in the index value. Based on the principle of degree
dispersion, the smaller the entropy of an index is, the greater the variation degree of the
index value; in addition, the more information it provides, and the greater the role it plays
in the comprehensive evaluation, the greater the weight of the index should be [49]. The
calculation formula for this is as follows:

P =
x

∑m
i=1 x

(6)

e = −k∑m
i=1 lnP, k =

1
lnm

(7)

g = 1− e (8)

W =
g

∑n
j=1 g

(9)

where p is the proportion of the jth index of the ith grid cell; m is the number of indicators;
e is the entropy value of the jth index; and g is the coefficient of variation of the jth index,
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whereby the larger g is, the more obvious the effect of the index on the research object is,
and thus the better the index. The weight of each factor in the index layer of the CESL and
CEDL was calculated with the entropy method. The evaluation index system and weight
calculation result W are as follows (Table 5).

Table 5. Evaluation index system of the CESL and CEDL in the study area.

Destination Layer Main Index Secondary
Index Indictor Meaning Property Weight

CESL

UBGL landscape
supply

capacity level

AREA_MN
(UBGLs)

Reflects the degree
of UBGL patch

fragmentation per
unit area

Positive 0.675

COHESION
(UBGLs)

Reflects the
physical

connectivity of
UBGL patches

Positive 0.019

AI (UBGLs)
Reflects the

aggregation degree
of UBGL patches

Positive 0.022

ENN_MN
(UBGLs)

Reflects the degree
of dispersion

between UBGL
patches

Negative 0.097

LULC supply
capacity level

PLAND
(UBGLs)

Reflects the size of
the UBGL patch Positive 0.187

CEDL

SUHI landscape
demand capacity

level

LSI (SUHIs)
Reflects the degree

of complexity of
the SUHI patch

Negative 0.018

AREA_MN
(SUHIs)

Reflects the degree
of SUHI patch

fragmentation per
unit area

Positive 0.271

COHESION
(SUHIs)

Reflects the
physical

connectivity of
SUHI patches

Positive 0.009

AI (SUHIs)
Reflects the

aggregation degree
of SUHI patches

Positive 0.008

ENN_MN
(SUHIs)

Reflects the degree
of dispersion

between SUHI
patches

Negative 0.151

LULC demand
capacity level

PLAND
(SUHIs)

Reflects the size of
the SUHI patch Positive 0.143

Population
economic level

POP_density
Reflects the human

demand for
cooling capacities

Positive 0.318

DN
Reflects the

economic capacity
to deal with SUHIs

Negative 0.082



Sustainability 2023, 15, 10919 10 of 22

2.3.5. The Analysis of the Relationship between the CESL and CEDL

In this study, we used a unitary linear regression analysis to study the correlation
between the supply and demand for the cooling capacity of UBGLs. A regression analysis
was used to assess the quantitative relationship of interdependence between the CESL
and CEDL.

2.3.6. Cooling Efficiency Analysis of UBGLs

In this study, the cooling efficiency of UBGLs was calculated by using the coupling
coordination degree model (CCD) approach. CCD synthesizes the coupling between two
elements or systems and is an effective evaluation tool to study the degree of equilibrium
development. The coupling coordination degree model was used to analyze the coupling
coordination degree of the CESL and CEDL (Equations (10) and (11)) in order to judge the
cooling benefit of UBGLs. The calculation formula for this is as follows:

CDi = 2×
√
(CESLi × CEDLi)/(CESLi + CEDLi) (10)

CCDi =
√

CDi × (a× CESLi + b× CEDLi) (11)

where CDi is the coupling degree of the CESLi and CEDLi of the grid cell i; CESLi is the
comprehensive supply evaluation index, CEDLi is the comprehensive demand evaluation
index, and the distribution interval of both is [0, 1]. Further, a and b are the weights of the
CESL and CEDL, respectively. In this study, supply and demand are regarded as equally
important, so a = b = 0.5. The larger the value, the higher the degree of coordination.

