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Abstract: With the global advocacy of green lighting and the urgent need for energy saving and
carbon reduction, more and more street lighting applications have entered the era of being replaced
by light-emitting diode (LED) lighting sources. This paper presents a new LED streetlight driving
circuit applied to a direct current (DC)-input voltage source, which consists of a buck converter
combined with a flyback converter to reduce the number of circuit components required and to
recover the leakage energy of the transformer to improve energy conversion efficiency. In addition,
this study also completed the analysis of the operational principle of the new LED streetlight driving
circuit, and developed a prototype LED streetlight driver with DC-input voltage of 48V and output
power of 72 W (36 V/2 A). Finally, the measurement results of the prototype circuit show that the
output voltage ripple rate was less than 15%, the output current ripple rate was less than 6%, and the
circuit efficiency was as high as 91%.

Keywords: converter; direct current (DC)-input voltage source; driver circuit; light-emitting-diode
(LED); streetlight

1. Introduction

Road safety is a top priority when designing roads, not only for motorists, but also for
pedestrians. Street lighting is a key contributor to road safety. Proper street lighting can
improve visibility, make navigation easier, keep road users and pedestrians safe, and reduce
crime. Street lighting systems facilitate the use of roadways for drivers and pedestrians.
In addition to public safety, they also promote the effectiveness of roads as a means of
transportation [1,2].

A high-pressure mercury lamp is a type of gas discharge lamp, which is a light source
containing mercury vapor inside; it produces bright light in the form of gas discharge.
High-pressure mercury lamps have the advantage of high luminous efficiency and long
service life. As the lamp of a high-pressure mercury street lamp contains mercury, it has
associated environmental pollution problems; high-pressure mercury street lamps also
have high energy consumption, light decay, and are not environmentally-friendly lamps.
Therefore, their use has been greatly reduced. A high-pressure sodium lamp is also a type
of gas discharge lamp, which is not only used as a light source for road lighting, but also for
lighting scenes and other occasions. Both high-pressure mercury lamps and high-pressure
sodium lamps are high energy-consuming street lighting sources, commonly used for
outdoor lighting on roads, plazas, streets, stadiums, ball fields, and parks [3,4].

Streetlights are vital to modern life and are an important infrastructure for social
security and road safety. However, streetlights are high energy-consuming facilities for long-
term lighting, which are a burden to environmental protection, electricity consumption,
and government finance. In line with the global trend of clean energy, and taking into
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account energy saving and carbon reduction, as well as reducing the financial burden
of the government, streetlights, as an important component of urban lighting, can meet
the needs of environmental protection and energy saving using energy-saving and high-
efficiency light sources. LED streetlights, compared with traditional high-pressure mercury
and high-pressure sodium lamps, have a longer life span, lower energy consumption,
high lighting efficiency, and also provide a clearer view of the road at night and reduce
maintenance costs. As well, the costs of installing and maintaining LED streetlights have
virtually bottomed out. Consequently, LED streetlights have replaced traditional sources
of street lighting and play an important role in energy-efficient outdoor lighting [5–10].
Replacing old energy-consuming traditional streetlight sources with energy-efficient LED
lights not only reduces the environmental pollution caused by high-pressure mercury
lamps and carbon dioxide emissions, but also significantly reduces the power consumption
of streetlights and lowers the power generation load and costs for power companies. In
addition, complete replacement using energy-saving streetlights can provide a safer and
more comfortable living environment and quality of life for citizens, and enable a city to
move towards becoming a green city with environmental protection, energy savings, and
low-carbon emissions [11–15].

Solar energy is an inexhaustible sustainable source of energy. Solar photovoltaic panels
make it possible to convert solar energy into electric energy for streetlights. During the day,
energy from sunlight is captured by solar photovoltaic panels and converted into electrical
energy stored in the battery, and the energy of the battery can be used to power streetlights
at night [16–22]. The literature describes some LED driver circuits that are applied to a DC-
input voltage source, such as a solar photovoltaic panel or a battery, suitable for powering
LED street lighting applications [23–29]. Reference [27] proposed a Zeta/flyback integrated
DC-to-DC converter applied to photovoltaic power generation arrays. The integrated
converter combined a Zeta converter with a flyback converter, and the photovoltaic power
generation array was used as the input voltage source for LED street lighting systems or
digital signage. A battery charger and discharger are required when solar photovoltaic
panels are installed in an LED illumination system. In the presented solar photovoltaic
panel-powered LED lighting system, a Zeta converter was used as a battery charger and a
flyback converter was used as a battery discharger due to its simple circuit topology.

