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Abstract: This paper treats the lockdown of Hubei Province during the outbreak of COVID-19 in
early 2020 as a quasi-experiment, and uses the prefecture-level data of 328 cities in China to identify
the causal effects of population mobility and urban air quality. This paper uses the DID model to
eliminate the ‘Spring Festival effect’ with data from the same period of the lunar calendar in 2019 as
the control group, and finds the reduction in population mobility has a clear causal impact on the
improvement of urban air quality. The vast majority of air pollutants decreased, but ozone, which
has a special generation mechanism, increased. This paper also constructs 29-day panel data of
328 prefecture-level cities from January to February in 2020 to quantitatively estimate the impact of
population flow on urban air quality. After controlling for fixed effects, the results reveal that 1%
increases in intra-city and inter-city population flows correspond to respective increases of 0.433%
and 0.201% in the urban air quality index. Compared with inter-city flow, intra-city population flow
increases air pollution more severely.

Keywords: population mobility; urban air quality; quasi-natural experiment

1. Introduction

As China’s urbanization level continues to improve, economic activities are becoming
more and more concentrated at the spatial scale of cities, and urban air pollution is becoming
increasingly serious. Urban air quality is an important issue for people’s livelihoods
and is closely related to the health and well-being of urban residents, which is why the
issue of urban air quality has received widespread attention from all sectors of society in
recent years. The Chinese government attaches great importance to this issue, and green
development has become an important part of its new development concept. The Fifth
Plenary Session of the 19th Central Committee of the Communist Party of China proposed
that the 14th Five-Year Plan period should achieve new progress in the construction of
ecological civilization, a continuous reduction in the total emissions of major pollutants,
and a continuous improvement in the ecological environment. Urban air quality has
become one of the binding indicators for China’s economic and social development in
the 14th Five-Year Plan, and the ratio of good air quality days in cities at the prefecture
level and above should be increased to 87.5% (according to the 14th Five-Year Plan and
the Long-Range Objectives Through the Year 2035 for the National Economic and Social
Development of the People’s Republic of China). Therefore, it is important to study the
main determinants of urban air quality, identify the causal impact of these factors on urban
air quality, and quantify the magnitude of their impact in order to scientifically formulate
policies to solve urban air pollution problems.

Theoretical research into the determinants of urban air quality in China has produced
a wealth of results. The foremost determinants are urban traffic conditions and trans-
port infrastructure. Traffic congestion increases vehicle emissions and contributes to air
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pollution [1], while increased investment in transport infrastructure will improve urban
air quality by increasing road space [2]. For intra-city travel, the opening of rail lines is
effective in combating urban air pollution [3], but car restriction policies do not significantly
improve urban air quality [4]; for inter-city travel, the opening of high-speed rail signif-
icantly improves urban air quality, and the more extensive the high-speed rail network,
the more significant the emission reduction effect brought by high-speed rail [5,6]. The
second most important determinants of urban air quality are population concentration and
urban expansion. Xu et al. [7] argued that population agglomeration has a “U”-shaped
effect on environmental pollution emissions, Zhou and Zhang [8] found that new urbaniza-
tion aggravates air pollution through population and production factors, and Wang and
Shi [9] pointed out that low-carbon city construction can reduce haze pollution. Current
research on the impact of urban expansion on urban air quality has different views, with
some studies suggesting that urban expansion has a suppressive effect on environmental
pollution [10] and others arguing that urban expansion exacerbates urban air pollution [11]
and that urbanization is an important factor affecting urban air quality [12]. Some scholars
have also studied the effects of factors such as official turnover [13,14], export trade [15],
government behavior [16], and environmental regulation [17] on urban air quality. In
addition, some scholars have conducted research on the urban heat island effect [18] and
the impact of human activities on the ecological environment [19].

This paper seeks to examine the impact of population movements on urban air quality.
Within the city limits, human activity is clearly the most significant factor influencing air
quality, and the types of factors studied in the literature above are a reflection of human
activity. Population movement, which is directly related to urban traffic conditions and
transport infrastructure, is the underlying behavior in these human activities, and the
movement of people within and between cities forms the micro-foundation of population
clustering and urban expansion. In this sense, population movement may be a key factor
affecting urban air quality at a deeper level.

However, when identifying the causal impact of population mobility on urban air
quality, one faces endogeneity and estimation biases due to reverse causality. Numerous
studies have shown that urban air pollution has a significant negative impact on the
employment location of mobile populations [20], that population mobility prefers cities
with good ecological construction [21], and that a good environment attracts environmental
migrants and provides sustainable human capital for local economic development [22],
especially for high-human capital groups [23]. After the outbreak of COVID-19 in early
2020, the Chinese government promptly took various preventive and control measures to
effectively control the spread of the epidemic, one of the most significant measures being
the lockdown of cities. City closures are exogenous in that they directly reduce the scale of
population movement, both within and between cities, which cuts off the reverse causal
effect of urban air quality on population movement and provides a key exogenous window
of impact event for accurately identifying the causal effect of population movement on
urban air quality. It is due to this exogeneity that some foreign scholars have begun to study
the impact of various types of closure measures taken for epidemic prevention and control
on local air quality [24,25] and on major air pollutants [26]; some Chinese scholars have
also focused on the economic effects of epidemic prevention and control measures [27,28].
However, no results have yet emphasized the identification of causal relationships between
population movements and urban air quality, or the role of exogenous measures such as
city closures; additionally, quantitative measures of such causal effects are also lacking.

