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Abstract: Quality is a key aspect in the era of Industry 4.0. Zero-defect manufacturing (ZDM) as the
latest quality assurance approach. It can be implemented in two different approaches: the product-
oriented and the process-oriented ZDM. It is important to know how and when to consider adopting
one approach over the other. To achieve that there is the need for analyzing the differences of the
two ZDM approaches. However, the current literature lacks a detailed analysis and comparison of
these two approaches to ZDM implementation. Earlier studies on the topic have adopted one of
these approaches over the other without evaluating how it fits with specific cases. The literature of
the last decade indicates a movement towards product-oriented approaches, but it has not shown
proof why product oriented was used over process oriented. Guided by these gaps, this research
work creates a model for quantifying the effects of the implementation of both the product-oriented
and process-oriented ZDM approaches. The proposed model considers all the critical parameters
that affect the problem and serves as an assisting tool to engineers during the design or re-configure
manufacturing systems, for choosing the most efficient ZDM approach for their specific cases. The
robustness of the model was analyzed using the design of experiments method. The results from both
the designed experiments and an industrial use case illustrate that in most cases, product-oriented
ZDM performs better than the process-oriented approach. Nevertheless, in our analysis, we also
highlight strong interactions between some factors that make the selection between product-oriented
and process-oriented ZDM difficult and complex.

Keywords: zero defect manufacturing; ZDM; product-oriented; process-oriented; quality manage-
ment; design of experiments; design for ZDM; industry 4.0

1. Introduction

In the complex environment of manufacturing, many things can go wrong, leading
to mistakes that result in defective products [1]. To become and remain competitive
in the current and future business landscape, companies must follow the practices and
philosophy of producing high-quality products with less waste [2–5]. Poor product quality
can significantly affect the performance and efficiency of manufacturing companies [6].
There can be both direct and indirect costs caused by poor quality such as repair costs,
transportation costs, product returns, and loss of sales due to customer dissatisfaction [7–10].
Defects in manufacturing can be caused by process variations due to machines, worn
tooling, non-conforming material, and human mistakes, among other factors [11]. Except
for human mistakes, these variations can be predicted by using Industry 4.0 technologies,
methods, and tools to implement corrective actions to eliminate the root causes of the
defects. The approach to achieving zero defects by using Industry 4.0 technologies is
what constitutes zero-defect manufacturing (ZDM) [12,13]. In that regard, there are two
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different approaches for ZDM implementation: (i) product-oriented ZDM and (ii) process-
oriented ZDM [12]. The literature of the last decade shows a movement towards product-
oriented approaches, but without proof that they are superior to the process-oriented
approaches [14–20].

ZDM is considered a viable alternative over traditional quality improvement meth-
ods [21]. A recent review article analyzed the critical success and failure factors of tradi-
tional quality improvement methods and at the same time depicted potential disadvantages
of traditional improvement methods over ZDM [22]. Additionally, a direct comparison be-
tween traditional quality improvement methods with ZDM was performed by Psarommatis
et al., revealing that ZDM can significantly increase the sustainability levels of manufac-
turing systems [13]. More specifically, ZDM has numerous advantages compared to the
quality improvement methods that are being used currently by manufacturing companies,
such as six sigma or lean that are not capable of coping with modern quality and mar-
ket needs [23]. Traditional quality improvement methods are characterized as corrective
approaches, meaning that there must first be a problem to address. Further, they do not
take full advantage of Industry 4.0 technologies, and to an extent, they lack the notion
of predicting events. Additionally, they do not learn well from the defects since they are
specifically designed to simply remove the identified defects from production [13,22]. Most
traditional techniques for quality improvement are used only at the process level [24,25],
ZDM, however, can be used to both product and process levels [12].

Furthermore, it is important to underline the implications of ZDM on sustainability,
a critical dimension in today’s manufacturing landscape. As we push the boundaries of
efficiency and quality in manufacturing through practices like ZDM, we are concurrently
addressing key aspects of sustainability [13]. By striving for zero defects, we minimize
waste, make better use of resources, and reduce the energy expended on rework and
corrections—all of which are in alignment with the principles of sustainable manufacturing.
In addition, a successful ZDM implementation can result in products with extended life
cycles, leading to reduced demand for new products and further conserving resources.
Therefore, ZDM not only represents a technological advancement in manufacturing but
also a stride towards more sustainable practices in the industry.

ZDM is an Industry 4.0 paradigm that goes beyond conventional quality management
approaches by utilizing new technologies, methods, and tools in manufacturing environ-
ments. Contemporary ZDM is highly relevant to Industry 4.0 in the sense that the success of
prediction algorithms and associated prevention mechanisms rely on modern technologies
such as AI, IoT, and digital twins [26]. Furthermore, increased computing power, advance-
ments in data analytics methods and tools, decreased cost of sensors, and more affordable
storage opportunities provided by the Fourth Industrial Revolution foster ZDM capabil-
ities and applications [13]. In that regard, Myklebust (2013) defines ZDM as having an
extended lifecycle-oriented process focus and suggests an integrated view on the product
and factory lifecycle models [14]. Wang (2013) illustrates the need for the development of
smart and self-optimizing ZDM systems and provides a conceptual ZDM framework along
with a data-driven approach toward achieving zero defects [27]. May and Kiritsis (2019)
propose ZDM strategies and platforms for successful implementation in smart Industry 4.0
factories [12]. Further, Psarommatis et al. (2020) describe four strategies, namely detect,
predict, repair, and prevent, for successful ZDM implementation [28]. Figure 1 highlights
these implementation strategies and the interrelationships between them.