Reference [28] presented a full-bridge resonant DC-to-DC converter as an LED driver
circuit. In this circuit, an LED light was powered by two voltage sources connected in
series. One of the voltage sources supplied power directly to the main lamp, and the other
delivered low power across the full bridge for regulation. The presented driver utilized
the fifth harmonic component in the bridge output voltage, which reduced the size of the
reactive components and enabled lower switching losses in the full bridge to achieve high
efficiency. Reference [29] presented a two-stage DC-to-DC driver circuit for LED lighting
applied to automotive headlights. The front stage was a step-up DC-to-DC converter, and
the rear stage was a step-down converter. The entire driver circuit consisted of a boost
converter and two buck converters, and was used to drive two sets of automotive headlight
LED arrays.

A review of driver circuits for LED lighting applications classified according to whether
the topology is isolated or non-isolated is presented in [30]. For basic isolated topology
applied to a DC-input voltage source for LED streetlight applications, the main circuit is
typically a flyback converter with good electrical isolation characteristics. The disadvantage
of the flyback converter is its low transformer utilization due to its unidirectional operation;
a snubber circuit is recommended to discharge the energy stored in the leakage inductor of
the transformer when the power switch is turned off. For non-isolated converters that are
applied to DC-input voltage sources and supply power for LED streetlight applications
that are lower than the input voltage level, the main circuits are generally buck converters
and buck-boost converters. In addition, buck converters have the attractive features of
non-inverting output and continuous output current compared to buck-boost converters.
Therefore, this study proposed and developed a novel driver circuit applied to a DC-
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input voltage source for LED streetlight applications, which combines a buck converter
with a flyback converter into a single-stage single-switch non-isolated buck-flyback power
converter. In addition, the proposed driver circuit is suitable for applications where the
rated voltage of the LED is lower than the DC-input voltage level, and can recover the
energy stored in the leakage inductance of the transformer without using a snubber circuit
in order to improve the circuit efficiency.

This paper is organized as follows. Section 2 describes and analyzes operational
modes of the proposed LED streetlight driver circuit applied to a DC-input voltage source.
Section 3 presents design considerations regarding the proposed LED streetlight driver
circuit. In Section 4, experimental results for the prototype LED streetlight driver circuit
applied to a DC-input voltage source are demonstrated. Finally, conclusions and future
work are presented in Section 5.

2. Descriptions and Operational Modes Analysis of the Proposed LED Streetlight
Driver Circuit Applied to a DC-Input Voltage Source

Figure 1 shows the proposed driver circuit applied to a DC-input voltage source to
supply an LED streetlight module, which integrates a DC–DC buck converter with a DC–
DC flyback converter into single-stage power conversion topology and includes a power
switch, SB; two diodes, DB and DF; a transformer, TR,with a magnetizing inductor, LM,
and a leakage inductor, Llk; two output capacitors, CO1 and CO2; and the LED streetlight
module. In addition, the magnetizing inductor, LM, was designed to operate in continuous
conduction mode (CCM), and the proposed driver circuit recycles energy stored in the
leakage inductor, Llk, of the transformer, TR, in order to improve circuit efficiency.
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Figure 1. The proposed integrated streetlight driver circuit applied to a DC-input voltage source.

Figure 2 shows the equivalent circuit of the proposed LED streetlight driver applied
to a DC-input voltage source, obtained while analyzing the operational modes. In order
to analyze the circuit operation of the proposed LED streetlight driver, the following
assumptions were made:

(a) The magnetizing inductor, LM, of the transformer, TR, is designed to operate in contin-
uous conduction mode, and Llk1 and Llk2 are the primary-side leakage inductance and
the secondary-side leakage inductance of the transformer, TR, respectively.