The possible marginal contributions of this paper lie in three areas. First, the topic is
novel, as although there is a large literature on the factors influencing urban air quality,
there are relatively few studies that have analyzed it from the perspective of population
mobility, and few studies that have quantified this effect. Second, a standard DID model is
used for causal identification, and data from the same period of the 2019 lunar calendar is
used as a control group to eliminate the “Chinese New Year effect”. Third, data crawling
is combined with matching use. This paper uses Python crawling techniques to obtain
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data on population movement, air quality and weather conditions, and matches these data
according to city names.

2. Data and Methods
2.1. Theoretical Framework

The difficulty in identifying the causal impact of population movements on urban
air quality is twofold. On the one hand, it is difficult to have a window period in which
population movement changes dramatically, and it is common for population movement
data to have a low degree of variability over sample periods; on the other hand, urban
air quality changes can, in turn, affect population movement behavior, increasing the
potential for endogeneity bias due to reverse causation. In early 2020, to prevent the spread
of COVID-19, cities in Hubei Province took measures to close the city under the unified
deployment and leadership of the Chinese government. Wuhan COVID-19 Pandemic
Prevention and Control Headquarters first issued Circular No. 1 on 23 January, suspending
public transport in the city and restricting passage out of Wuhan; subsequently, cities in
Hubei issued city lockdown circulars one after another, until Xiangyang was officially
closed on 28 January and all cities in the whole of Hubei went into lockdown. This
paper uses the city closure policy adopted by Hubei cities as an exogenous shock event
which both directly reduces population movement and does not have the reverse causal
endogeneity of urban air quality affecting population movement, providing a valuable
window period for identifying the impact of population movement on urban air quality.
Therefore, this paper employs the difference-in-differences (DID) method for modeling.
The difference-in-differences (DID) method is a commonly used analytical approach for
policy research, and its underlying principle is similar to that of a natural experiment.
It treats the implementation of a particular policy as a natural experiment, comparing
and analyzing the treatment group, which is subject to the policy, with the control group,
which is not affected by the policy, in order to examine the net impact of the policy on the
analyzed variables.

At the same time, as the outbreak of COVID-19 in early 2020 coincided with the Chi-
nese Lunar New Year holiday, the causal identification in this paper must take into account
the fact that, during the Lunar New Year holiday, most of China celebrates the Chinese New
Year, shutting down production and naturally reducing air pollution levels [29]. Therefore,
in this paper, we use data from 2020 and 2019, rather than just 2020, to avoid the “Chinese
New Year effect” [30]. Specifically, this paper uses data from the 23rd day of the 23rd month
of the lunar calendar to the 28th day of the first month of the lunar calendar in Hubei in
2020 and data from cities outside Hubei in the same period of the 2019 lunar calendar, with
the 2020 Hubei cities as the treatment group and the rest of the Chinese cities in the same
period of the 2019 lunar calendar as the control group. In the baseline regression part of the
causal identification, considering that, although the cities in Hubei declared city closures in
a slight sequence, most Hubei cities declared city lockdowns on 24 January, with six cities
declaring city lockdowns, and the vast majority of Hubei cities declaring city closures two
days before and after 24 January, this paper chooses to take 24 January, i.e., Lunar New
Year’s Eve, as the time point of the policy shock. This is also, in fact, the most critical date
for all cities in Hubei Province to actually adopt the city lockdown policy.

Analyzing the actual situation, the five Hubei cities that announced the implemen-
tation of city lockdowns on 25 and 28 January were actually close to the status of city
lockdown after other cities had announced it. Therefore, the choice of Lunar New Year’s
Eve as the policy impact point in the benchmark regression is in line with the real situation
of city lockdown in Hubei. However, in terms of the timing of the announcement, Wuhan
and Ezhou were closed on 23 January; Huangshi, Jingmen, Jingzhou, Huanggang, Xianning,
and Enshi were closed on 24 January; Shiyan, Yichang, Xiaogan, and Suizhou were closed
on 25 January; and Xiangyang was closed on 28 January. The timing of the announcement
of the city closure in each city in Hubei is sequential, and using 24 January as the timing of
the policy shock uniformly may weaken the credibility of the causal identification. There-
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fore, this paper also constructs a multi-period DID model to verify the robustness of the
benchmark regression by using the city lockdown dates announced by each city in Hubei
as the respective policy shock points.

In terms of specifically quantifying the magnitude of the impact of population move-
ment on urban air quality, this paper divides population movement at the city level into two
components: intra-city population flow, which refers to population moving within cities,
and inter-city population flow, which refers to population moving between cities. The
magnitude of the impact of these two types of population movement on urban air quality
may differ and needs to be measured separately. Based on this, this paper introduces the
intra-city population flow variable, lnincity, and the inter-city population flow variable,
lnoutcity. Baidu Migration provides data on the scale of these two types of population flow,
so this paper takes the intra-city travel intensity recorded by Baidu Migration, absolutizes
the index using the approach of Fang et al. [31], and then takes its logarithmic value as the
intra-city population flow variable, lnincity; then, the city in-migration scale index and city
out-migration scale index of Baidu Migration are absolutized, and their logarithmic values
are taken after summing to obtain a measure of the inter-city population mobility variable,
lnoutcity. In this section, intra-city population flow and inter-city population flow are used
as the main explanatory variables in turn, and static panel fixed effects models are used to
measure the magnitude of the specific effects of these two on urban air quality, respectively.