3. Results
3.1. Best Mosaic Size

Through using the grid size of the remote sensing data and the fishing net tool of
ArcGIS 10.6 software, we further set six mesh cell sizes as the above 300 m, 600 m, 900 m,
1200 m, 1500 m, and 1800 m, respectively. According to the different grid sizes, the Pearson
correlation coefficient values (p < 0.05) and variation ranges of the average grid LST and the
eight types of landscape PLAND in different years and different grid sizes were analyzed
with IBM SPSS Statistics 26 (Figure 3).

Through the calculated results, the degree of correlation approaching zero was found
at 600 m for all types of landscapes in 2001, and the correlation degree of each landscape
was the worst at 900 m in 2007, 2015, and 2021. Moreover, the correlation coefficients of
the four time nodes varied greatly in the range of 300–900 m. The correlation coefficients
of the pond area landscapes and river area landscapes fluctuated significantly under
different mosaic sizes, and the correlation coefficients of the two landscapes were higher at
1200 m and 1800 m, with a relatively stable trend. According to the above analysis, 1200 m
is the most representative and optimal grid size for the landscape pattern analysis in this
study; this was determined based on the variation range and sensitivity degree of various
landscape correlation coefficients in four different base years and six different mosaic sizes.
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3.2. Spatial Distribution and Variation of SUHIs and UBGLs

In terms of the temperature partition during 2001–2021 (Table 6), the strong SUHIs
stabilized at about 21%. The proportion of normal SUHIs fluctuated little and increased
steadily, with an overall increase of 1.0%. The middle temperature fluctuated greatly in the
region, and showed a decreasing trend as a whole, with an overall decrease of 3.0%. The
proportion of the SUCI landscapes fluctuated greatly, and the increase was 2.0%.

Table 6. The area ratio of each temperature zone in the study area.

Primary
Zoning SUHII 2001 2007 2015 2021

Hot zone
5 21.3% 20.8% 21.2% 21.2%
4 14.0% 15.3% 14.6% 15.1%

Normal zone 3 29.8% 27.5% 30.0% 26.8%

Cold zone
2 20.0% 15.7% 10.4% 15.8%
1 14.8% 20.7% 23.7% 21.0%

From the perspective of spatial distribution, the SUHI patches in the old town form a
gradual spreading trend from the inside to the outside; at the same time, in the new town,
the isolated SUHI patches, led by Songbei District, were gradually expanding, and the
connectivity of SUHI patches in Pingfang District was gradually increasing and spreading
toward the old town. The above situation confirms that the construction of new urban
areas will lead to the formation of a SUHI region. In addition, the SUHI patches in the
outskirts of Daoli District were gradually decreasing, which may be related to the policy of
cultivated land protection and the trend toward afforestation in recent years (Figure 4a).
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Figure 4. The distribution map of SUHI landscapes (a)/LULC types (b) for the main urban areas of
Harbin from 2001 to 2021.

According to the spatial distribution of the LULC from 2001 to 2021 (Table 7 and
Figure 4b), the cultivated land and NBGS areas were the most dominant landscapes in the
urban areas, and were also the main landscape types used in land use transfer. During
the studied 20 years, the cultivated land decreased by 237.28 km2 and NBGS decreased by
68.41 km2.

Table 7. Area of land use landscape types in the study area.

Land Use
Types

2001 2007 2015 2021

Area (ha) Ratio (%) Area (ha) Ratio (%) Area (ha) Ratio (%) Area (ha) Ratio (%)

Grassland 18,172.71 11.00 8898.26 5.39 8457.88 5.12 26,348.09 15.95
Pond area 621.81 0.38 174.87 0.11 541.44 0.33 528.75 0.32

NBGS 82,768.60 50.12 92,027.47 55.73 94,994.48 57.52 75,928.03 45.98
Cultivated

land 56,311.38 34.10 56,781.32 34.38 48,803.57 29.55 32,583.02 19.73

Ditch area 33.87 0.02 13.21 0.01 117.07 0.07 162.33 0.10
River area 2753.46 1.67 2746.98 1.66 7148.34 4.33 13,957.83 8.45
Pond area 353.79 0.21 400.68 0.24 722.61 0.44 888.48 0.54
Forestland 4128.57 2.50 4098.39 2.48 4358.80 2.64 14,747.66 8.93

Total 165,144.18 100.00 165,144.18 100.00 165,144.18 100.00 165,144.18 100.00

With the passage of time, the proportion of river areas increased rapidly, from 1.67% to
8.45%, and reached its highest in 2021. The forestland and grassland areas showed modest
increases, 6.33% and 4.85%, respectively. Other UBGL landscape types were not found to
be advantageous landscape types, and they also changed sizes for unclear reasons. It is
worth noting that, combined with the spatial distribution of SUHIs and UBGLs, the scale
growth led by river areas had greatly helped to form the local SUCI landscape. In 2021, the
expansion of forestland and grassland in the suburban area reduced the degree of urban
enclave expansion, and the expansion became scattered.