(b) Assuming that the capacity of energy storage capacitors CO1 and CO2 is large enough,
the output voltage can be regarded as a constant value.
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(c) The rest of the circuit elements are considered ideal.
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Figures 3–7 show the operating modes and key waveforms of the LED streetlight driver
applied to a DC-input voltage source; the operational analysis is described in detail below.
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Operation Mode 1 (t0 ≤ t < t1): Figure 3 is an equivalent circuit diagram of operation
mode 1 of the proposed LED streetlight driver circuit powered by DC voltage. At time t0, the
power switch SB is turned on, the diode DB is reverse biased, and the input voltage source
VIN provides energy to the magnetizing inductor LM, the primary-side leakage inductance
Llk1, and the energy storage capacitor CO1 through the switch SB. The diode DF continues
the previous mode and presents a forward bias conduction, and the energy is released
from the secondary-side leakage inductance Llk2 to the LED streetlight module through the
diode DF. When the secondary-side leakage inductance current ILlk2 is equal to zero at t1,
operation mode 1 ends.

Operational Mode 2 (t1 ≤ t < t2): Figure 4 is an equivalent circuit diagram of operation
mode 2 of the proposed LED streetlight driver circuit powered by DC voltage. At t1, the
power switch SB is continuously turned on and the input voltage source VIN continues to
provide energy to the magnetizing inductor LM, the primary-side leakage inductance Llk1,
and the capacitor CO1 through the power switch SB. At the same time, the energy storage
capacitors CO1 and CO2 provide energy to the LED streetlight module. When the power
switch SB is turned off at t2, operation mode 2 ends.

Operational Mode 3 (t2 ≤ t < t3): Figure 5 is an equivalent circuit diagram of operation
mode 3 of the proposed LED streetlight driver circuit powered by DC voltage. At t2, after
the power switch SB is turned off, the diode DB is in a state of forward bias, and the
magnetizing inductor LM and the primary-side leakage inductance Llk1 provide energy to
the energy storage capacitors CO1 and CO2, the secondary-side leakage inductance Llk2, and
the LED streetlight module through diodes DB and DF. When the primary-side leakage
inductance current iLlk1 is equal to zero at t3, operational mode 3 ends.

Operational Mode 4 (t3 ≤ t < t4): Figure 6 is an equivalent circuit diagram of operation
mode 4 of the proposed LED streetlight driver circuit powered by DC voltage. At t3, the
power switch SB is still off, and the magnetizing inductor LM and the secondary-side
leakage inductance Llk2 provide energy to the capacitors CO1 and CO2, as well as the LED
streetlight module, via the diode DF. Energy storage capacitors CO1 and CO2 continuously
provide energy to the LED streetlight module. When the power switch SB is turned on
again at t4, operation mode 4 ends, and the circuit returns to operation mode 1.

3. Design Considerations Regarding Magnetizing Inductor LM and Output Capacitors
CO1 and CO2 in the Proposed LED Streetlight Driver Circuit

According to the volt–second balance theorem, the voltage occurred on the magne-
tizing inductor LM multiplied by the turn-on time of the switch is equal to the voltage
occurred on the magnetizing inductor LM multiplied by the turn-off time of the switch, and
can be expressed using the following formula:

VIN × D × TS =
NP
NS

× VOUT
2

× (1 − D)× TS (1)

where D is the duty cycle of the power switches and TS is the switching period.
The relationship between the output voltage VOUT and the input voltage VIN can be

expressed as
VOUT
VIN

=
NS
NP

× 2D
1 − D

(2)

The peak-to-peak value of the magnetizing inductor ∆ILM can be expressed as

∆ILM =
VIN × D × TS

LM
=

VOUT × NP × (1 − D)× TS
2 × LM × NS

(3)

In the boundary case between continuous conduction mode and discontinuous conduction
mode, the average value of the magnetizing inductor current ILMB can be expressed as

ILMB = IOB =
∆ILM

2
(4)
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Therefore, in order to operate in continuous conduction mode so that the magnetizing
inductor current does not drop to zero, the design consideration of the output current IO is
required to be larger than ILMB, as shown below:

IO > ILMB = IOB =
VOUT × NP × (1 − D)× TS

2 × 2 × LMB × NS
(5)

Therefore, the magnetizing inductor LM is required to be greater than the magnetizing inductor
in the boundary conduction mode LMB, and can be expressed as the following formula:

LM > LMB = VOUT×NP×(1−D)×TS
2×2×IOB×NS

= VOUT×NP×(1−D)
2×2×IOB×NS× fS

(6)

According to Equation (6), Figure 8 shows the relationship between the magnetizing
inductor in the boundary conduction mode LMB and the duty cycle D at different switching
frequencies.
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Figure 8. Magnetizing inductor in the boundary conduction mode LMB versus the duty cycle D under
different switching frequencies fS.