2.2. Model Selection

The baseline regression component of the causal identification in this paper sets up
a DID model, as shown in Equation (1), to identify whether a reduction in population
movement can have a causal impact on urban air quality improvement.

Urpolluit = α + βtreati ∗ postt + γXit + ui + ηt + εit (1)

Here, i and t denote city and time, respectively. The explanatory variable for urban
air quality, Urpolluit, is measured using a set of indicators, specifically the urban air
quality index, AQI, and levels of six major air pollutants, PM2.5, PM10, SO2, CO, NO2,
and O3. The main explanatory variable is treati ∗ postt, where treati is a dummy variable
for the treatment group within Hubei Province and postt is a dummy variable for the
implementation of the city closure policy in Hubei, with a value of 1 for New Year’s Eve
and beyond and 0 for before New Year’s Eve. Xit is a set of control variables specifically
including the local maximum and minimum temperatures, wind levels, and their squared
terms for that day. This paper further controls for city fixed effects, ui, and time fixed effects,
ηt, while εit is a random error term.

In this paper, a multi-period DID model, as shown in Equation (2), is set up in the
causal identification robustness test section.

Urpolluit = α + βDit + γXit + ui + ηt + εit (2)

The main explanatory variable, Dit, is the cross multiplier between cities in Hubei
Province and the implementation of city closure policies; if city i in Hubei Province an-
nounces the implementation of the city closure policy at time t, then the value of Dit for
that city at time t and later will be 1, otherwise it will be 0. The explanatory variable,
Urpolluit, remains logarithmic, and the control variables and fixed effects are set as shown
in Equation (1).
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Based on the causal identification, Equation (3) is set up in this paper to estimate the
magnitude of the effect of population movement on urban air quality.

Urpolluit = α + βXit + γZit + εit (3)

Here, i and t denote area and time, respectively. The explanatory variable, Urpolluit,
is also a set of indicators measuring urban air quality from various aspects, specifically
the urban air quality index, lnAQI, and the main air pollutants, lnPM2.5, lnPM10, lnSO2,
lnCO, lnNO2, and lnO3, all of which are taken as logarithmic values. The main explanatory
variable, Xit, is the intra-city population flow variable, lnincity, and the inter-city popu-
lation flow variable, lnoutcity, in that order. Zit is a set of control variables specifically
including the local maximum and minimum temperatures, as well as the wind level and
its squared term on a given day, while εit is a random error term. This paper uses a static
panel fixed effects model to estimate Equation (3), with standard error clustering at the
city level.

2.3. Data Sources

This paper constructs panel data covering 36 days for 328 prefecture-level cities in
China, matching three aspects: air quality, weather, and population movement. The air
quality-related data are crawled from the historical data of the China Air Quality Online
Monitoring and Analysis Platform (www.aqistudy.cn), including AQI, PM2.5, PM10, SO2,
CO, NO2, and O3 levels. Higher values of these data indicate poorer air quality. Weather-
related data were crawled from weather.com (www.tianqi.com) historical data, specifically
including the highest temperature of the day, the lowest temperature of the day, and
wind; population movement data were crawled from Baidu Migration (qianxi.baidu.com)
historical data, specifically including the urban migration size index and intra-city travel
intensity. The treatment group includes data for cities in Hubei for 36 consecutive days from
17 January to 21 February 2020, and the control group includes data for cities outside Hubei
for 36 consecutive days from 28 January to 4 March 2019. The population movement data in
this paper is sourced from Baidu Migration, which may lead to a potential underestimation
of population movement, as Baidu Migration is unable to track the movements of every
individual. However, this is the closest approximation of population movement data
available for this study.

As the population migration data in Baidu Migration are all relative indicators, this
paper follows the approach of Fang et al. [31] and absolutizes them. Fang et al. [31] first
collected the actual number of people entering and leaving Shanghai from 6–22 February
2020 from the National Earth System Science Data Centre, then compared the in-migration
scale and out-migration scale indices of Shanghai in Baidu Migration in the same period,
and estimated that the actual number of people corresponding to each unit of the city
in-migration and out-migration scale indices was 90,848 and the actual number of people
corresponding to each unit of intra-city travel intensity was 2,182,264 persons. This paper
uses their estimated conversion values and converts them to obtain the actual number of
people moving in and out of each city per day. Table 1 shows the descriptive statistics of the
raw data for the variable measures. In Table 1, “Unit” represents the unit of measurement
for the variable. “AQI” is a dimensionless index that does not have a unit. “Wind”
is categorized by wind strength levels and does not have a unit. “N” represents the
sample size.

www.aqistudy.cn
www.tianqi.com
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Table 1. Definition of variables and descriptive statistics.

Variable Unit N (Sample Size) Mean Std. Dev. Min Max

AQI / 11,808 83.693 56.235 0 500
PM2.5 µg/m3 11,808 56.134 46.426 0 536
PM10 µg/m3 11,808 84.740 66.863 0 1141
SO2 µg/m3 11,808 13.497 12.797 0 362
CO mg/m3 11,808 0.982 0.436 0.1 4.4

NO2 µg/m3 11,808 26.738 16.542 0 110
O3 µg/m3 11,808 71.397 24.838 4 294

Highest temperature ◦C 11,808 8.944 8.851 −25 33
Lowest temperature ◦C 11,808 −0.091 9.756 −38 25

Wind / 11,808 2.156 0.769 0 6
Num of people moving into city 10 K people 11,808 12.216 17.039 0.008 237.639

Num of people moving out of city 10 K people 11,808 12.167 15.314 0.017 199.394
Num of people traveling within the city 10 K people 11,808 964.674 226.978 125.240 1922.706

3. Results
3.1. Baseline Regression Test

Table 2 shows the estimation results of Equation (1), with the explanatory variables
in Columns (1)–(7) being AQI, PM2.5, PM10, SO2, CO, NO2, and O3, respectively. Mean-
while, Figure 1 displays the visualized results of the magnitude of the coefficient estimates
and their confidence intervals for the seven explanatory variables.

