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Abstract: Power systems with a high wind power share are characterized by low rotational inertia
and weak frequency regulation, which can easily lead to frequency safety problems. Providing virtual
inertia for large-scale wind turbines to participate in frequency regulation is a solution, but virtual
inertia is related to wind power output prediction. Due to wind power prediction errors, the system
inertia is reduced and there is even a risk of instability. In this regard, this article proposes a unit
commitment model that takes into account the constraints of sharp changes in frequency caused by
wind power prediction errors. First, the expressions of the equivalent inertia, adjustment coefficient,
and other frequency influence parameters of the frequency aggregation model for a high proportion
wind power system are derived, revealing the mechanism of the influence of wind power prediction
power and synchronous machine start stop status on the frequency modulation characteristics of
the system. Second, the time domain expression of the system frequency after the disturbance
is calculated by the segment linearization method, and the linear expressions of “frequency drop
speed and frequency nadir” constraints are derived to meet the demand of frequency regulation in
each stage of the system. Finally, a two-stage robust optimization model based on a wind power
fuzzy set is constructed by combining the effects of wind power errors on power fluctuation and
frequency regulation capability. The proposed model is solved through affine decision rules to reduce
its complexity. The simulation results show that the proposed model and method can effectively
improve the frequency response characteristics and increase the operational reliability of high-share
wind power systems.

Keywords: frequency safety; power system inertia; wind power forecasting error; two-stage robust
optimization; affine decision rule

1. Introduction
1.1. Motivation

In recent years, with the increasing demand for electricity, wind power, as an important
renewable resource to replace fossil fuels, has developed rapidly. The cumulative installed
capacity of global wind power has rapidly increased from 540 GW in 2017 to 906 GW in
2022, with a compound annual growth rate of 7.7%. The new grid connected capacity of
global wind power will reach 680 GW in the next five years [1]. Wind power and other new
energy sources have gradually become the main power sources for building new energy
systems, and the power system is rapidly advancing towards power electronics and new
energy subjectivity.

However, with the increase in the proportion of wind power, wind power has allevi-
ated the energy crisis but also brought a series of challenges to the security and stability
of the system [2]. On the one hand, the increase in the proportion of wind power has led
to a reduction in the number of traditional synchronous generators, making the system’s
inertia response and frequency modulation resources scarce. In response to high power
shocks, the frequency dynamic support capacity is insufficient, which is likely to lead to
rapid changes in the system frequency and trigger shut-down protection. On the other
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hand, although some literature have provided wind turbines with frequency regulation
capability through virtual inertia control of converters, as the proportion of wind power
increases, wind power exhibits strong randomness and large fluctuations, which not only
affects the power balance of the system but also leads to fluctuations in the virtual inertia of
wind power, further affecting the frequency regulation capability of the system [3,4]. Most
traditional unit combination schemes only consider the steady-state constraints of system
frequency [5], while in power systems with a high proportion of wind power, the dynamic
safety problem of system frequency urgently needs to be solved.

1.2. Literature Review

There are now many papers dedicated to the study of unit combinations considering
frequency safety. To improve the system frequency response, Restrepo et al. were the first
to include frequency regulation as a constraint in the unit combination model to ensure
frequency stability [6]; however, the study only considered the steady-state frequency error
and did not consider the frequency transient drop speed. In [7], a unit scheduling method
considering the synchronous inertia constraint was proposed to ensure system frequency
safety and stability, but only the system inertia demand was considered, and whether the
frequency nadir in the system dynamic response exceeded the bound was not considered.
In [8], a joint day-ahead-intraday scheduling framework was constructed by introducing
constraints on the system dynamic frequency response under the expected small power
disturbance and large power disturbance. In [9], a frequency safety model was established
by considering multispeed frequency constraints and inertia allocation in unit scheduling
but did not consider the participation of wind turbines in primary frequency regulation. In
summary, the existing studies can effectively mitigate the frequency deterioration caused
by accidents by incorporating frequency safety constraints in the scheduling model, but the
construction of constraints in the literature is often limited to local indicators of frequency
changes, which can hardly reflect the dynamic safety of the system frequency.

With the increase in the grid-connected proportion of new energy, many papers have
studied how new energy can provide frequency support in view of the low inertia charac-
teristics of wind turbines, which lead to an insufficient frequency modulation capability
of the system. In [10], by decoupling the active power control of wind power when a
disturbance occurs, the kinetic energy of the wind turbine is released to participate in
frequency modulation. Refs. [11–13] use the converter virtual synchronization algorithm to
control and use the kinetic energy of the wind turbine rotor to provide the inertia response.
However, the rotor speed and stored kinetic energy of the turbine are different under differ-
ent operating conditions, and the virtual moment of inertia provided by the wind turbine
is not fixed. Ref. [14] notes that the synthesis of virtual inertia based on the converter is
limited by the energy source of the power generation side; [15–17] provided a unit com-
bination scheduling model considering wind power uncertainty; and [18,19] provided a
unit combination optimization model considering dynamic frequency constraints for wind
power grid-connected systems. However, the above literature do not consider the influence
of wind power uncertainty on the frequency modulation capability of the system. In view
of the intermittence, fluctuation, and randomness of wind power output, the virtual inertia
supply in a high proportion of wind power systems is affected by wind power prediction
errors, which leads to potential security risks in the system frequency stability.