Assume that the average output current IOB in the boundary condition is 0.8 times
the average output current IO, and the value of the magnetizing inductor in the boundary
conduction mode LMB can be calculated as follows, using Equation (6) with a VOUT of 36 V,
an NP of 10, an NS of 9, an IOB of 1.6 A, and an fS of 50 kHz.

LLMB =
VOUT × NP × (1 − D)

2 × 2 × IOB × NS × fS
=

36 × 10 × (1 − 0.3)
2 × 2 × 1.6 × 9 × 50, 000

= 87.5 µH

In order to allow the magnetizing inductor current to operate in continuous conduction
mode when implementing the circuit, the magnetizing inductor LM was selected as 100 µH.

Regarding the design of the output capacitors CO1 and CO2, the peak-to-peak value
of the output voltage ripple ∆VOUT of the output capacitor under continuous conduction
mode can be written as

∆VOUT =
∆Q
CO1

2

=
2

CO1
× 1

2
× ∆ILM

2
× TS

2
=

∆ILM × TS
4 × CO1

(7)
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Substituting Equation (3) into Equation (7), the expression of the output voltage ripple
∆VOUT can be obtained using

∆VOUT =
VOUT × NP × (1 − D)× TS

2

16 × LM × CO1 × NS
(8)

The percentage of the output voltage ripple ∆VOUT/VOUT can be expressed as

∆VOUT
VOUT

=
NP × (1 − D)× TS

2

16 × LM × CO1 × NS
× 100% (9)

After calculating Equation (9), the design expressions of output capacitors CO1 and CO2
can be obtained using

CO1 = CO2 =
NP × (1 − D)× VOUT

16 × LM × NS × fS
2 × ∆VOUT

(10)

Substituting the circuit parameters into Equation (10), with a VOUT of 36 V, an NP of 10, an
NS of 9, an fS of 50 kHz, an LM of 100 µH, and a ∆VOUT of 0.5 V, the values of capacitors
CO1 and CO2 can be obtained as follows:

CO1 = CO2 =
NP × (1 − D)× VOUT

16 × LM × NS × fS
2 × ∆VOUT

=
10 × (1 − 0.3)× 36

16 × 100 × 10−6 × 9 × 50, 0002 × 0.5
= 22.85 µF

In order to reduce the ripple of the output voltage when implementing the circuit, the
output capacitors CO1 and CO2 were selected as 220 µF.

4. Experimental Results of Prototype LED Streetlight Driver Circuit Applied to a
DC-Input Voltage Source

Figure 9 presents a photograph of the LED streetlight module used for the experiment.
The specifications of the LED streetlight module used in the experiment are as follows:
the rated power was 72 W, the rated input voltage was 36 V, the rated input current was
2 A, the luminous flux was 6000 lm, the luminous efficiency was 63.7 lm/W, the color
temperature ranged between 5500 K~6500 K, the weight was 8.6 kg, and the service life of
the LED streetlight module was longer than 50,000 h.
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A prototype driver circuit from a DC-input voltage of 48 V was successfully imple-
mented and tested for powering a 72 W-rated LED streetlight module with an output rated
voltage of 36 V and an output rated current of 2 A. Tables 1 and 2 show the specifications
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and key components, respectively, used in the proposed LED streetlight driver circuit
applied to a DC-input voltage source.

Table 1. Specifications of the proposed LED streetlight driver circuit applied to a DC-input voltage source.

Parameter Value

DC-Input Voltage Source VIN 48 V
Rated Output Power PO 72 W
Rated Output Voltage VO 36 V
Rated Output Current IO 2 A

Table 2. Key components used in the proposed LED streetlight driver circuit applied to a DC-input
voltage source.