Table 2. Baseline regression for causal identification of reduced population movement to improve
urban air quality.

(1) (2) (3) (4) (5) (6) (7)
AQI PM2.5 PM10 SO2 CO NO2 O3

treati ∗ postt −40.129 *** −36.190 *** −37.691 *** −0.282 −0.174 *** −16.635 *** 6.193 ***
(5.445) (4.228) (4.139) (0.524) (0.038) (0.950) (1.878)

Lowest
temperature 0.530 ** 0.657 *** 0.624 ** −0.128 *** 0.000 0.030 −0.841 ***

(0.261) (0.204) (0.294) (0.047) (0.002) (0.062) (0.155)
Highest

temperature 2.917 *** 2.323 *** 3.603 *** 0.306 *** 0.023 *** 0.748 *** 1.416 ***

(0.337) (0.261) (0.398) (0.104) (0.003) (0.072) (0.136)
Wind −13.824 *** −8.991 *** −16.962 *** 0.092 −0.115 *** −5.717 *** −2.050

(2.737) (1.997) (3.295) (0.661) (0.025) (0.732) (1.251)
Lowest

temperature2 0.026 *** 0.021 ** 0.038 *** 0.001 0.000 * 0.011 *** −0.022 ***

(0.010) (0.008) (0.012) (0.002) (0.000) (0.003) (0.005)
Highest

temperature2 −0.016 −0.007 −0.034 *** 0.006 −0.000 *** 0.006 ** 0.057 ***

(0.011) (0.009) (0.012) (0.005) (0.000) (0.003) (0.005)
Wind2 1.350 ** 0.228 2.588 *** −0.335 *** 0.003 0.119 0.380

(0.526) (0.378) (0.653) (0.127) (0.004) (0.144) (0.232)
Constant 103.052 *** 71.869 *** 93.102 *** 7.790 *** 0.972 *** 50.886 *** 51.997 ***

(4.125) (3.176) (4.945) (0.815) (0.034) (1.014) (2.185)
Sample size 11,808 11,808 11,808 11,808 11,808 11,808 11,808
R-squared 0.566 0.594 0.602 0.618 0.575 0.738 0.508
Time FE YES YES YES YES YES YES YES

Urban FE YES YES YES YES YES YES YES

Note: Figures in brackets are clustering robustness criteria errors; *, **, and *** denote significance levels of 10%,
5%, and 1%, respectively.
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Figure 1. The coefficient estimates and confidence intervals for the seven explanatory variables. Note:
“did” represents the interaction term “treat ∗ post”.

In Table 2, when the explanatory variable is the AQI, the treati ∗ postt coefficient is
significantly negative, indicating that the reduction in population movement has led to an
overall improvement in urban air quality. The treati ∗ postt coefficients are also significantly
negative when the explanatory variable is one of the major air pollutant indicators (PM2.5,
PM10, CO, and NO2), indicating that the reduction in population movement has led to a
significant reduction in the concentration of these four major air pollutants in the air. When
the explanatory variable is SO2, the treati ∗ postt coefficient is negative but not significant.
Although the reduction in population movement leads to a reduction in the concentration
of SO2 in the air, this causal effect is weak and does not pass the statistical significance
test. In addition, the treati ∗ postt coefficient is significantly positive when the explanatory
variable is O3, indicating that the reduction in population movement leads to a significant
increase in the concentration of O3 in the air instead.

3.2. Parallel Trend Hypothesis Test

For the results of the DID method test to be unbiased and reliable, its experimental
and treatment groups must satisfy the parallel trend assumption. In this paper, we adopt
the event study method, referring to Luo et al. [32], use New Year’s Eve as the event
impact point, and select four days before and after for the parallel trend test. If the parallel
trend hypothesis holds, then there should be no significant difference in the trend of urban
AQI changes between the treatment and control groups before New Year’s Eve. Figure 2
shows the results when the explanatory variable is the urban AQI. The x-axis represents
the time before and after policy implementation, while the y-axis represents the impact
of the policy effects. The results indicate that there is no significant difference in the
overall urban air quality change trend between the treatment and control groups before
the policy shock, i.e., the parallel trend hypothesis holds; after the policy shock occurs,
there is a significant negative effect on the urban AQI. To save space, we have provided
the parallel trend hypothesis test results for the six major air pollutants as explanatory
variables in Appendix A. Please refer to Figures A1–A6 for details. Five of major air
pollutants passed the parallel trend hypothesis test, demonstrating that, overall, the baseline
regression results in Table 2 are plausible. Only SO2 does not pass this test, which does
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not fundamentally change the conclusions, as the interaction term treati ∗ postt is also not
significant when the explanatory variable in the baseline regression is SO2. This is another
way of demonstrating the heterogeneous causal impact of reduced population movements
on different air pollutants.
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3.3. Placebo Test