In response to the uncertainty of wind power prediction, Refs. [20,21] adopted a
stochastic optimization method to establish a scheduling model that can consider multiple
units providing frequency modulation services. However, the proposed model often fails
to accurately obtain the specific distribution information of local wind power, resulting in
insufficient robustness of stochastic optimization. Ref. [22] describes uncertain variables in
the system by constructing a box-type uncertainty set; however, using a boxed uncertainty
set may result in the scheduling model being too conservative when considering the worst-
case scenario. Ref. [23] considers scenarios such as generator unit disconnection and wind
power prediction errors by establishing scenario trees, but enumerating typical scenarios
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does not include consideration of the true distribution of uncertain variables. Although
the above research takes into account wind power prediction errors in unit combinations,
the consideration of errors focuses on setting aside a sufficient reserve power to maintain
energy balance between the generation side and the load side, without giving attention to
the risk of instability caused by wind power prediction errors.

1.3. Contributions

To solve the above problems, a unit scheduling model that jointly considers wind
power prediction errors and frequency dynamic safety constraints is established in this
paper, the model is solved utilizing an affine decision rule. The contributions of this paper
are summarized below:

1. For power systems with a high proportion of wind power, this paper considers
the change in the inertia composition of a high proportion of wind power systems,
constructs a model for the frequency response of the aggregated system considering
wind power inertia and damping, and derives a time-domain expression for the
system frequency response through Laplace inverse variation.

2. In this paper, a linear constraint on the rate of frequency dip and frequency nadir
after a frequency disturbance is constructed using a segmented linearization method.
The effect of the low inertia characteristics of a high proportion of wind power
systems on frequency stability under impact power is analyzed, and the interference
of wind power prediction errors on the ability of the system to handle frequency
fluctuations such as inertia response is investigated. The numerical results show that
the power system with a high proportion of wind consists of both wind power and
synchronous machines participating in frequency support and that the frequency
regulation capability is influenced by the actual wind power output size.

3. A two-stage robust optimization model is established to consider the impact of wind
power prediction errors on the frequency safety of power systems with a high propor-
tion of wind power. The model simultaneously considers the low inertia characteristics
of wind power and prediction uncertainty. The numerical results show that the unit
scheduling scheme considering frequency safety effectively improves the lowest point
of the system frequency and reduces the maximum frequency drop speed, providing
sufficient adjustment time for the system in accidents.

1.4. Paper Organization

The remainder of the paper is structured as follows: Section 2 introduces the frequency
characteristics of highly proportional wind power systems and the method for linearizing
the frequency safety constraints. Section 3 establishes a two-stage robust optimization
model that considers wind power prediction errors. Section 4 shows the solution method
for solving the model. Section 5 presents a case validation in the IEEE RTS-79 system.
Lastly, Section 6 summarizes the conclusions and outlook.

2. Building Frequency Security Constraints for Power Systems with Wind Power
2.1. Dynamic Model of Power System Frequency

A set of wind turbogenerators is composed of two opposite rotating torques: the
mechanical torque of the turbine and the electromagnetic torque of the generator. The
motion equation can be expressed as follows:

2H
dωr

dt
= Tm − Te (1)
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Equation (1) represents the first-order swing equation, considering the system during
steady state ωro = 1p.u., both sides of the equation can be divided by ωro simultaneously
to obtain the mechanical equations of motion expressed in terms of the active power:

d∆ωr

dt
=

1
2H

(∆Pm − ∆Pe) (2)

Rocof (Rate of Change of Frequency) represents the rate of system frequency variation.
At the instant when a power deficit occurs, the system frequency drops rapidly like an
approximately straight line. By taking the derivative of the equation at time t, the maximum
value of the rate of change of system frequency can be obtained:

Roco f0+ =
d∆ f (t)

dt 0+
=

∆Pm(0+)− ∆Pe(0+)
2H

(3)

The frequency characteristic of a power system is related to the real-time active power
balance of the system. Figure 1 shows the typical frequency dynamic curve of a power
system after a fault disturbance, and the frequency change process can be divided into
inertial response, primary frequency control, secondary frequency control, and tertiary
frequency control. Some literature divides the time period before the inertial response into
the fast response period.
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Figure 1. Power system frequency response model.

The frequency stability of a power system may be challenged by major disturbances
such as generator tripping, sudden heavy load changes, or system islanding events caused
by breaker trips on interconnecting lines. After such disturbances, the system frequency
will drop to a minimum point and then enter a new equilibrium point ( fnep) below the
nominal value (i.e., 50 Hz). Several indicators are used to describe the dynamic performance
of the system during this process, including the minimum frequency point ( fnadir), the time
to reach the minimum frequency point (tnadir), and the rate of frequency change (Roco f ).

Inertial response takes effect immediately after a power system fault occurs before the
governor begins to act. As shown by the yellow dashed line in Figure 1, the initial drop
rate of the system frequency is directly proportional to the system inertia level, and the
frequency drops in an approximately radial direction. In low-inertia systems, especially in
power systems with a high proportion of renewable energy sources after grid connection,
insufficient inertia level may lead to a rapid drop in frequency.