Component Value

Diodes D1, D2 SB1060FCT

Power Switches SB STF13NM60N

Transformer TR
Magnetized Inductor LM 100 µH
Leakage Inductance in the Primary-Side Llk1 1.86 µH
Leakage Inductance in the Secondary-Side Llk2 1.32 µH
Turns Ratio NP:NS 10:9

Output Capacitors CO1, CO2 220 µF/100 V

Figure 10 presents the measured input voltage VIN and input current IIN; their mea-
sured mean values were 47.61 V and 2.101 A, respectively. The measured switch voltage
VDS and switch current IDS are shown in Figure 11. Figure 12 presents the measured output
voltage VOUT and output current IOUT; their measured mean values were approximately
36 V and 2 A, respectively. Figure 13 shows measured ripple waveforms of output voltage
VOUT-ripple and output current IOUT-ripple.
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Table 3 shows the measured output voltage ripple and output current ripple of the
proposed LED streetlight driver circuit applied to a DC-input voltage of 48 V. The mean
value and peak-to-peak value of the output voltage were 36.014 V and 5.137 V, respectively.
In addition, the mean value and peak-to-peak value of the output current were 2.024 A
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and 112.24 mA, respectively. Moreover, the ripple factor of the output voltage (current)
was obtained by dividing the peak-to-peak value by the mean value of the output voltage
(current). According to this table, the measured output voltage ripples and current ripples
were 14.266% and 5.545%, respectively. Figure 14 presents a photograph of the proposed
driver circuit supplying the experimental LED streetlight module with a DC-input voltage
source of 48 V.

Table 3. Measured output voltage ripple and output current ripple in the proposed LED streetlight
driver circuit.

Parameters Values

Mean value of the output voltage 36.014 V

Peak-to-peak value of the output voltage 5.137 V

Ripple factor of the output voltage 14.266%

Mean value of the output current 2.024 A

Peak-to-peak value of the output current 112.24 mA

Ripple factor of the output current 5.545%
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Table 4 shows a comparison between the DC–DC LED driver in [26], which supplied
an 8 W-rated power with an input DC voltage of 12 V, and the proposed driver, which
supplied a 72 W-rated power with an input DC voltage of 48 V. As can be seen from Table 4,
both LED drivers used a single power switch, two capacitors, and a magnetic element; only
two diodes were required in the proposed driver compared to the three diodes required
in [26]. In addition, the circuit efficiency of the proposed LED driver was slightly better
than that of the driver in [26].



Sustainability 2023, 15, 10934 13 of 15

Table 4. Comparisons between the existing DC–DC LED driver in [26] and the proposed driver.

Item Existing DC–DC LED Driver in
Reference [26]

Proposed
DC–DC LED Driver

Circuit Topology Buck converter with coupled inductors Integration of a buck converter and a
flyback converter

Input DC Voltage 12 V 48 V
Output Power 8 W (8 V/1 A) 72 W (36 V/2 A)

Number of Required Switches 1 1
Number of Required Capacitors 2 2

Number of Required Magnetic Elements 1 1
Number of Required Diodes 3 2
Measured Circuit Efficiency 91% 91.8%

5. Conclusions

This study proposed and implemented an LED streetlight driver applied for a DC input
voltage source, integrating a buck converter with a flyback converter into a single-stage power
conversion topology with the function of recovering the leakage inductance energy from
the converter. In addition, the proposed circuit architecture reduced the number of power
switches and components used, reduced the cost of the driver circuit, and improved the
energy conversion efficiency. A prototype driver was developed and tested to supply a 72 W
LED streetlight module with a rated output voltage of 36 V and a rated output current of 2 A
with a DC-input voltage of 48 V. The experimental results for the presented LED streetlight
driver circuit demonstrated high circuit efficiency (>91%), and the ripple factors of output
voltage and output current were smaller than 15% and 6%, respectively. In the future, by
redesigning and adjusting the circuit parameters, the DC–DC LED streetlight driver proposed
in this paper can be applied to LED streetlights of different wattages. In addition, the proposed
driver can be applied to a DC-input voltage source, such as a solar photovoltaic panel or a
battery, and is suitable for LED street lighting applications.
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