There may be other unobservable events prior to the occurrence of the city lockdown
policy in Hubei cities in early 2020 that affect the veracity of the estimation results in this
paper. To rule out the potential influence of such unobservable times on the estimation
results, this paper uses a dummy policy shock point in time as a placebo method to identify
whether such potential influence is real. A placebo test was conducted by using January
15, the date when the Chinese National Center for Disease Control and Prevention (CDC)
initiated the Level 1 response, January 11, the date when the CDC provided PCR test strips
to Wuhan, and January 8, the middle date of the two sessions in Wuhan, as the dummy
shock dates in the original sample interval. To save space, we present the empirical results
in Appendix B. The results of the placebo test for the explanatory variable AQI are shown
in Table A1, where the treati ∗ postt coefficients for Columns (1)–(3) were 1.038, 3.626, and
−2.036, respectively, which did not pass the significance test, indicating that using these
three time points as the policy shock dates did not have a significant impact on the overall
air quality of the city. This suggests that using these three time points as policy shock dates
did not have a significant effect on the overall urban air quality. The exogenous policy
shocks in this paper are valid and the findings are robust, given that the causal effect of
reduced population movement on urban air quality improvement due to the city lockdown
policy in Hubei is real.

3.4. Robustness Tests

To further test whether the causal effect of reduced population mobility on urban air
quality improvement is robust and reliable, this paper conducts robustness tests in two
ways. Firstly, this paper replaces the explanatory variables. In this paper, the DID model of
Equation (1) is estimated again by taking the logarithmic values of each measure of urban
air quality in the baseline regression, and the results obtained are shown in Appendix C.
Secondly, this paper uses a multi-period DID model. In this paper, the multi-period DID
model of Equation (2) is estimated, and the results are shown in Appendix D.
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The treati ∗ postt coefficients of interest in this paper in Appendix C Table A2 are
significantly negative when the explanatory variables are lnAQI, lnPM2.5, lnPM10, lnSO2,
lnCO, and lnNO2, indicating that under the influence of reduced population movement,
the urban air quality index, AQI, is significantly lower and the concentrations of the
major air pollutants PM2.5, PM10, SO2, CO, and NO2 in the air are also significantly
lower. Compared to the baseline regression, the interaction term (treati ∗ postt) coefficient,
although becoming significant, is only significant at the 10% level when the explanatory
variable is lnSO2. When the explanatory variable is lnO3, the interaction term (treati ∗ postt)
is significantly positive, implying that the concentration of the main air pollutant (O3) in
the air increases significantly under the influence of reduced population movement, which
is consistent with the baseline regression and the results are robust.

From the results in Appendix D Table A3, the results obtained from the Dit coefficients
of interest in this paper remain consistent with the baseline regression under multi-period
double difference estimation, again confirming the robustness of the causal identification
results in this paper. Reduced population mobility does have a significant causal impact on
urban air quality improvement.

3.5. Measuring the Impact of Intra-City Population Flow on Urban Air Quality

This paper empirically tests Model (3) with lnAQI, a measure of urban air quality, and
lnPM2.5, lnPM10, lnSO2, lnCO, lnNO2, and lnO3, the main explanatory variables, as the
explanatory variables, respectively, and lnincity, a measure of intra-city population flow,
as shown in Table 3.

Table 3. Results of measuring the impact of intra-city population flow on urban air quality.

(1) (2) (3) (4) (5) (6) (7)
lnAQI lnPM2.5 lnPM10 lnSO2 lnCO lnNO2 lnO3

lnincity 0.433 *** 0.593 *** 0.516 *** 0.285 *** 0.273 *** 0.474 *** 0.050 ***
(0.034) (0.041) (0.039) (0.023) (0.023) (0.019) (0.014)

Lowest
temperature 0.001 0.021 *** 0.012 *** −0.009 *** 0.013 *** 0.014 *** −0.032 ***

(0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001)
Highest

temperature 0.010 *** 0.010 ** 0.015 *** 0.017 *** 0.010 *** 0.025 *** 0.024 ***

(0.003) (0.004) (0.003) (0.003) (0.002) (0.002) (0.001)
Wind −0.118 *** −0.171 *** −0.164 *** −0.147 *** −0.110 *** −0.211 *** 0.014

(0.028) (0.041) (0.040) (0.027) (0.024) (0.024) (0.014)
Lowest

temperature2 −0.000 *** 0.000 0.000 −0.000 *** 0.000 0.000 ** −0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Highest

temperature2 −0.000 −0.000 0.000 0.000 −0.001 *** −0.000 *** 0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Wind2 0.002 −0.020 ** 0.010 0.001 −0.008 −0.005 −0.004

(0.005) (0.009) (0.008) (0.006) (0.005) (0.005) (0.002)
Constant −2.403 *** −5.251 *** −3.951 *** −2.062 *** −4.196 *** −4.395 *** 3.286 ***

(0.523) (0.639) (0.598) (0.347) (0.360) (0.290) (0.210)
Sample size 9508 9508 9507 9508 9508 9508 9508
R-squared 0.125 0.212 0.127 0.187 0.194 0.428 0.265

FE YES YES YES YES YES YES YES

Note: Figures in brackets are clustering robustness criteria errors; **, and *** denote significance levels of 5%, and
1%, respectively.