Figure 2 illustrates two different approaches to ZDM; the difference between these two
is due to the beginning point of the ZDM implementation. Product-oriented ZDM begins
with analyzing product quality, and if any anomalies are found, it proceeds with investigat-
ing the process. Process-oriented ZDM is initiated by analysis of a machine’s condition,
and if anomalies are identified, the quality of the manufactured product is investigated.
For instance, virtual metrology is a product-oriented ZDM approach since it focuses on
analyzing product quality, and process quality is then derived from product quality.
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Figure 1. ZDM implementation strategies [12]. Zero defect manufacturing strategies, triggering
factors detect and predict action strategies repair and prevent. ZDM pairs detect-repair, detect-
prevent, and predict prevent.
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Figure 2. ZDM product and process-oriented approaches [12]. Figure illustrating the two ZDM ap-
proaches, product and process oriented. In product-oriented ZDM, the product quality is monitored,
and if a quality issue occurs, the health of the corresponding machine is inspected. In process-oriented
ZDM, the health of the machine is inspected first, and if abnormalities are detected, the quality of the
product is inspected as well. Both ways lead to ZDM.

While there are two different approaches to ZDM—product-oriented and process-
oriented—the current literature often treats these methods as separate entities without a
detailed comparative analysis [29]. Previous studies have underscored the importance of
understanding the distinguishing aspects of these two ZDM approaches, but they stop
short of providing a detailed model to guide their selection and application in diverse
manufacturing settings [30]. The limitations in existing studies manifest in the form of a
gap in comprehensive understanding and the lack of a decision-making tool for selecting
the most suitable approach [31]. This research work aims to fill this gap by providing
an analysis and comparison of these two ZDM approaches and developing a cost model
to assist decision-making. The importance of addressing this gap lies in its potential to
enhance efficiency, reduce waste, and improve overall productivity in manufacturing, as
evidenced by numerous studies [32].
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Given the complexity involved in Zero Defect Manufacturing (ZDM) and the existing
gaps in literature, this study aims to develop a robust and comprehensive cost model. This
model is intended to assist manufacturers in selecting the most effective ZDM approach,
whether product- or process-oriented, considering the associated cost implications. We
also aim to provide a tool for manufacturers to efficiently select appropriate equipment
for the implementation of ZDM. Through the application of this model to real-world
industrial scenarios, our goal is to offer practical insights and actionable guidance for ZDM
implementation in the context of Industry 4.0.

2. State of the Art
2.1. ZDM Tools and Methods

There are a plethora of tools and methods available on the market today for product
quality improvement, and a majority of these tools were evolved from traditional methods
by adding the prediction approach and offering more effective prevention mechanisms.

Incorporating ZDM methodologies within the framework of Industry 4.0 introduces a
wealth of opportunities [33,34]. As we venture further into the realm of digital manufac-
turing, we are witnessing the increasing relevance of sophisticated technologies such as
artificial intelligence, machine learning, and the Internet of Things. These advancements
serve to extend the potential of both product-oriented and process-oriented ZDM signifi-
cantly. Consider the setting of a smart factory [28]. Here, the production process and the
products themselves are sources of an immense volume of data [24]. Today’s technologies
allow us to capture, analyze, and respond to this data in real time. This facilitates more
precise and prompt identification and rectification of defects. The amalgamation of these
technological capabilities does more than just refine ZDM strategies—it also aids in the
achievement of core Industry 4.0 objectives, such as enhancing efficiency, improving quality,
and enabling greater flexibility in manufacturing processes.

There have been many endeavors to address the issue of ZDM on the process level.
On the research side, several scholars have focused on improving machinery for achieving
zero-defect quality. For instance, Mourtzis et al. (2021) investigated how to optimize
equipment design based on digital twins for ZDM and proposed a platform for utilizing
data derived in manufacturing environments for that purpose [35]. To predict defects
and increase yield, Galetto et al. (2020) provide a framework with three steps that can
be applied in the early detection of equipment failure [36]. They do this by employing
a semi-supervised learning model. Another topic representing this group of studies is
predictive maintenance. Accordingly, Dreyfus and Kiritsis (2018) provide a paradigm for
attaining ZDM through the joint application of a predictive maintenance strategy and
scheduling algorithms that address uncertainty [37]. Aksa et al. (2021) designed and
developed a predictive maintenance web platform and illustrated its application to fulfill
ZDM objectives in smart factories [38].

Another group of researchers studied the synergies between ZDM and production
planning. An early work on this key topic focuses on a flexible flow shop problem with
the unexpected arrival of new jobs and proposes a reactive model that generates a sta-
ble reschedule against any possible occurrences of disruptions [39]. Another research
work proposes a scheduling approach for flow-shop manufacturing systems in the case
of unexpected events occurring as a result of the detection of defects during quality con-
trol [40]. Another good example of this cluster is the work conducted by Psarommatis and
Kiritsis (2018) that provides a scheduling tool for achieving ZDM [41]. In a later work,
Levitin et al. (2019) focuses their analysis on manufacturing systems with defects caused
by external shocks that lead to delayed failure and create an optimum inspection schedule
to increase the likelihood that the mission will succeed while maintaining the appropriate
degree of failure avoidance probability [42]. Another research study illustrates the use of an
improved heuristics algorithm for rescheduling in flexible job shop manufacturing systems
to improve product quality [43]. Most recently, Ruiz et al. (2021) developed a smart digital
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twin based on a deep reinforcement learning model for scheduling job shop orders in a
ZDM environment [44].