When the time exceeds the dead band of the speed controller, the speed controller
begins to act, and the frequency drop rate gradually slows down. The speed controller
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increases the mechanical power output of the unit, thereby reducing the power deviation
and suppressing the frequency drop. When the mechanical power is momentarily equal
to the electromagnetic power, the lowest frequency drop fnadir appears at time tnadir. The
primary frequency control is proportional control, and the frequency rise stops at the
steady-state value ferr. The duration of this stage t2 is approximately 5 to 25 s.

The second frequency control stage initiates the AGC control to change the output
power of the primary motor and slowly eliminate the frequency control deviation in the
slow control region. The goal is to restore power balance at the rated frequency, and the
duration is about 30 s to 15 min (t3). Afterward, the third frequency control stage involves
the unit’s rescheduling to respond to the next frequency safety incident, with a duration of
more than 30 min (t4).

It should be noted that, if we normalize both sides of the equation using the value of
total load demand, then the damping of the load, represented by D, will be a constant that
is independent of the load level. Meanwhile, the parameter H will be determined solely by
the characteristics of the thermal generator and will not be affected by its installed capacity.
In this article, it is assumed that all frequency equations are normalized by load demand.

2.2. Frequency Support Provided by Wind Turbines

Renewable energy is connected to the grid through converters, and its power is de-
coupled from the grid frequency; therefore, it does not have the inertia and damping
characteristics of synchronous generators. With the development of grid-connected invert-
ers and virtual inertia control technology, renewable energy can provide frequency support
through control strategies. At this point, the power system with renewable energy includes
both Variable Renewable Energy (VRE) and thermal power units to provide equivalent
inertia. Figure 2 presents the power system in northern China, which consists mainly
of a combination of thermal generators and wind farms based on grid-connected power
electronics. and the frequency response model is changed to:

2

(
H + ∑

j
HVj

)
d∆ f (t)

dt
+ D∆ f (t) = ∆Pm(t) + ∑

j
∆Paj(t)− ∆P (4)Sustainability 2023, 15, x FOR PEER REVIEW 6 of 21 

 

D
C 

S
ou

r
ce

LHT

BT
HD

YYF

LY

WDS

GridGY-500kV

JX

QLS
YY-220kV

BL-220kVBLS-220kV

BM-220kV

CB-220kV

JLQ

Wind Farm

220kV Substation

220kV Substation

 
Figure 2. China northern power grid with wind farms [24]. 

The frequency response characteristics of the system usually need to consider the 
regulating effect of damping, and the change of mechanical power is the co-determination 
determined by the governor and turbine characteristics. Figure 3 presents the frequency 
response model of the aggregated system, whereby the time domain expression of the 
system after power disturbance PΔ  can be calculated: 

( )1 sin
1

nt
e

R Pf e
DR

ζωα ω ϕ−Δ  Δ = + + +  
(5)

The frequency security index is represented by the following equation: 

( )
nadir 

2
nadir 

nadir 0 nadir 

1 arctan
1

1 1
1

(t) ( )( )
2

n nadir

d R

d d R

t

m e

T
t

T
R Pf e
DR

f f f
P P td f tRocof

dt H

ζω

ω
ω ζω

ζ α −


  

=   − 
 ΔΔ = + − +

= − Δ
 Δ − ΔΔ = =
  

(6)

where 

2 2

2

2

1 2
1

1

R n R n

d n

T T
a

ζω ω
ζ

ω ω ζ







− +

= −

=
−

 

(7)

and 

2
1 1

1 2
1

tan tan
1

d R

n R

T
T

ςωφ φ φ
ςω ς

− −
   −
 = − = −   − −     

(8)

( ) ( ) in MW 1 1 1m
m Bi Pi SR P SR

iSB SB

P
K S F f F f

S S
= = − = −

 
(9)

Equation (6) represent the time-domain expression of the lowest point of the system 
frequency, the rate of frequency change, and the time of the lowest point of frequency 
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HVj represents the virtual inertia of the renewable energy system, and ∆Pa(t) repre-
sents the adjustment amount of the active power output of the VRE.
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The frequency response characteristics of the system usually need to consider the
regulating effect of damping, and the change of mechanical power is the co-determination
determined by the governor and turbine characteristics. Figure 3 presents the frequency
response model of the aggregated system, whereby the time domain expression of the
system after power disturbance ∆P can be calculated:

∆ f =
R∆P

DR + 1

[
1 + αe−ζωnt sin(ωe + ϕ)

]
(5)
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The frequency security index is represented by the following equation:
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arctan
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)
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(
1 +

√
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(6)

where  a =

√
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Rω2
n
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ωd = ωn
√
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(7)

and

φ = φ1 − φ2 = tan−1
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)
− tan−1
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−ς
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(8)

Km =
Pm in MW

SSB
=

1
SSB

∑
i

SBiFPi(1− fSR) = FP(1− fSR) (9)

Equation (6) represent the time-domain expression of the lowest point of the system
frequency, the rate of frequency change, and the time of the lowest point of frequency drop,
which are key indicators representing the frequency change after system disturbance. More
details can be found in [25].

2.3. Modeling and Linearization of Safety Constraints for High Ratio Wind Power Frequency

In this section, due to the complexity of the high-order non-linear function g(H, FH , R)
mapping between the minimum frequency point and the shortage power, when FH is fixed,
the g function has a monotonic characteristic in a local range of a single parameter, as
shown in Figure 4. However, it is still difficult to handle for establishing a constraint model.
Therefore, it is necessary to segment and linearize the function, so that it can be included in
the unit dispatch model as a solvable linear programming problem.
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ters, fixed FH = 0.3.