3.3. Spatial Distribution and Variation in the CESL, CEDL, and CCD

The results of the CESL and CEDL were divided into seven types via a natural break-
point method: extremely low supply/demand (1), low supply/demand (2), relatively
low supply/demand (3), medium supply/demand (4), relatively low supply/demand (5),
high supply/demand (6), and extremely high supply/demand (7). And we divided the
coordination types into the following seven levels: extreme dissonance (0 < CCD < 0.2),
moderate dissonance (0.2 ≤ CCD < 0.3), mild dissonance (0.3 ≤ CCD < 0.4), borderline
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dissonance (0.4 ≤ CCD < 0.5), based coordination (0.5 ≤ CCD < 0.6), medium coordination
(0.6 ≤ CCD < 0.7), and good coordination (0.7 ≤ CCD < 1.0).

The CESL results are shown in Figure 5a–d. The high-value areas of the CESL were
mainly distributed in the outer ring area (i.e., to the west of Songbei District, the west
of Pingfang District, the west of Nangang District, the east of Daowai District, etc.). The
population density in these areas was low, and the coverage rate of the UBGL landscape,
which was mainly cultivated land, was high. The low value areas of the CESL were found
in the old town center. With continuous urban expansions in the past 20 years, the supply
grade of the old town and the new urban area was gradually decreasing. Meanwhile,
with the expansion of the scale of SUHIs and due to the increase in the population density,
the low-supply-grade areas were also gradually spreading, and the high/medium-supply
areas were gradually decreasing into low-supply areas.
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The CEDL results are shown in Figure 5e–h. The high-value areas were mainly
distributed in the construction land of the old town and the new urban area with no
significant change being shown throughout the 20 years except that the CEDL was generally
high in 2007. By taking the center of Songbei District, the dense area of the old town, and
the center of Pingfang District as three core areas, the demand capacity gradually decreased
from the inside to outside. This finally formed a situation of gradual transition between
the three cores. The low CEDL value areas were mainly distributed in Songhua River
Basin and to the southwest of the study area. The reason for the low demand was that
the low CEDL value areas existed in rivers, wetlands, lakes, arable land, and other areas
where the population density was low, and where the infrastructure construction was
relatively backward. In general, in the past 20 years, the degree of demand for SUHI
landscapes for UBGLs remained essentially unchanged, and the cooling capacity of UBGL
landscapes in the old town and the new urban area was found to always be at a relatively
high/high level.

The cooling efficiency results for CCD-based UBGLs from 2001 to 2021 are shown
in Figures 5i–l and 6. The low-value areas of the CCD were mainly located in Songhua
River Basin, which is southwest of the study area, and in the old town of Daoli District
and Daowai District, which are scattered in the boundary areas of the study area. The
high-value areas of the CCD were mainly distributed in the southern suburbs of the study
area. During the 20-year study period, the CCD values first decreased and then increased
in most of the areas of Songbei District. Likewise, in the upper reaches of Songhua River,
the CCD value first increased and then decreased. These areas were mostly new urban
construction areas and wetland construction areas, and maintained a high cooling capacity
supply during the 20-year study period. The CCD value in the downtown area has steadily
increased over the past 20 years, but it is still in a state of moderate dissonance or mild
dissonance. In addition to the above regions, the overall regions were mainly classified
as mild dissonance, borderline dissonance, and based coordination. In 2021, the based-
coordination-type regions were scattered in the suburbs, while the mild dissonance and
borderline dissonance regions were concentrated in the riverside zone of the Songhua River
region and suburbs.