Toward the goal of achieving ZDM in Industry 4.0, there have been numerous stud-
ies on the manufacturing system level as well as many other research studies dealing
with tools and methods for ZDM. An early work in this area by Vandebroek, Lan, and
Knapen (2017) designed a diagnostic procedure for identifying the root causes of product
defects in multi-component and multi-stage manufacturing systems [45]. Later, Vafeiadis
et al. (2017) developed an autonomous and self-adjusted early-stage inference engine
to support the implementation of zero-defect strategies in smart manufacturing environ-
ments [46]. Eger et al. (2018) illustrate a data-driven approach and provide a correlation
analysis method for reaching ZDM [47], and Serrano et al. (2018) developed a digital
twin to model and optimize supply chains in ZDM settings [48]. Caccamo et al. (2021)
propose a hybrid Industry 4.0 architecture to deploy a data quality management system for
ZDM [49]. In an effort to assist manufacturers in moving closer to ZDM in the dynamic na-
ture of a manufacturing system, Psarommatis and Kiritsis (2021) have developed a hybrid
decision support system that effectively detects flaws and automates the post-detection
decision-making process [10].

2.2. Product-Oriented and Process-Oriented ZDM

Product-oriented and process-oriented ZDM are two approaches for achieving zero
defects. An instance of product-oriented ZDM is virtual metrology, whereas predic-
tive maintenance can be considered a process-based approach. The outcome of both
approaches is to achieve ZDM, but the difference is whether the analysis begins with
product or process data.

A process-oriented approach can indicate, through an intelligent prognosis system,
anomalies of manufacturing equipment that can be addressed by maintenance services to
improve product quality [14]. The analysis in the process-oriented ZDM approach thus
begins on the process level to eventually improve product quality, and there have been
several recent studies on this subject. For instance, Zhao et al. (2021) propose an integrated
maintenance approach for risk-oriented optimization of product quality loss in multi-stage
manufacturing systems [50]. Tao et al. (2018) give a health-management strategy and prog-
nostics for complex machinery based on digital twins that also leads to improved product
quality [51]. Stojanovic and Milenovic (2018) present a new data-driven approach based on
self-aware digital twins for improving manufacturing processes and illustrate the results
of its implementation in an industrial case study of the 3D laser-cutting process [52]. To
increase the efficiency and effectiveness of end milling operations, Su et al. (2021) suggest
an image-based neural network method for forecasting instantaneous cutting forces [53].
Additionally, Zhang et al. (2021) deal with the problem of reliability evaluation in high-
quality new product development with limited data resulting from few or no failures or
the absence of failure time information [54]. In order to achieve the requisite production
quality and a stable manufacturing process, Guo et al. (2021) present a digital twin model
for real-time prediction of remaining usable life and preventative maintenance [55].

As opposed to the process-oriented approach, analysis in the product-oriented ZDM
approach begins on the product level. For instance, Al-Kharaz et al. (2019) created a multi-
layer perceptron feed-forward artificial neural network for semi-conductor manufacturing
processes to anticipate and enhance product quality [56]. In a tubing extrusion process,
Garcia et al. (2018) suggest models that accurately forecast product quality [57]. In order to
increase the predictability and management of online quality control of essential parts used
in marine diesel engines during the machining process, Cheng et al. (2020) offer a digital
twin-driven solution [58]. Detzner and Eigner (2018) provide a data structure to enable
data-driven analytics and decision assistance and emphasize the essential components of
a digital twin for monitoring and root cause analysis of product quality monitoring [59].
Finally, Baturynska and Martinsen (2021) focus on predicting geometry deviations of
additive manufactured products [60].
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2.3. The Research Gap

While numerous studies employ data from both product and process levels to enhance
product quality in manufacturing [34], it remains unclear whether one approach—product-
oriented or process-oriented—offers a superior pathway to achieving ZDM. Current lit-
erature does not explicitly state a preferred method or provide guidelines on when to
apply one strategy over the other [61,62]. This lack of comparison or choice guidance
can create confusion, potentially leading to less efficient or ineffective implementations of
ZDM strategies.

The choice between these approaches is not trivial, as it directly affects the efficiency
and efficacy of defect management. The process-oriented approach, focusing on predictive
maintenance and improvement of the production process, might be more suitable for certain
scenarios, such as in complex machinery operations or systems with high equipment fault
risks. On the other hand, a product-oriented approach, concentrating on the product’s
quality attributes, could be better aligned with manufacturing systems where the product’s
intricate characteristics and specifications are of paramount importance. Consequently,
implementing an unsuitable approach could result in an inefficient use of resources and
sub-optimal product quality, underscoring the importance of a thoughtful decision between
these methodologies.

Despite the evident importance of this strategic decision, a comprehensive comparison
and guidelines for the selection between the two approaches are conspicuously absent in
existing literature. Most studies implicitly favor one approach over the other based on
their research focus, without providing a robust justification for their choice or considering
the potential benefits of the alternative approach. Therefore, the gap in the literature
that this study aims to fill is a comprehensive analysis and comparison of the two ZDM
approaches. By providing clear criteria and a decision-making framework, we hope to help
manufacturers and researchers select the most suitable approach for their specific contexts,
thus enhancing the effectiveness of their ZDM strategies.