This subsection uses the piecewise linearization method to linearize the frequency
power mapping function. First, a series of sample points gk = g(Hk, FHk, Rk) are generated
through equation g(H, FH , R), and the generated sample points are divided into K sample
subspaces. In order to enable the resulting approximate function to be linearly represented
by decision variables, [Hk

FHk
Rk

1
Rk

] is selected as the variable for the sub-sample space. By
establishing the following optimization model, the cutting plane parameters corresponding
to each subspace can be calculated.

min ∑
k∈Sj

Errk (10)

s.t.∀k ∈ Sj{
Errk = g(Hk, FHk, Rk)− (βc

j + βH
j Hk + βF

j
FHk
Rk

+ βR
j

1
Rk
)

ErrK >= 0
(11)

Since the optimization model specifies that the error between the original function
plane and the hyperplane is positive, the resulting linearized function g(H, FH , R) is more
conservative than the original high-order function, strictly satisfying the frequency safety
constraint. The linearization error can be controlled by the number of subspaces. In this
paper, NJ is set as 100 and the relative error is less than 3%.

Therefore, the frequency safety margin can be determined by the minimum value
of the product of frequency deviation and all approximate hyperplanes, as shown in the
following equation:

∆Pj =

(
f0 − f

min

)
·
(

βc
j + βH

j Hk + βF
j

FHk
Rk

+ βR
j

1
Rk

)
(12)

3. Considerations about the Frequency Safety Unit Commitment and Dispatch Model
with Wind Power Forecasting Errors

Due to the existence of forecasting errors, high-proportion offshore wind power cannot
provide the expected synthetic inertia, resulting in difficulty in maintaining the system
inertia with a high proportion of synthetic inertia to meet the requirements of unit frequency
safety. Therefore, it is necessary to consider the impact of wind power forecasting errors
on system frequency safety and total operating costs in the dispatch model with a high
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proportion of offshore wind power. This article establishes a two-stage day-ahead dispatch
model. The first stage determines the start–stop plan for the units, and the second stage
considers the impact of wind power forecasting errors on frequency safety under the
unit combination determined in the first stage, in order to seek a unit dispatch plan that
minimizes the total system cost while tolerating the forecasting errors.

3.1. Unit Commitment Model Considering Frequency Safety Constraints

The objective function is to minimize the operating cost over time periods from 1 to
NT , including start-up cost, shutdown cost, total output cost, and load shedding cost. The
objective function is shown as follows:

minCsys =
NT
∑

t=1

NG
∑

g=1

(
CG,SU

g xG,SU
g,t + CG,SD

g xG,SD
g,t + CG

g PG
g,t +CG,B

g xG
g,t

)
+

NT
∑

t=1

NN
∑

n=1
VoLL · DCur

n,t

(13)

The Renewable Energy Operational Constraints are as follows:

0 ≤ PW
w,t ≤ PW, Fore

w,t , ∀w, ∀t (14)

0 ≤ Ppv
pv,t ≤ Ppv, Fore

pv,t , ∀pv, ∀t (15)

Constraints (14) and (15) means that the actual wind power and photovoltaic output
cannot be greater than the predicted value.

The conventional unit operating constraints are as follows:

xG
g,tP

G,Min
g ≤ PG

g,t ≤ xG
g,tP

G,Max
g , ∀g, ∀t (16)

xG,SU
g,t − xG,SD

g,t = xG
g,t − xG

g,t−1, ∀g, ∀t (17)

xG
g,t, xG,SU

g,t , xG,SD
g,t ∈ {0, 1}, ∀g, ∀t (18)

PG
g,t − PG

g,t−1 ≤ xG
g,t−1αG,UP

g,t + xG,SU
g,t PG,Min

g , ∀g, ∀t (19)

PG
g,t−1 − PG

g,t ≤ xG
g,t−1αG,DN

g,t + xG,SD
g,t PG,Min

g , ∀g, ∀t (20)

t−1

∑
τ=t−TG,on

g −1

xG
g,τ ≥ xG,SD

g,t TG,on
g , ∀g, ∀t (21)

t−1

∑
τ=t−TG,o f f

g −1

(
1− xG

g,τ

)
≥ xG,SU

g,t TG,o f f
g , ∀g, ∀t (22)

Constraint (16) restricts the output of thermal power units to be less than the maximum
capacity. Constraint (17) represents the state constraint of unit switching on and off, and the
state variable is a binary variable. Equations (19) and (20) limit the unit’s ability to climb up
and down per unit time. Equations (21) and (22) represents the maximum and minimum
switching on and off time of the unit, limiting the frequent start and stop of the unit.

Nodal power balance constraint:

∑
g∈ΩG

n

PG
g,t + ∑

w∈ΩW
n

PW
w,t ∑

pv∈ΩPV
n

PPV
pv,t − ∑

l∈ΩLS
n

FL
l,t + ∑

l∈ΩLE
n

FL
l,t = DFore

n,t − DCur
n,t , ∀n, ∀t (23)
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0 ≤ DCur
n,t ≤ DFore

n,t , ∀n, ∀t (24)

Equation (23) ensures the power balance between the generation side and the load side
of the system at each time period, and Equation (24) limits the amount of load abandonment
to be less than the predicted load value.