3.3.1. Coupling Relationship between the CESL and CEDL

Due to the large differences in the natural background and socioeconomic characteris-
tics of the different mosaics, we specifically chose new and old urban regions with strong
economic development as the typical supply and demand correlation areas in order to
better understand the relationship between the CESL and CEDL in different locations. The
new districts include Jiangbei New Town in Songbei District, Qunli New Town in Daoli
District, and Hanan New Town in Pingfang District. The old town is located at the junction
of Daoli District, Daowai District, Nangang District, and Xiangfang District.

As shown in Figure 7, only the CESL and CEDL in Jiangbei New Town had a weak
positive association in 2001, whereas the CESL and CEDL in other years and regions had
a negative correlation. The supply of UBGL cooling capacity in new urban areas may
not meet demand due to the net increase in impervious surfaces in high-demand areas
with a rapid economic development, or due to the low supply efficiency of UBGL cooling
capacities in newly built urban parks and wetland parks.

Meanwhile, through Figure 7, we discovered regional disparities in the CESL and
CEDL of the four typical regions. By comparing the slope of the fitted line in the four
regions, we discovered that the Jiangbei region had the highest slope value, while the Qunli
region had the lowest. For the past 20 years, the slope in the Hanan region was constant,
ranging between 0.65 and 0.74. The phenomenon was mostly caused by the regional
disparity in the background difference between the supply and demand for UBGLs. As the
physical distance between the Qunli region and the old city is relatively short, (whereas the
Hanan region and Jiangbei region are far), the Qunli region has more advantages in terms
of urban construction, population migration, and aggregation, as well as in intensive land
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use and development, which thus leads to a decline in the CESL and the high level of CEDL.
When compared to the Qunli region, the UBGS resources in the Jiangbei region and Hanan
region had a stronger foundation, a moderate level of development, and a more balanced
supply and demand for cooling capacity. In fact, there are currently seven big urban parks
and wetland parks in the Qunli region. However, in comparison to the number and size of
urban parks, the urban buildings and impervious water cover (population is also part of
the reason) increase the need for UHI. The aforementioned factors may contribute to the
low slope of linear regression observed for Qunli New Town.
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3.3.2. Spatiotemporal Dynamic Evolution of CCD

Utilizing the methods from the above traditional study, we attempted to combine
the CCD values from several years of supply and demand values in order to describe the
dynamic evolution and trend of the CCD in the main urban area of Harbin over the last
20 years. By using the difference between the CCD in 2001 and the CCD in 2021, as well as
the difference between the CESL and CEDL, we documented the type of variation in the
CCD differences from 2001 to 2021.
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The specific types of coupling coordination are classified into three groups based on
the change in the gap between the CESL and CEDL: advanced cooling capacity, balanced
system development, and lagging cooling capacity. The results showed that system trans-
formation development is the primary mode of development in the main urban area of
Harbin. Figure 8 shows that the percentages of the region for advanced cooling capac-
ity, balanced system development, and lagging cooling capacity were 48.2%, 24.1%, and
27.8%, respectively.

We further divided the data, i.e., the data of Table 8, into 12 groups based on the
comparative classification of supply and demand given above, as well as by the specific
types of coupled coordinated development.
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As shown in Figure 8b, we found that the proportion of moderate-coordination-
advancing cooling efficiency was the highest, reaching 35.3%. Secondly, there are three
types that accounted for between 10% and 20%, namely the moderate-imbalance-hysteretic
cooling efficiency (18.4%), moderate-imbalance-systematic balanced development (13.7%),
and moderate-coordination-systematic balanced development (10%). The other specific
types accounted for less than 10%.
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Table 8. Classification categories for CCD dynamic evolution.