3. Modelling Procedure and Analysis Methods

To guarantee that the manufactured goods meet accepted standards for quality, man-
ufacturers implement improvement methods to control and assure the quality of their
products. As stated in the introduction and the State of the Art chapter, the latest approach
for quality improvement is ZDM [12,13], and it can be implemented in both product- and
process-oriented approaches [63]. The proposed methodology is designed to be generic
and use-case independent, meaning that it can be applied to any manufacturing case [18].
Therefore, no specific manufacturing operations or products are considered, and the iden-
tified parameters (presented in Table 1) are as generic as possible so that the proposed
model can be utilized in several different applications that are characterized by the same
parameters. The outcome of this methodology is a tool that can assist manufacturers in
the decision-making process when selecting between product or process ZDM approaches.
This assistance consists of comparing the different solutions for ZDM implementation and,
based on the suggested cost function, selecting the most efficient approach [64]. In Section 4,
the proposed product- and process-oriented models are analyzed in detail, and the effect
of each model parameter is quantified using design of experiments (DoE) based on the
Taguchi approach [65]. The analysis-of-means (ANOM) diagrams of the main effect and
some interactions are calculated alongside the ANOVA analysis. This analysis is intended
to identify the most impactful parameters and study the behavior of each model as well as
to examine the robustness of the model.

3.1. Product- and Process-Oriented ZDM Formulation

To model and quantify the two ZDM approaches, the key parameters that characterize
these implementations must first be identified. The aim of this study is not to create a
detailed model including all the aspects that characterize these approaches but to identify
those parameters that are different and skip most of the parameters that are the same [63].
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Adopting this approach ensures that the model is simple enough but at the same time
has all the key information for comparing the two ZDM approaches. The goal of the
proposed models is to compare and analyze the two approaches using the DoE method
(Section 3.2), and manufactures can use this formulation for supporting the design process
of their quality improvement systems. In total, we identified 10 characteristics that impact
how effective the two ZDM strategies are. These parameters are presented in Table 1. Some
of the defined parameters are taken from a previous study, and in the current study, some
additional parameters are defined in order to enrich the model in the literature [63].

Table 1. Identified problem parameters.

Parameter Name Notation Parameter Description

Life volume LV Expected production volume of a specific product
Unit cost UC Nominal manufacturing cost of one unit of product

Defect rate DR Percentage indicating the anticipated number of problems

Profit PRF Percentage showing the manufacturer’s targeted profit margin in relation to
the cost of production for the good

Poor quality ratio PQLR
Percentage that contrasts the overall revenues with the potential losses

brought on by poor quality. Freight charges, chargebacks, product returns, and
sales losses are all included in this element.

Inspection cost PIC
Percentage illustrating the cost of inspection per unit of product compared to

the unit cost. This cost includes both the investment cost for acquiring the
equipment and the costs for operating the equipment.

Machine data
Analysis cost MDAC

A percentage illustrating the cost of data analysis for each unit of a product in
relation to the unit cost. This cost includes both the investment cost for

acquiring the equipment and the costs for operating the equipment.
Machine data

correlation accuracy MDA Percentage illustrating the likelihood of the system’s ability to accurately link
machine data to product defects.

Mitigation action cost MAC
Percentage showing how much it costs on average, relative to the unit cost, to

implement mitigation actions in order to prevent future defects (small
maintenance, machine parameters tuning, tool replacement, etc.)

Mitigation action
effectiveness MAE Percentage showing the effectiveness of the mitigation action.

Inspection accuracy IA Percentage indicating the likelihood that a product flaw will be correctly
identified by the inspection tools.

Rework cost RC
Percentage that compares the unit cost to the cost of reworking a component.
This cost includes both the investment cost for acquiring the equipment and

the costs for operating the equipment.

Rework effectiveness REF Percentage showing the effectiveness of the rework procedure. This percentage
demonstrates how many parts are finally successfully reworked.

There are two different categories of parameters identified for the current modeling
procedure: the business-oriented parameters and the ZDM approach-specific parameters,
which are derived directly from conceptual differences between the two approaches. As
highlighted in Figure 2, in product-oriented ZDM, the entire process starts with product
inspection, and if there is a quality issue, the process parameters are analyzed to mitigate
the abnormality. The process-oriented ZDM procedure is the exact opposite: the process
characteristics are analyzed, and if an abnormality is identified, the quality of the product
is inspected. The model presented in the current section is a cost model, meaning that all
the factors are translated into monetary values in order to derive the final cost required for
the corresponding ZDM approach to be implemented [49,66–71].

The business-oriented parameters are the same for both ZDM approaches, but they are
selected because of their criticality for calculating the performance of each ZDM approach,
and depending on their values, the results change. These parameters are the life volume
(LV) of the product under investigation and the nominal product cost per unit (UC). The
reason why manufacturers adopt quality improvement techniques is because their systems
have a specific failure rate (DR) that needs to be decreased. Defect rates are directly
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correlated with the losses brought on by poor quality (PQLR). The matching profit margin
that manufacturers set for their goods is also connected to the PQLR (PRF).

Since all goods are inspected in product-oriented (PRD) ZDM, the cost of inspection
as well as the precision of the related inspection equipment are crucial considerations [18].
According to the inspection process accuracy, it is possible that some problems will go un-
detected. Defects must also be repaired to meet requirements, reduce waste, and maintain
sustainability at levels that are acceptable. When a defect is found, the process data are
examined to determine what caused it and how to fix it. Costs associated with the analysis
of the process data must be taken into account (MDAC).

However, process-oriented (PRS) ZDM, as shown in Figure 2, examines all of the
production data for all of the products, which results in a machine data analytics expense
(MDAC). Inspection of the associated parts is carried out if anomalies in the process data
are found. If a defect is discovered during the inspection, it needs to be repaired. The
PQLR is present in the process-oriented approach as well, similar to the product-oriented
approach.