The transmission line power constraints are as follows:

FL
l,t = BL

l

(
θl(+),t − θl(−),t

)
, ∀l, ∀t (25)

−π ≤ θn,t ≤ π, ∀l, ∀t (26)

−FL,Max
l ≤ FL

l,t ≤ FL,Max
l , ∀l, ∀t (27)

Constraint (25) represents the DC power flow equation and Equations (26) and (27)
represent the node phase angle constraint and the maximum capacity constraint of the
transmission line.

The system reserve power constraint is as follows:

∑
g

xG
g,tP

G,Max
g + ∑

w
PW, Fore

w,t + ∑
b

PB,Max
b + ∑

n
DCur

n,t

≥ (1 + rres)

(
∑
n

DFore
n,t + ∑

w
PW, Fore

w,t + ∑
pv

PPV, Fore
pv,t

)
, ∀t

(28)

Equation (28) indicates that the power output on the power generation side of the
system needs to be greater than the power consumption on the load side to provide
backup power for secondary frequency regulation of the system. Typically, a reserved
proportional backup capacity is used for scheduling. In this article, a 10% reserve of the
power consumption capacity is set as the reserve power.

The frequency safety constraints are as follows:

Ht =
1

∑
n

DFore
n,t

(
∑
g

xG
g,tHG

g PG,Max
g + ∑

w
uW

w,tHW
w PW,Fore

w,t

)
, ∀t (29)

Ft =
1

∑
n

DFore
n,t

(
∑
g

uG
g,t

KmgFG
g

RG
g

PG,Max
g

)
, ∀t (30)

1
Rt

=
1

∑
n

DFore
n,t

 ∑
g

uG
g,t

Kmg

RG
g

PG,Max
g + ∑

w
uW

w,t
1

RW
w

PW,Fore
w,t

+∑
pv

uPV
pv,t

1
RPV

pv
PPV,Fore

pv,t

, ∀t (31)

0 ≤ uG
g,t ≤ xG

g,t, uG
g,t ∈ {0, 1}, ∀g, ∀t (32)

(
f0 − f

min

)
·
(

βc
j + βH

j Hk + βF
j

FHk
Rk

+ βR
j

)
≥ ∆P, ∀j (33)

d∆ f (t)
dt

=
∆P
2H
≤ Roco fmax (34)

Equations (29)–(31) represent the frequency response model parameters of a high
proportion wind power aggregation system. Since the frequency regulation capacity of
each unit is related to its own capacity, assuming that the total generating capacity of the
system is equal to the predicted value of the total load, the system aggregate parameters
are determined by the frequency regulation status of each unit and the maximum output
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power Co-determination. Equation (32) indicates that the frequency regulation status
variable composed of binary numbers is limited by the operating status of the unit, and
Equation (33) limits that the lowest frequency point in the process of system frequency
disturbance is not less than the specification value. Equation (34) limits the initial frequency
drop speed.

Based on the objective function (13) and constraints (14)–(34), the proposed frequency
safety model can be constructed, which can be solved through existing solvers.

3.2. Set of Uncertainties in Offshore Wind Power Forecasting Errors

In traditional unit commitment, as new energy sources account for a small proportion,
a large number of online thermal power units participate in frequency response, and the
overall system inertia is sufficient, so the prediction error of new energy only affects the
power balance, with little impact on the system frequency response. However, as the scale
of offshore wind power increases, its impact on the power system gradually increases, and
the influence of wind power prediction errors on system frequency needs to be considered.
Wind power units are controlled and connected to the grid by power electronic devices
to provide virtual inertia, and wind power forecasts determine the estimated size of the
synthetic inertia that can be provided. When the forecast produces errors, it will affect
the frequency response of the power system, which is mainly composed of generated
synthetic inertia.

The uncertainty of wind power output in the unit combination model can be repre-
sented by an error set to indicate the fluctuation range of wind power output forecast. The
conventional box-type uncertainty set takes extreme environments that occur with a very
low probability as the worst-case scenario to establish unit scheduling plans, which results
in excessively high total operating costs. Therefore, this paper adopts a budget-based set to
represent the uncertainty interval of new energy.

U1 =

{
ξ : ∑

∣∣∣∣∣ ξi − ξ̂i

ξi − ξ

∣∣∣∣∣ ≤ Γ,

∣∣∣∣∣ξ
∣∣∣∣∣≤ e

}
(35)

In the formula, ξi and ξi represent the upper and lower bounds of the uncertain
parameter i, ξ̂ represents the predicted value of the uncertain parameter, and Γ represents
the number of uncertain parameters that can change to the maximum deviation. The size of
Γ determines the conservatism of the system. The first to propose this type of uncertainty
set were Bertsimas and Sim [26]. This type of uncertainty set is constructed based on
the relative deviation of uncertain parameters and can accurately reflect the fluctuation
of parameters.

3.3. Two-Stage Robust Optimization Model Considering Wind Power Forecast Error

This article proposes a two-stage robust optimization model considering wind power
forecast uncertainty. In the first stage, the start–stop status of traditional units and whether
that participates in frequency regulation are determined. As shown in the equation above,
the system’s inertia, error correction coefficient, and generator reheating time constant are
determined by the online status and whether the unit participates in frequency regulation.
Therefore, the scheduling model under the first stage will ensure that the system’s frequency
does not exceed a predetermined value at the lowest point under a pre-set affordable power
shortage. Additionally, to meet the requirement that the initial frequency drop rate does
not exceed the set value, the system’s inertia will be maintained at a corresponding value or
higher. In the second stage, the power balance between generation and load is considered.
The second stage seeks to minimize the cost while maintaining power balance under the
worst-case scenario of wind power forecast deviation when the unit start–stop status is
determined in the first stage.