The results in Table 3 show that intra-city population flow does increase urban air
pollution, both in terms of the urban air quality index indicator, lnAQI, and the main
air pollutant indicators, lnPM2.5, lnPM10, lnSO2, lnCO, lnNO2, and lnO3; all indicators
increase with an increase in the intra-city population flow, and all results pass the 1%
significance test.
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3.6. Measuring the Impact of Inter-City Population Flow on Urban Air Quality

This paper empirically tests model (3) with lnAQI, a measure of urban air quality, and
lnPM2.5, lnPM10, lnSO2, lnCO, lnNO2 and lnO3, the main explanatory variables, as the
explanatory variables, respectively, and lnoutcity, a measure of inter-city population flow,
as shown in Table 4.

Table 4. Measured impact of inter-city population flow on urban air quality.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnSO2 lnCO lnNO2 lnO3

lnoutcity 0.201 *** 0.324 *** 0.235 *** 0.127 *** 0.158 *** 0.166 *** 0.043 ***
(0.014) (0.017) (0.016) (0.010) (0.010) (0.009) (0.007)

Lowest
temperature 0.005 ** 0.028 *** 0.017 *** −0.007 *** 0.016 *** 0.017 *** −0.031 ***

(0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001)
Highest

temperature 0.011 *** 0.011 *** 0.015 *** 0.017 *** 0.010 *** 0.025 *** 0.025 ***

(0.003) (0.004) (0.003) (0.003) (0.002) (0.002) (0.001)
Wind −0.110 *** −0.160 *** −0.155 *** −0.142 *** −0.104 *** −0.204 *** 0.016

(0.028) (0.040) (0.039) (0.026) (0.023) (0.024) (0.014)
Lowest

temperature2 −0.000 *** 0.000 0.000 −0.000 *** 0.000 * 0.000 *** −0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Highest

temperature2 0.000 0.000 0.000 ** 0.000 −0.001 *** −0.000 0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Wind2 0.003 −0.018 ** 0.010 0.001 −0.007 −0.005 −0.003

(0.005) (0.008) (0.007) (0.005) (0.005) (0.005) (0.002)
Constant 2.245 *** 0.619 *** 1.635 *** 1.049 *** −1.593 *** 1.252 *** 3.617 ***

(0.138) (0.176) (0.159) (0.101) (0.096) (0.093) (0.069)
Sample size 9508 9508 9507 9508 9508 9508 9508
R-squared 0.131 0.239 0.130 0.187 0.220 0.396 0.271

FE YES YES YES YES YES YES YES

Note: Figures in brackets are clustering robustness criteria errors, *, ** and *** denote significance levels of 10%,
5% and 1%, respectively.

The results in Table 4 show that inter-city population flow increases urban air pollu-
tion. The urban air quality index indicator, lnAQI, and the main air pollutant indicators,
lnPM2.5, lnPM10, lnSO2, lnCO, lnNO2, and lnO3, all increase with inter-city population
flow and are significant at the 1% level.

4. Discussion
4.1. Reduced Population Movements Significantly Improve Urban Air Quality

The results in the causal identification section of this paper confirm that a reduction
in population movement can significantly improve urban air quality. After excluding the
Chinese New Year effect, the strict city lockdown policies in Hubei cities exogenously
restrict population movement, which fundamentally reduces all types of socio-economic
activities and, in turn, reduces the emission levels of most air pollutants, resulting in
significant improvements in urban air quality in the treatment group. However, it is also
important to highlight that there is variability in the causal impact of exogenous reductions
in population movement on various air pollutants, with significant reductions in PM2.5,
PM10, CO, and NO2 concentrations in the air, a statistically insignificant reduction in SO2
concentrations, and a statistically significant increase in concentrations of O3, which has a
complex generation mechanism. The lack of significant reduction in SO2 may be attributed
to the fact that the lockdown measures primarily targeted vehicle exhaust emissions, while
the emissions of sulfur dioxide could be more closely linked to heavy industries such as steel
plants and coal-fired power stations that continued operating during the lockdown period.
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Ozone concentrations increased significantly due to its specific generation mechanism.
Environmental science research explains that this is partly due to a reduction in NOx
concentrations from human activities due to city lockdown policies, which slows down
the rate of ozone decomposition, while increased human activity in the home leads to an
increase in VOCs concentrations; together, these factors accelerate ozone accumulation [33].
On the other hand, reduced haze due to reduced PM2.5 leads to easier penetration of
sunlight into the air, providing more energy for surface ozone production [34]. Lv et al. [35],
when studying why the greatly reduced traffic volume during the COVID-19 lockdown
in Beijing did not effectively reduce haze pollution, found that the reduction in traffic
volume resulted in a large-scale reduction in NOx emissions, but due to heating and other
human activities, volatile organic compounds were reduced on a relatively small scale,
resulting in an unbalanced reduction between them. This led to a significant increase
in atmospheric oxidation capacity in urban areas, resulting in increased ozone pollution.
Pei et al. [26] made use of observation data from remote sensing and field measurements
and concluded that stable HCHO concentrations in urban areas provided sufficient fuel
for the formation of O3 in the troposphere. HCHO is an important proxy for volatile
organic compounds. In addition, during the lockdown, NO in the atmosphere decreased
significantly and could not provide stable decomposition for O3, resulting in increased
ozone. The above findings remind us that for China to achieve the goal of new progress in
ecological civilization and sustainable improvement of the ecological environment, urban
air pollutants with different generation mechanisms should be classified and specifically
analyzed, and pollution reduction and emission reduction for various pollutants should be
achieved precisely and gradually through scientific and integrated planning.