Table 1 presents all the defined parameters that are affecting the current problem. To
make the solution as generic as possible we have used the relative values over the absolute
values, meaning the all the costs and times have been divided by the corresponding
nominal values of the product. Life volume and unit cost have their absolute values. More
specifically, the cost-oriented values are based on the unit cost, which is set to 1. The
effectiveness of each strategy is determined using Equations (1)–(8). Equation (8) provides
the performance of each technique in more detail and only includes the terms that differ in
each situation and all the terms that are present in each case; maintenance is not taken into
consideration. The result of Equation (8) is expressed as a monetary value and shows the
cost that each strategy adds to the total cost of manufacturing. Therefore, the strategy with
the smallest additional cost is the one that performs the best.

Salles = UC × LV × (1 + PRF) (1)

TheoreticalDefects(ThD) = DR × LV (2)

UndetectedDefects(UnD) =

{
ThD − (LV × DR × IA) , PRD

ThD − (ThD × MDA × IA) , PRS
(3)

PoorQualityLosses(PQL)

=

{
UnD × PQLR × Salles

ThD + ThD × IA × REF × (PQRL × Salles) , PRD
UnD × PQLR × Salles

ThD + ThD × MDA × REF × (PQRL × Salles) , PRS
(4)

ICtotal =
{

LV × IA × PIC , PRD
ThD × MDA × IA × PIC , PRS

(5)

MDACtotal =
{

ThD × IA × MDAC , PRD
ThD × MDA × MDAC , PRS

(6)

RCtotal =
{

ThD × IA × RC , PRD
ThD × MDA × IA × RC , PRS

(7)

MACtotal =
{

ThD × IA × MAE × MAC , PRD
ThD × MDA × MAE × MAC , PRS

(8)

Perf = ICtotal + MDACtotal + PQL + RCtotal + MACtotal (9)

3.2. Design of Experiments

The role of the DoE is to analyze the behavior of the developed cost models. The goal
is to identify how each parameter affects the final ZDM implementation cost and determine
whether there are interactions between different factors. These are illustrated using the
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analysis of means (ANOM) diagrams. Although the parameters’ main effects are important,
they often have strong interactions that sometimes affect the solution more than the main
effects. Moving forward, the analysis of variance (ANOVA) addresses the question of
how much each factor’s main effects and interactions affects the developed model. The
ANOVA analysis provides valuable insights regarding the factors and interactions that
manufacturers can use in choosing the right ZDM equipment. There are many DoE
methodologies available in the literature; in the current research, we use the Taguchi
approach [65]. This specific approach was selected because it offers a structured way
of experimenting with the ability to study the interactions of the problem parameters
with the minimum number of experiments. Based on the factors defined in Table 1, there
are 13 degrees of freedom in the main factors and another 18 degrees of freedom in the
interactions studied. Therefore, the current problem has 31 degrees of freedom, and the
best-suited orthogonal array is L32. The selected orthogonal array can host two-level factors,
and the interactions are given by the selected linear graph illustrated in Figure 3.
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Figure 3. L32 linear graph. Linear graph of L32 orthogonal array illustrating the possible interactions
that can be studied.

The level factors presented in Table 2 are selected as generic extreme low and high
values that describe the majority of cases in the manufacturing domain. To collect and assess
the whole range of the suggested cost model behavior, the extreme low and high values
are chosen. Every cost value is relevant to the unit cost, which means that it represents a
proportion of the cost of the product under inquiry divided by the cost of each procedure.

Table 2. Generic design of experiments, factor levels and assigned columns.

Levels/
Factors 1 2 L32 Column

Assignment

LV 1000 10,000,000 30
UC 1 10,000 1
DR 0.01 0.12 15
PRF 0.05 3 28

PQLR 0.01 0.5 8
PIC 0.01 0.38 4

MDAC 0.001 0.3 2
MDA 0.7 0.99 22

IA 0.7 0.99 24
RC 0.1 0.8 20

MAC 0.1 0.8 26
MAE 0.7 0.99 16
REF 0.7 0.99 18
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4. Product and Process ZDM Model Analysis Results

In the previous section, we developed a cost model to quantify two ZDM approaches.
In this section, we scrutinize this cost model via the Design of Experiments (DoE) method-
ology discussed in Section 3.2. We break down this analysis into subsections as follows:

In Section 4.1, we focus on the DoE analysis of the cost model. The experimental design,
as detailed in Section 3.1, dictates the execution of necessary experiments corresponding to
our selected orthogonal arrays. We leverage the outcomes of these experiments to compute
ANOM diagrams for main effects and interactions. Furthermore, these outcomes allow us
to calculate the ANOVA tables, which grant us deeper insights into the intricate workings
of the cost model.

Moving forward to Section 4.2, we put our developed methodology to test in a real-
world application, within the context of the semiconductor industry. The objective here is
to showcase the practical implications and efficiency of the proposed methodology, thereby
demonstrating its relevance and applicability.

4.1. Cost Model DoE Analysis

Section 4.1: DoE Analysis of the Cost Model utilizes the experimental design detailed
in Section 3.1. The necessary experiments for our chosen orthogonal arrays are conducted.
The outcomes of these experiments are then used to compute ANOM diagrams for main
effects and interactions. Additionally, these outcomes are used to calculate the ANOVA
tables, enabling us to derive deeper insights into the cost model. The initial findings from
the DoE analysis reveal some intriguing patterns and trends in our cost model. Notably,
certain interactions and main effects have a more pronounced impact on the total cost than
initially anticipated. These effects and interactions appear to be highly sensitive to various
ZDM parameters, illustrating the complexity of ZDM approaches and the need for careful
optimization in practical applications.