The operating objective of the proposed model in this paper is to minimize the daily
operating cost, as shown in the equation. The objective function includes the costs of unit
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start-up and shut-down, the costs of power generation from each unit, and the cost of
abandoned load. The constraints to be satisfied include equality constraints, inequality
constraints, and so on.

Its compact form can be expressed as:

minC1x + C2y (36)

C1 represents the start-up and shut-down cost of the units; C2 represents the generation
cost and the cost of shedding load; x represents the binary decision variables that indicate
the start-up and shut-down states of the units; y represents the continuous variables that
represent the output of each unit, the output of the new energy, and the load shedding. The
proposed UC model can be expressed as a typical two-stage formulation. The first-stage
problem is to determine the operating states of the units using binary decision variables x
before the future wind power output is realized, after the start-up and shut-down states
of the units are determined. The second-stage problem is to consider the output power
of each unit under the worst-case scenario when the wind power generation deviates
from the predicted value. This problem can be expressed as solving the min max min
objective function:

min
x

max
ξ

min
y

C1x + C2y(ξ) (37)

st.
{

Ay + Bx ≥ E
Cy + Dx = F

(38)

The variables x and y in the equation are optimization variables, and their specific
expressions are:  x = [xG

g,t, xG,SU
g,t , xG,SD

g,t , uG
g,t, uW

w,t, uPV
pv,t]

T

y = [PG
g,t, PW

w,t, FL
l,t, θn,t, DCur

n,t ]
T (39)

A, B, C, and D are the coefficient matrices of the variables under the corresponding
constraints, E. F is a constant column vector. In Equation (39), the first line of the constraint
condition represents the inequality constraints containing uncertain variables in the robust
optimization model, including Equations (17), (23), and (25). The second line represents
all equation constraints in the model, including the remaining equations in constraints
(14)–(34).

4. Solution of the Model

For the conventional solution algorithms, it is generally difficult to solve the two-stage
robust optimization model mentioned above, and the modified Bender decomposition
method can be used for solution [27]. However, when extending to multi-stage robust opti-
mization problems, decision criteria need to be used for approximate solution. The decision
criteria methods currently used mainly include affine, piecewise affine, and trigonometric
polynomial functions. In this paper, the affine decision criterion is adopted to represent the
complex mapping relationship between random variables ξ and decision variables y by
a linear feasible domain. The original problem is approximated and transformed into an
easy-to-solve problem, and then:

Replacing the second-stage variable y in the two-stage problem with the following
linear equation with uncertain parameters can effectively reduce the number of iterations
in traditional algorithm and obtain optimal solutions in some engineering applications.

y = y0 + Yξ (40)

where y0 is the intercept and Y is the coefficient. At this point, the two-stage problem is
transformed into:

min
x

max
ξ

min
y

C1x + C2(y0 + Yξ) (41)
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In this problem, the second stage is to determine the output of each node unit under
the worst-case scenario. For any uncertain variable in the model, there exists a corre-
sponding scheduling value of the continuous variable y and the mapping relationship
between the uncertain parameters and the continuous decision variables is complex and
difficult to solve in the second stage. In the solution process, a large number of nonlinear
problems are often encountered. By using the affine decision rule method to establish the
linear mapping relationship between the continuous decision variables and the uncertain
variables, the two-stage problem can be transformed into a conventional robust problem.
At this point, as shown in the equation, the result obtained by exchanging the position of y
and the uncertain variable ξ is still the optimal scheduling solution under the affine linear
decision approximation.

min
x

min
y

max
ξ

C1x + C2(y0 + Yξ) (42)

min
x

max
ξ

C1x + C2(y0 + Yξ) (43)

At this time, the feasible solution set of the second stage y determined by
{

y :≡→ RN2
}

converts to
{
∃Y ∈ RN2×K, y0 ∈ RN2 , y(ξ) = Yξ + y0

}
, which is defined by finite parame-

ters, and the original two-stage model is transformed into a solvable robust formal model.

Ay(ξ) + Bx ≥ E(ξ)
⇒ A(yo + yξ) + Bx ≥ E0 + Eξ

⇒ Ayo + Bx− E0︸ ︷︷ ︸
a

+ (Ay− E)︸ ︷︷ ︸
b

ξ ≥ 0 (44)

In summary, the model is a mixed-integer programming problem and can be effectively
solved using existing solvers.

5. Case Study
5.1. Basic Data

This article verifies the calculation examples using the IEEE 24-node 38-bus system.
The total load is set to 2850 MW, and the frequency safety constraint is set according to the
European grid specification with an initial droop rate not exceeding 0.125 Hz/s [28]. It is
assumed that the lowest frequency point is not less than 49.6 Hz. The modified generation
combination is shown in Table 1. Information on transmission lines and load demand can
be found in reference [29].

Table 1. Distribution of Node Units.