Composite
Category Coordination Level Subcategory

Specific
Exponential
Comparison

Subcategory

System
coordinated

development
CCD2021 − CCD2001 > 0.1 High

coordination

|CESL2021 − CEDL2021|> 0.1 Advancing cooling
efficiency

|CESL2021 − CEDL2021|≤ 0.1
Systematic
balanced

development

|CESL2021 − CEDL2021|< −0.1
Lagging
cooling

efficiency

System
transformation
development

0.1 ≥ CCD2021 − CD2001 > 0 Moderate
coordination

|CESL2021 − CEDL2021|> 0.1 Advancing cooling
efficiency

|CESL2021 − CEDL2021|≤ 0.1
Systematic
balanced

development

|CESL2021 − CEDL2021|< −0.1
Lagging
cooling

efficiency

0 ≥ CCD2021 − CCD2001 > −0.1 Moderate
imbalance

|CESL2021 − CEDL2021|> 0.1 Advancing cooling
efficiency

|CESL2021 − CEDL2021|≤ 0.1
Systematic
balanced

development

|CESL2021 − CEDL2021|< −0.1
Lagging
cooling

efficiency

System
uncoordinated
development

−0.1 ≥ CCD2021 − CCD2001
Serious

imbalance

|CESL2021 − CEDL2021|> 0.1 Advancing cooling
efficiency

|CESL2021 − CEDL2021|≤ 0.1
Systematic
balanced

development

|CESL2021 − CEDL2021|< −0.1
Lagging
cooling

efficiency

Figure 8a depicts cooling efficiency lag as the primary form of spatiotemporal dynamic
coupling in Songbei District (Jiangbei New Town), which is to the north of Songhua River.
The old town showed different levels of a balanced development of supply and demand.
From knowing the coordination type of the old town, most areas were developed in the
systematic balanced development approach. However, what merits special notice is that,
with the old city’s highly coordinated area as the core, the coupling coordination type
gradually turned outward into a state of serious imbalance, and then back into a state of
high coordination.

Figure 8c shows the proportion of the various coordination patterns in the six district-
level administrative regions. In the 20 years of urban development, Pingfang District
and Songbei District had the highest proportion of hysteretic cooling efficiency, i.e., 31%
and 39%, respectively. The proportion of the advancing cooling efficiency area in Daoli
District was the highest, reaching 66%. Nangang District had the highest proportion of
systematic balanced areas, reaching 40%. These results further confirm that the large-scale
construction of the new town caused a hysteresis effect in the cooling efficiency of the
UBGLs, and that the cooling effect of the urban parks (wetlands) that were built in support
was not significant.
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4. Discussion
4.1. Quantitative Evaluation of the CESL and CEDL

UBGLs can effectively alleviate UHIs, and the spatial distribution of UBGLs also
influences a UHI phenomenon to some extent. The surface heat flux increased in the study
area as a result of the change in the natural cover generated by the development of the new
district. Furthermore, the supply of freshly developed UBGLs does not satisfy the human
need for cooling capacities, thus resulting in a breakdown in the supply and demand
balance of the original UBGL cooling capacities. Therefore, it was necessary to combine the
CESL and CEDL systems to reveal the spatial heterogeneity of UBGL cooling efficiency in a
city, which we tested in the main urban area in Harbin. In this study, the CESL represents
the supply level of the cooling capacity provided by the UBGLs in order to alleviate the
SUHI, while the CEDL represents the demand level of the SUHIs for the cooling capacity of
UBGLs. A description of research results shows that the CESL and the CEDL presented a
strong spatial heterogeneity in the different regions. The CESL values showed a low trend
in the urban areas and a high one in the suburban areas. Additionally, a low-value area was
in the center, and this low-value area gradually expanded outward. Conversely, the CEDL
value was high in urban areas and low in suburban areas, and the value remained high.
Using the three new towns and the old town as examples, a deeper examination of the link
between the CESL and CEDL facilitated the study of the UBGLs’ spatial allocation and
provided an accounting basis for their supplementary demand. Through the accounting
results of the CESL and CEDL, the supply and demand relationship of the cooling capacity
can be quantitatively evaluated, which is helpful for the spatial configuration of UBGLs; in
addition, it can be adjusted according to the situation of the CESL and CEDL, which is the
basic prerequisite for achieving the balance between supply and demand.

4.2. The Improvement in the Cooling Efficiency Enlightens UBGL Planning

We measured the relationship between the CESL and CEDL via a CCD model and
a linear regression equation of one variable. The CCD’s dynamic coupling characteristic
was used to determine the equilibrium condition of the supply and demand in a specific
area, and the cooling efficiency of the UBGLs in the cities was further evaluated based on
the above method. For example, in the densely populated new and old town areas, there
was a poor cooling efficiency that was caused by low CESL values. In sparsely populated
suburban areas, higher CESL values also led to less desirable cooling efficiencies.