To fully understand these implications, we revisited our study’s initial focus, which
highlighted the need for an effective cost model for ZDM approaches. We identified a gap
in the existing literature: a comprehensive understanding of these interactions and main
effects within the cost model was noticeably lacking. This observation underscored the
necessity for an in-depth analysis using the DoE methodology to better comprehend the
intricate interplay within the cost model.

Upon reflection, our focus on addressing this literature gap seems even more critical.
Through rigorous analysis, we discovered that these interactions significantly affect the
accuracy and effectiveness of the cost model. Without considering them, any cost model
may lead to inaccurate estimates and potentially detrimental business decisions.

The ANOM diagrams for the factors’ main effects are illustrated in Figure 4. They
depict how the corresponding factor value affects the implementation cost of either of the
ZDM approaches compared to the parameters’ level (x-axis). Regarding the main effects,
both approaches responded almost equally to the change in the different parameters.
Therefore, for the reader’s convenience, only one set of results is presented because the
difference is on average lower than 1%. There are two behaviors observed as the factors’
main effects: as the level increases from level 1 to level 2, the cost increases, while others
decrease. The number of factors that increase the ZDM implementation cost as the factor
levels increases are 8/13, which are UC, PQRL, DR, MAE, REF, PRF, and LV. The remaining
5/13 factors reduce the related cost as they shift from level 1 to level 2. More specifically,
the ANOM results illustrate the potential of change to the final cost. The higher the increase
from level 1 to level 2, the higher the influence of this factor to the related cost. Those
results can be used by the manufacturers in order to evaluate alternative design and have a
quick and accurate method for the estimation of the influence of each parameter.
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Figure 4. Factors’ main effects vs. related implementation cost. Graphs illustrating the influence of
each of the defined factors vs. the implementation cost.

The ANOM results present the main effect of each factor on the final cost, but it is
not enough for understanding completely the influence of those factors. The different
factors also have some interactions between each other. To study the interactions, an L32
orthogonal array was used, and the interactions were planned according to the selected
linear graph presented in Figure 3. In total, 18 interactions were studied and are presented
in Figure 5. In each of these graphs, there are two solid lines that represent the product-
oriented approach (Pd) and two dashed lines that represent the process-oriented approach
(Pc). The two lines of each approach represent the two levels of the first factor in the title of
the corresponding diagram. A result similar to the factors’ main effects is that both ZDM
approaches showed almost identical behavior, validating the robustness of the proposed
model. The interaction diagrams reveal that there are strong interactions between the
factors. This means that when a factor changes from level 1 to level 2 then another factor
that has interaction with this factor instead of increasing from level 1 to level 2 is decreasing
or the slope of increase is increased. This can be understood by the fact that the two lines of
each approach are not parallel. They either converge or diverge, and in some cases, they
cross each other, illustrating reversal behavior and meaning that when one factor goes from
level 1 to level 2, the influence of the other factor changes direction; such behavior is called
anti-synergetic. All the interactions that examined the UC demonstrated two common
behaviors: for unit cost level 1 in both product-oriented and process-oriented approaches,
there are no interactions with the related factors, and the related cost is almost 0. When
the unit cost changes from level 1 to level 2, there are some strong interactions. More
specifically, two different behaviors can be observed in the unit cost interaction diagrams:
one is observed in the diagrams with LV, DR, PRF, PIC, PQRL, MAE, and REF. These
diagrams demonstrate increasing behavior once the unit cost changes from level 1 to level
2. The exact opposite behavior is observed for the MDA, RC, IA, MDAC, and MAC, which
demonstrates a decreasing behavior when UC changes from level 1 to level 2.

The interactions of MDAC with DR, PQRL, and PIC present unique behavior compared
to the rest of the interactions studied. When MDAC is at level 1, the related cost is higher
compared to the related cost when MDAC is at level 2. This result also aligns with the
effect of MDAC presented in Figure 4. An important observation is that the interaction of
MDAC × PIX is the only anti-synergetic one. This means that once the MDAC changes
from level 1 to level 2, the direction of influence of PIC levels changes. The interactions
PIC × DR and PQRL × DR show similar increasing behavior as the corresponding UC
diagrams. PIC × PQRL is the set with the smallest interaction compared to the rest of the
studied interactions.
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The ANOM diagrams for both the main effects and the interactions only illustrate in
which direction each factor level affects the final ZDM implementation cost. In order to
determine which variables are most important and how much each variable or interaction
affects the final ZDM cost, the ANOVA analysis is imperative. Figure 6 illustrates the
results from the ANOVA analysis for both ZDM approaches. In general, both approaches
are influenced equally by the factors and interactions, but there are a few exceptions
in which product-oriented ZDM is slightly more influenced and some cases in which
product-oriented ZDM is not influenced at all by some interactions. More specifically, UC,
PQRL, MDA, LV, UC × PQRL, UC × MDA, and UC × LV had more influence, on average
15.2%, on the final ZDM implementation cost with product-oriented ZDM compared to the
corresponding influence of those factors on process-oriented ZDM. Product-oriented ZDM
is not affected at all by UC × PIC or UC × MAC, whereas in UC × IA and PQE, there is less
than 1% influence on the related cost in product-oriented ZDM, while the corresponding
value of process ZDM is 3.65%.
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4.2. Industrial Application

To illustrate the viability of the suggested cost model, we analyzed a real industrial case
from the semi-conductor domain. The industrial application concerns the manufacturing of
an electronics board to be used in medical devices. The nominal cost of the product under
investigation is rather high, €2440. The production line that manufactures this product is
composed of 12 manufacturing and assembly stations (WSx). One of them, WS4, currently
has a 6.8% defect rate, which can be translated into a huge amount of waste and loss,
whereas the others have <1.2%. Therefore, in WS4, it is critical to apply ZDM in order to
reduce the defect rate, but this raises the following questions:

• Which type of ZDM is better for this specific case, product-oriented or process-oriented?
• Which is the most suitable equipment combination considering the available options?
• What is the estimated cost for operating the selected ZDM implementation?