Node U155 U350 U76 U197 Wind PV Sum

B1 76 × 2 500 652
B3 76 × 2 500 500 1152
B6 155 × 2 500 810
B7 197 × 3 591

B15 76 × 2 500 652
B16 76 × 2 500 652
B17 350 × 2 700
B21 350 350
B22 350 350
B23 155 × 2 310

Total 620 1400 608 591 1500 1500 6319

The parameters of thermal generators are listed in Table 2. Table 3 shows the frequency
response characteristics of traditional generators and renewable energy devices. The
frequency support capability of VRE is based on [30]. As the range of the grid-connected
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inverters installed in VRE is large, we conservatively assume that the frequency support
capability is 50% of the conventional thermal power generation capacity.

Table 2. Frequency response characteristics of generators and VRE devices.

Generation Type U76 U155 U197 U350

Capacity (MW) 76 155 197 350
Variable cost (USD/MWh) 45 30 35 20
No-load cost (USD/h) 0 0 0 0
Start-up cost (USD/MW) 6 2 4 4
Shut-down cost (USD/MW) 6 2 4 4
Minimum online time (h) 4 8 4 8
Minimum offline time (h) 4 8 4 8
Ramp capacity (s) 80% 50% 80% 50%
Minimum output 20% 35% 80% 50%

Table 3. Frequency response characteristics of generators and VRE devices.

Generation Type U76 U155 U197 U350 Wind PV

Inertia constant (s) 4 6 6 8 3 0
Turbine factor FH 0.25 0.3 0.3 0.35

Governor constant 0.033 0.05 0.033 0.05
Droop of VRE 0.067 0.067

5.2. Analysis of Results

In order to ensure that the lowest frequency point of the system does not exceed the
specified value under the set power shortage threshold, the start–stop status of thermal
power generation units in each period of the system is shown in Figure 5. It can be seen
that, when wind power is high, the number of unit starts will also increase, but the unit
output will be lower. At this time, the thermal power generation units can not only meet
the low output requirements but also have frequency modulation capabilities.
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Figure 6 shows the output of each unit, photovoltaic, and wind turbine during different
time periods, meeting the power balance requirements of each node and ensuring the
stability of the system frequency.
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Table 4 shows that the operating cost of the robust model considering frequency
security constraints is higher than that of the frequency security model that does not
consider wind power uncertainty. When the total cost is converted into hourly costs, it
can be found that the robust model will set more conventional units to remain online
when wind power output is high. This is because, when wind power output is high, the
system inertia will be lower. Since most of the system inertia is composed of synthetic
inertia provided by new energy sources such as wind power, the system will exhibit poorer
frequency characteristics in the event of prediction errors. Therefore, more conventional
units need to be set online to provide more mechanical inertia.

Table 4. Operation cost of different schemes.

Operating Costs
(USD) Abandon Wind Abandon PV

Wind power error is
not considered 690,130 1.61% 1.42%

Considering wind
power error 725,175 2.78% 3.12%

Figure 7 analyzes the system inertia composition when the prediction error is 0.1.
From Figure 7, it can be seen that, after 9 pm every day until 5 am the next day, new
energy sources such as wind and photovoltaics cannot provide virtual inertia for frequency
regulation due to their low output. At this time, the system inertia is mainly provided
by thermal power units. However, when the output of new energy sources is high from
6 am to 8 pm, virtual inertia can be provided to participate in frequency regulation, and
the maximum inertia that can be provided is about 2 s. This ensures that the power grid
can meet the system frequency safety requirements even during periods when the physical
inertia of thermal power units is insufficient.
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From Table 5, it can be seen that, when Gamma is 0, the proposed model is equivalent
to a deterministic optimization scheduling problem. As the value of Gamma increases,
more parameters are allowed to reach their maximum deviation in the model, and the
scheduling cost of the system increases as uncertainty increases. When the increase in
operating costs is mainly due to the uncertainty in the prediction of new energy sources
such as wind and photovoltaics, prediction errors directly affect the frequency support
provided by new energy sources because the relevant parameters affecting frequency, such
as system inertia and regulation coefficient, are directly related to the predicted values of
new energy sources. At this time, more conventional units need to remain online to provide
corresponding frequency support, so as Gamma increases, the frequency support provided
by new energy sources becomes unreliable, and more conventional units need to be used,
which leads to higher operating costs.

Table 5. Influence of the number of uncertain variables on the operation cost (ξi= 0.1).

Γ Operating Costs (USD) Gap with Deterministic Scheduling %

0 690,130 0
5 704,626 2.1005

10 712,465 3.2363
15 719,892 4.3125
20 731,353 5.9732
25 747,656 8.3344
30 755,635 9.4917
35 768,765 11.3942
40 784,563 13.6833

In Table 6, it can be seen that the degree of deviation of new energy source prediction
errors from the actual values, relative to the reference curve, is multiplied by the prediction
error ξ. When ξ = 0, it is equivalent to a deterministic scheduling model considering
frequency safety constraints. As the deviation value continues to increase, the wind power
output becomes more unstable, and the frequency characteristic parameters such as inertia
of the power system fluctuate greatly, reducing system safety. At this time, the operating
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cost continues to increase, and the inertia component of the system mainly consists of
traditional units.

Table 6. The impact of different prediction errors on operating costs.