As one of the most famous cities in China, Harbin suffers from a serious imbalance
in cooling efficiency. In the past 20 years, the fragmented protection and construction of
Songhua River, wetland parks, and other green spaces still cannot solve the overall UHI ef-
fect. There is still a long way to go to create a green and resilient city that meets the demand
of humans for cooling effects. According to the concept framework of environmental justice
(EJ) and high-quality development, solving the spatial relationship between supply and
demand is an important aspect for urban planners to consider. How should one improve
the cooling efficiency of UBGLs? Or, in order to realize the energy transmission process
between the priority intervention planning area, how should one use the low-value area
of a CCD with a high supply and low demand to transport the excess energy for cooling
capacities to the low-value area of a CCD with a low supply and high demand? Such
problems and planning ideas help to ease the UHI effect, and can provide a new way of
thinking and scientific basis.

4.3. Limitations and Prospects

This paper was mainly based on the perspective of a grid geographic unit and land-
scape pattern. In this way, the measuring of the CESL/CEDL and the relationship between
them in a city as a basis for further evaluating the UBGLs’ cooling efficiency was conducted.
However, due to the limitation of the perspective and scale, the evaluation index is still
in the preliminary stage and needs to be further improved. How to improve the cooling
efficiency of UBGLs, how to mitigate the nature of SUHIs or to improve the coverage of
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UBGLs, as well as how to systematically and specifically configure UBGLs to address the
supply and demand mismatch have not yet been discussed. Therefore, measuring the
state of supply and demand for UBGLs requires a more multidimensional interpretation
in future studies. At the same time, besides starting from the perspective of landscape
patterns, targeted optimizations for the supply and demand flow configurations of UBGLs
should be carried out from more multidimensional perspectives. This is what the authors
of this paper will further consider and solve.

5. Conclusions

This paper is based on the perspective of landscape patterns, as well as the combination
of the Harbin city UBGL landscape index and the correlations between the LST. The best
grid cell was found to be 1200 m, and the CESL and the CEDL evaluation system was
established to measure the research area of the CESL and CEDL spatial relations and UBGL
cooling efficiencies. As a result, the main conclusions are as follows:

(1) According to the unitary linear regression calculation, the matching of the CESL and
CEDL of Qunli New Town showed obvious polarization, and the regions with high
supply and low demand and low supply and high demand were mostly similar, which
resulted in the lowest slope line of fitting among the four case areas. The results of
Jiangbei New Town, Hanan New Town, and the old town were more balanced than
those of Qunli New Town;

(2) It can be seen from the spatiotemporal dynamic evolution of the CCD that the per-
centages in the regions of advanced cooling capacity, balanced system development,
and lagging cooling capacity were 48.2%, 24.1%, and 27.8%, respectively. The pro-
portion of moderate-coordination-advancing cooling efficient areas was the highest,
reaching 35.3%. Secondly, the moderate-imbalance-hysteretic cooling efficient areas
represented 18.4%, the moderate-imbalance-systematic balanced development areas
were 13.7%, and the moderate-coordination-systematic balanced development areas
were 10%. In terms of spatial distribution, the old town showed different levels of
balanced development for supply and demand. From the coordination types of the old
town, most areas were developed with a systematic balanced development approach.
What merits special notice is that, with the old city highly coordinated area as the core
area, the coupling coordination type gradually turned outward into a state of serious
imbalance, and then back into a state of high coordination;

(3) The extremely unbalanced areas with low supply and high demand were accompanied
by a high population density and socioeconomic level, which are the main reasons for
low cooling efficiencies. Therefore, the construction intensity of such areas should be
controlled, the coverage of UBGLs should be emphasized, and the population size
should be managed. Other major reasons for low cooling efficiency are the extremely
disordered areas of high supply and low demand, high coverage rates of UBGLs, and
extremely low population densities. Therefore, the degree of utilization for cooling
capacities in such areas should be emphasized. In addition, the ecological corridor
constructions of UBGL cooling capacity flows can be considered, and these can enter
the urban area through the energy transportation of cooling capacities from other
areas, which can be achieved with a macro perspective of the city.
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