4.2. Both Intra-City and Inter-City Population Flow Contribute Significantly to Urban
Air Pollution

According to the empirical results, for every 1% increase in intra-city population flow,
the urban air quality index rises by 0.433% and the concentrations of the main air pollutants
increase by 0.593% (PM2.5), 0.516% (PM10), 0.285% (SO2), 0.273% (CO), 0.474% (NO2), and
0.050% (O3). Of these six major urban air pollutants, PM2.5 was the most influenced by
intra-city population flow, followed by PM10 and NO2, which may be related to the fact
that intra-city population flow in China is dominated by motor vehicles, as fuel motor
vehicle exhaust is the main source of low-level emissions in Chinese cities; PM2.5 and
NOx are the main pollutants in the exhaust of fuel-fired motor vehicles, and PM10 is also
associated with motor vehicles.

According to the empirical results, for every 1% increase in inter-city population flow,
the urban air quality index increases by 0.201%, and the concentrations of the main air
pollutants increase by 0.324% (PM2.5), 0.235% (PM10), 0.127% (SO2), 0.158% (CO), 0.166%
(NO2), and 0.043% (O3). Of the six major urban air pollutants, PM2.5 was most affected
by inter-city population flow, followed by PM10, and then NO2 and CO, both of which
were equally affected. With the exception of the majority of passenger trains, which are
electrically powered and have only a marginal impact on air pollution, aircraft engine
emissions and fuel motor vehicle exhaust, both of which contain PM, NOx, and CO, are
likely to be the main contributors to this.

The estimated coefficient value of lnoutcity for inter-city population flow is overall
smaller than that of lnincity for intra-city population flow, indicating that the magnitude
of the negative impact of intra-city population flow on urban air quality is significantly
greater than that of inter-city population flow in terms of urban air quality index indicators
and major air pollutant indicators. This finding is enlightening, and implies that urban
construction should be well researched and reasonably planned to shorten the commuting
distance between work and residential areas, increase public transport facilities, and reduce
the need for self-driving trips; at the same time, it should strengthen the construction of
living facilities in residential areas, promote the integration of industries and cities, and
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reduce the need for long-distance travel within the city. This will improve urban air quality
through a combination of measures to reduce the movement of people within the city.

4.3. Proposals for Achieving New Progress in Ecological Civilisation

In order to achieve the goals of new progress in ecological civilization, continuous
reduction in total emissions of major pollutants, and continuous improvement of the eco-
logical environment, this paper puts forward the following three policy recommendations.
Firstly, further advocate and encourage green travel for the whole society, which is of ut-
most importance to the improvement of urban air quality. Electric vehicles should continue
to be vigorously promoted as an alternative to fuel vehicles, vehicle emission standards
should be upgraded, and the public should be encouraged to adopt public transport and
shared travel and reduce private passenger travel. Secondly, the precise treatment of air
pollutants with complex generation mechanisms, such as ozone, should be strengthened.
This paper finds that after a significant reduction in population movement exogenesis, the
concentration of a small number of major air pollutants such as ozone increased instead.
This suggests that restricting the movement of people, or restricting economic activities
such as industrial production, or adopting a “one-size-fits-all” approach to shutting down
these air pollutants with complex generation mechanisms is not sufficient to reduce their
harmful effects on urban air quality. The treatment and improvement of urban air quality
requires further scientific research on the generation mechanisms of various air pollutants
at the source, and precise and holistic measures in order to gradually promote pollution
reduction and emission reduction. Thirdly, rational planning of urban layout is needed.
The empirical results of this paper show that the pollution caused by intra-city population
movement is significantly higher than that caused by inter-city population movement. Ur-
ban roads should be built to shorten the commuting distance between work and residential
areas and to strengthen the construction of rail transport and public transport services; ad-
ditionally, residential areas should strengthen the construction of living facilities to improve
the convenience of residents’ lives, so that most of their living and consumption needs can
be solved in the vicinity of their homes, reducing the need to travel long distances within
the city. For large cities in particular, the construction of new urban areas must be preceded
by planning and scientific layout to create new urban areas with “city-industry integration”
and planners should strive to realize the “integration of three places” of work, consumption,
and residence for residents in the district, so as to avoid becoming a “bedroom community”
in the central city, thus decreasing intra-city population flow.

5. Conclusions

The main objective of this paper is to empirically examine the causal impact of popu-
lation movement on urban air quality and measure the specific magnitude of the effects
of intra-city and inter-city population flow on urban air quality. This paper uses the city
lockdown policy adopted by Hubei cities in early 2020 in response to the outbreak of the
COVID-19 as a quasi-natural experiment with 328 prefecture-level cities in China to firstly
identify the causal relationship between population movement and urban air quality, and
secondly to measure the specific magnitude of the impact of the two types of population
movement on urban air quality based on the distinction between intra-city and inter-city
population flow. In the causal identification section, this paper uses data from the 23rd day
of the lunar month to the 28th day of the first lunar month in Hubei in 2020 and the rest of
Chinese cities in the same period in 2019 to construct a 36-day panel of air quality data for
328 cities, using the same period in the 2019 lunar calendar as a control group to eliminate
the “Spring Festival effect”. A DID method was used to find a causal effect of reduced
population movement on urban air quality improvement. In the impact measurement
section, the quantitative impacts of intra and inter-city population flow on urban air quality
indices and major air pollutants were estimated using data from 328 prefecture-level cities
in China for 29 consecutive days in January and February 2020. The results demonstrate
that both intra-city and inter-city population flow have a significant negative impact on
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urban air quality. However, the specific impact coefficients differ, with an overall finding
that an increase in intra-city population flow leads to a more severe level of air pollution.