Before delving into the results, we should understand the nature of the semi-conductor
manufacturing process in this case study. The production line comprises multiple stations,
each with a specific role in the production of the medical electronics board. WS4, a critical
manufacturing station with a high defect rate, is the primary focus of our analysis. At this
station, intricate processes occur which necessitate the precise combination of materials,
temperature, and timing to prevent defects. When errors do occur, they result in significant
waste and financial loss given the high product cost.

Our analysis is grounded in careful consideration of the complexities at WS4. We
investigate the potential of both product and process-oriented ZDM strategies to tackle this
issue. In the semiconductor industry, where precision and accuracy are paramount, it is
important to ascertain not only the right ZDM approach but also the optimal equipment
combinations.

The case company was contacted by different third parties for technological solutions
to the current problem. There are four different equipment needs for physically inspecting
the part: (a) a computer-based process data analysis with the use of (b) external hardware
such as sensors, (c) the procedures and equipment for the rework of a defected part, and
(d) the procedures and software for the mitigation of the performance issues of the ma-
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chinery. For each of these four categories, the technology suppliers offered three options
with different performance characteristics. Table 3 presents the three options for each of the
pieces of equipment that technology suppliers offered for the current industrial application,
with the corresponding specifications according to the parameters defined in Table 1. Each
option has two parameters related to it, and they are linked to each other. These are the
parameters for which the values depend on equipment selection. Table 4 presents the
purchase costs provided by the suppliers for each of these technologies.

Table 3. Technology specifications.

Category Technology Identifier Parameter Option 1 Option 2 Option 3

Inspection A
PIC 3.7% 5.3% 9.2%

IA 91.2% 93.5% 96.6%
MDAC 0.026% 1.2% 2.7%

Data analysis B MDA 94% 97% 99%
Rework cost

C
RC 10% 18% 34%

Rework effectiveness REF 78% 89% 93%
Mitigation action cost MAC 17% 28% 54%

Mitigation action effectiveness D MAE 70% 80% 95%

Table 4. Systems purchase cost.

Category Symbol Technology Identifier Option 1 Option 2 Option 3

Inspection InspInvC A €25,400 €43,340 €80,260
Data analysis DatAnInvC B €12,000 €36,540 €55,210

Rework RewInvC C €65,320 €89,340 €110,030
Mitigation action MigActInvC D €11,300 €24,500 €50,230

The business-oriented parameters have fixed values taken from the actual production
data of the industrial use case. More specifically, LV = 10,000, UC = €2440, DR = 6.8%,
PRF = 86%, and PQLR = 20.1%. In total, there are 81 alternative equipment combinations
because there are four technologies with three options each. These 81 alternative sets were
fed into the corresponding cost model, and the related ZDM implementation cost was
calculated for both the product and process ZDM approach.

Now, to interpret the data, it is crucial to understand the real-world implications. The
options provided for each technology are not merely alternatives but represent varying
levels of investment in precision, speed, and overall efficiency of the ZDM process. For
instance, the options for inspection technology (Category A) imply a trade-off between
initial investment cost and inspection accuracy. A similar trade-off is present in data
analysis, rework cost, and mitigation action cost.

Our study was designed to find the most cost-effective combinations of these tech-
nologies that could achieve a substantial reduction in the defect rate at WS4. The results
shed light on the economic feasibility of different ZDM approaches and provide a concrete
decision-making tool for the manufacturer.

PerformanceCostRatio =
Perfproduct − Perfprocess

InvestmentCost
(10)

InvestmentCost = InspInvC + DatAnInvC + RewInvC + MigActInvC (11)

Figure 7 illustrates the results from the developed cost model (Equation (9)) in combi-
nation with Equations (10) and (11) for the current industrial use case. More specifically,
Figure 7 presents the ratio of the cost difference between product and process ZDM ap-
proaches divided by the investment cost of the corresponding equipment. If the bar is on
the positive side of the y axis, the product-oriented ZDM is more cost efficient, whereas if



Sustainability 2023, 15, 12251 15 of 20

the bar is on the negative side, process-oriented ZDM is more cost effective. In 54/81 of
the combinations, the product-oriented ZDM approach was the dominant approach, and
18/54 combinations had almost the same performance, with product-oriented ZDM being
slightly better. There were also 9/54 sets in which process-oriented ZDM was the dominant
approach. The best technology combination was A1, B3, C1, D1 using the process-oriented
ZDM approach. Table 5 illustrates the scenarios in which process-oriented ZDM performed
better than product-oriented ZDM.
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Table 5. Scenarios in which process ZDM is better than product ZDM.