Prediction Error ξ Cost (USD) Gap with Deterministic Scheduling %

0 690,130 0
0.1 725,175 5.07800
0.2 745,764 8.0614
0.3 793,468 14.9737
0.4 832,354 20.6083
0.5 874,765 26.7537
0.6 944,578 36.8696
0.7 994,575 44.1142
0.8 1,027,654 48.9073
0.9 1,082,357 56.8338
1 1,122,346 62.6282

Figure 8 shows the operating cost and cost difference ratio between the deterministic
dispatch plan and the dispatch plan considering wind power prediction errors under
different levels of new energy capacity. As the proportion of new energy increases, the
uncertainty of wind power prediction has a greater impact. Therefore, as the new energy
capacity increases, the cost required for the plan considering prediction errors increases
more in order to meet the frequency safety requirements of the system.
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As shown in Figure 9, we compared the frequency response capability of the proposed
model with Frequency Constrained Unit Commitment Model (FCUC) and Traditional
Unit Commitment Model (TUC). The unit model without considering frequency safety
constraints is more severe than the scheduling scheme that considers frequency safety
constraints in terms of both frequency drop rate and lowest frequency point when facing
the mismatch between load and generator power. When the system is in a safe margin,
the proposed scheme in this paper can control the frequency safety index well without
exceeding the limit. This is because the proposed scheme in this paper considers the
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Rocof constraint and frequency lowest point constraint in scheduling, which keeps the
total system’s inertia related to frequency at a certain level to reduce the frequency drop
rate. By controlling the frequency regulation capability of new energy sources, all parties
involved in scheduling can coordinate to support frequency and ensure that the dynamic
characteristics of the system frequency meet the frequency safety settings. When the power
shortage amount exceeds the set safety margin, the proposed scheme can still perform
better than the conventional unit scheduling scheme.
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6. Conclusions

This article establishes a frequency safety unit optimization scheduling model that
considers the uncertainty due to the grid connection of new wind power systems and
the problem of inertia deficiency based on a two-stage robust optimization method. The
analysis results show the following:

1. The model proposed in this paper can effectively solve the frequency problem in
power systems with large-scale integration of new energy sources. It quantifies the
frequency safety index after the occurrence of power disturbances in the system, and
through the rational scheduling of units, it ensures that there are enough frequency
support units participating in the frequency regulation response in each period. The
model can guarantee that the frequency drop rate and the lowest frequency point do
not exceed the specified values when the system experiences a power shortage.

2. This paper fully considers the impact of wind power prediction errors on the overall
frequency characteristics of the system by establishing the relationship between new
energy, system inertia, and regulation coefficients affecting frequency. By solving the
two-stage model, the obtained unit combination scheme can ensure rapid and stable
system frequency in each period within the prediction error setting range.

3. The robust unit scheduling model proposed in this paper, which considers the uncer-
tainty of wind power output, can provide a reference for the auxiliary service market
of wind power units and other units in future power systems, where all participating
units respond to the frequency regulation with their output below the safety margin
set in the paper.

In the unit scheduling cost studied in this paper, only the start–stop status and output
cost of conventional units were considered, and the control of the frequency response
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provided by wind power was based on whether it participated in frequency regulation.
In future research, the cost analysis of wind power units providing frequency regulation
services through collaborative control can be considered, and a scheduling scheme consid-
ering the temporal and spatial correlation of units can be established, fully utilizing the
frequency regulation characteristics of new energy units.
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Nomenclature

A. Indices
t Index of the time from 1 to Nt
g Index of the thermal generator from 1 to Ng
w Index of the wind farm from 1 to NW
pv Index of the PV farm from 1 to Npv
l Index of the transmission line from 1 to Nl
B. Parameters
FH Fraction of total power generated by the turbine
TR Reheat time constant (s)
H Inertia constant (s)
D Damping Factor
R Adjustment coefficient of thermal power unit
Km Mechanical Power Gain Factor
ωd Damped frequency
ωn Natural oscillation frequency
ζ Damping ratio
Fp Power Factor
fSR Fraction of Units on Spinning Reserve
ωr Synchronous machine rotor speed
Pe Electromagnetic power (W)
Pm Mechanical power (W)
SSB Power system capacity (s) (MW)
βc,βH ,βR,βF Coefficients of the piecewise linear constraints
f

min
Lower limit of frequency regulation (Hz)

Rocofmax Specified maximum speed of frequency change (Hz/s)
CG,SU/CG,SD Starting/stopping costs of thermal power units
CG/CG,B

g Power output/No-load cost of thermal power units
αG,UP/αG,DN Upward/downward slope rate of thermal power units
TG,on/TG,o f f Minimum online (offline) time of thermal power units
VoLL Penalty cost for cutting off load
BL/FL,Max Transmission line susceptance/maximum transmission capacity
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PW, Fore /Ppv, Fore Wind/Photovoltaic Forecast Power
DFore Load forecast value
PG,Max/PG,Min Thermal power unit output power maximum/minimum value
C. Abbreviations
of Terms
FCUC Frequency Constrained Unit Commitment
TUC Traditional Unit Commitment
VRE Variable Renewable Energy
Rocof The rate of change of frequency
D. Variables
Csys Total scheduling cost of the plan
DCur Load shedding value
FL Transmission line power flow
θ Voltage angle of the node
Err Linearization error
PW/Ppv Wind turbine/Photovoltaic power output
PG Thermal unit output power
xG,SU/xG,SD/xG Unit start/stop/operation state variable

uG/uW /uPV Binary variable indicating whether the thermal generator/wind farm/PV
station participates in the primary frequency response
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