This paper focuses on the causal identification and impact measurement of population
movement on urban air quality. Future research directions related to this paper may involve
clarifying the mechanisms through which population movement affects urban air quality.
This would require obtaining more relevant data to support the research.
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Appendix B

Table A1. A placebo test for causal identification of reduced population movements to improve
urban air quality.

(1) (2) (3)
15 January 11 January 8 January

treati ∗ postt 1.038 3.626 −2.036
(2.210) (2.376) (3.287)

Lowest temperature −0.073 −0.056 −0.091
(0.248) (0.250) (0.246)

Highest temperature 2.684 *** 2.675 *** 2.692 ***
(0.272) (0.272) (0.271)

Wind −13.883 *** −13.878 *** −13.898 ***
(2.445) (2.443) (2.440)

Lowest temperature2 −0.025 *** −0.025 *** −0.025 ***
(0.009) (0.009) (0.009)

Highest temperature2 −0.005 −0.005 −0.005
(0.010) (0.010) (0.010)

Wind2 1.157 ** 1.157 ** 1.159 **
(0.493) (0.493) (0.493)

Constant 120.798 *** 121.021 *** 120.573 ***
(4.904) (4.937) (4.958)

Sample size 17,051 17,051 17,051
R-squared 0.526 0.526 0.526
Time FE YES YES YES

Urban FE YES YES YES
Note: Figures in brackets are clustering robustness criteria errors; **, and *** denote significance levels of 5%, and
1%, respectively.
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Appendix C

Table A2. Robustness test—replacing the explanatory variables.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnSO2 lnCO lnNO2 lnO3

treati ∗ postt −0.456 *** −0.594 *** −0.523 *** −0.077 * −0.183 *** −0.772 *** 0.144 ***
(0.042) (0.049) (0.045) (0.042) (0.042) (0.043) (0.039)

Lowest temperature 0.007 *** 0.017 *** 0.009 *** −0.010 *** 0.000 −0.002 −0.013 ***
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003)

Highest temperature 0.031 *** 0.030 *** 0.038 *** 0.024 *** 0.023 *** 0.026 *** 0.019 ***
(0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.002)

Wind −0.125 *** −0.121 *** −0.180 *** −0.004 −0.047 ** −0.073 *** −0.010
(0.025) (0.031) (0.033) (0.023) (0.020) (0.021) (0.020)

Lowest temperature2 0.000 *** 0.000 *** 0.001 *** 0.000 ** 0.000 ** 0.000 *** −0.000 ***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Highest
temperature2 0.000 0.001 *** 0.000 * 0.000 * −0.000 *** 0.000 0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Wind2 0.011 ** −0.006 0.025 *** −0.022 *** −0.013 *** −0.026 *** 0.004

(0.005) (0.006) (0.007) (0.005) (0.004) (0.004) (0.004)
Constant 4.506 *** 4.071 *** 4.427 *** 1.884 *** −0.212 *** 3.848 *** 3.925 ***

(0.038) (0.049) (0.047) (0.036) (0.032) (0.032) (0.036)
Sample size 11,804 11,804 11,792 11,804 11,804 11,804 11,804
R-squared 0.662 0.711 0.717 0.798 0.611 0.802 0.492
Time FE YES YES YES YES YES YES YES

Urban FE YES YES YES YES YES YES YES

Note: Figures in brackets are clustering robustness criteria errors; *, **, and *** denote significance levels of 10%,
5%, and 1%, respectively.

Appendix D

Table A3. Robustness test—multi-period DID model.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnSO2 lnCO lnNO2 lnO3

Dit −0.448 *** −0.590 *** −0.502 *** −0.067 −0.186 *** −0.788 *** 0.119 ***
(0.044) (0.051) (0.045) (0.043) (0.043) (0.041) (0.039)

Lowest temperature 0.007 *** 0.017 *** 0.009 *** −0.010 *** 0.000 −0.002 −0.013 ***
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003)

Highest temperature 0.031 *** 0.030 *** 0.038 *** 0.024 *** 0.023 *** 0.027 *** 0.019 ***
(0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.002)

Wind −0.126 *** −0.123 *** −0.181 *** −0.004 −0.048 ** −0.074 *** −0.009
(0.025) (0.031) (0.032) (0.023) (0.020) (0.021) (0.020)

Lowest temperature2 0.000 *** 0.000 *** 0.001 *** 0.000 ** 0.000 ** 0.000 *** −0.000 ***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Highest
temperature2 0.000 0.001 *** 0.000 * 0.000 * −0.000 *** 0.000 0.001 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Wind2 0.011 ** −0.006 0.025 *** −0.022 *** −0.012 *** −0.026 *** 0.004

(0.005) (0.006) (0.007) (0.005) (0.004) (0.004) (0.004)
Constant 4.507 *** 4.071 *** 4.428 *** 1.885 *** −0.212 *** 3.847 *** 3.923 ***

(0.038) (0.049) (0.047) (0.036) (0.032) (0.032) (0.036)
Sample size 11,804 11,804 11,792 11,804 11,804 11,804 11,804
R-squared 0.662 0.712 0.717 0.798 0.611 0.803 0.492
Time FE YES YES YES YES YES YES YES

Urban FE YES YES YES YES YES YES YES

Note: Figures in brackets are clustering robustness criteria errors; *, **, and *** denote significance levels of 10%,
5%, and 1%, respectively.
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