[A3, B1, C1, D1] [A3, B1, C2, D1] [A3, B1, C3, D1]
[A3, B1, C1, 2] [A3, B1, C2, D2] [A3, B1, C3, D2]
[A3, B1, C1, 3] [A3, B1, C2, D3] [A3, B1, C3, D3]

4.3. Results Discussion

This subsection synthesizes the discussions from Sections 4.1 and 4.2 and presents a
comprehensive interpretation of the results. We highlight how our proposed model can be
employed effectively. The structure of this section provides a clear roadmap to the reader,
moving from the analysis of the model, to its application, and finally, a comprehensive
discussion and interpretation of the results.

Our research has culminated in the development of a cost model that has been created
to be generic, with the aim of being applicable to various domains. This is a key advance-
ment as many previous studies that have developed models that are specific to a certain
domain or industry, reduces their broader applicability [72]. Our model’s use of relative
values for parameters increases its flexibility and generalizability, a feature not commonly
found in previous research.

The Design of Experiments (DoE) analysis applied to our model has provided signifi-
cant insights, exploring the direction and percentage of influence of the main factors and
their interactions. This methodology has proven itself effective in many previous studies
and once again has demonstrated its value in our research. Our model showed robustness,
being influenced in a similar manner regardless of the Zero-Defect Manufacturing (ZDM)
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approach taken. This crucial trait enhances the model’s practical application, a goal that
echoes the sentiment of [35] that called for more practical and versatile models in the field.

Our Analysis of Means (ANOM) brought forward several intriguing trends and, in
some cases, unexpected results, particularly in relation to MDAC, RC, and MAC. Di-
vergences from expected results are not unprecedented; a similar surprising trend was
observed that sometimes counterintuitive interactions can occur in complex systems [73].
These instances spotlight the intricate nature of ZDM and highlight the need for further
investigation. The ANOM diagrams illustrated that the developed cost model is robust and
affected in the same way regardless of the ZDM approach, which can be considered a critical
aspect for the practicality of the model. More specifically, the ANOM analysis revealed in
which direction each factor and interaction affect the final ZDM implementation cost. Most
of the trends in Figure 4 were expected, but there are some graphs that demonstrate unusual
behavior, such as MDAC, RC, and MAC. Even though the expectation is that an increase
in these parameters should increase the final cost, the related ZDM implementation cost
decreased with higher values of these parameters. In addition, the study of the interactions
revealed that there are very strong interactions between the different factors. Most of the
interactions are with UC compared to all the other parameters, and when UC has the lowest
value, that is level 1, the ZDM implementation cost is almost 0, regardless of the level of
the interaction factor. This changes when UC moves to level 2. Therefore, the ANOM
diagrams can be used by practitioners as a map for product and process ZDM approaches
and for tuning the equipment selection. The influence of each factor on the final ZDM
implementation cost, as revealed by our ANOVA analysis, brings forward a crucial aspect
for consideration. These findings support the conclusions of [31] regarding the importance
of understanding both the individual and the interactive effects of various factors in ZDM
implementation. By identifying the most influential factors, manufacturers can channel
their resources more efficiently, highlighting areas where they should pay greater attention.

The industrial use case results revealed that in most cases, product-oriented ZDM
performed better than process oriented. More specifically, process-oriented ZDM performed
better in only 16.6% of the 81 scenarios. This behavior is explained by the fact that the
cycle for the product-oriented approach starts with the quality of the product itself, and
therefore potential defects are identified, and corrections are made so that no products
with defects leave the production site. In the process-oriented approach, there is little
inertia because process quality has priority, and therefore products with defects might be
produced without any raised alarm from the process-quality monitoring system.

The results shown in Figure 7 can be considered a map for the performance of the
two ZDM approaches using the different equipment options available. Therefore, choosing
between a process- or product-oriented ZDM is not an easy and straightforward task, as
proven by the results of the developed model. To this extent, the developed model can
be very useful for engineers when implementing ZDM in manufacturing systems. The
experiments showed that when the PIC is 9.2% or higher than the product nominal cost,
the IA is around 96.6%, and the MDAC is lower than 0.026%. With an accuracy of 94%,
process-oriented ZDM behaves significantly better than product oriented. In other words,
when product inspection is expensive, and the machine data analysis cost is relatively low,
process-oriented ZDM has the advantage. The two other factors, the rework and mitigation
action implementation, do not affect the direction of the solution.

The produced map for the industrial use case (Figure 7) can be used not only for
selecting the most appropriate equipment, but it is also useful for comparing the two
ZDM approaches when the ZDM equipment specifications are known. More specifically,
the following process should be followed for selecting the proper equipment and ZDM
approach. The first stage is to assess how well the manufacturing system performs while
using the available technological options and determine the most suitable specification
set based on several KPIs, as suggested by Psarommatis [18]. The next step is to use the
produced ZDM approaches map (Figure 7) and identify which specification set corresponds
to the most optimum solution suggested from the previous step. Once this is accomplished,
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the performance of the two ZDM approaches can be observed, and the best-performing
approach can be selected. By following these two steps, manufacturers can be assured that
they can achieve the best possible results from the implementation of ZDM and progress
toward true sustainable manufacturing.

The performance map created in our study for the two ZDM approaches using different
equipment options is a key contribution to the field. It brings forward the fact that the
selection of an appropriate ZDM approach and equipment is not an easy or straightforward
task, which has been a common thread in many previous studies. This map can serve as an
invaluable tool for engineers and practitioners in the implementation of ZDM, helping in the
identification of the most effective approach in a given context and guiding manufacturers
towards sustainable manufacturing.

In conclusion, the findings of our study, when placed in the context of wider academic
discourse, reinforce the robustness and adaptability of our cost model across a variety of
industrial scenarios. The insights generated by our research underscore the need for careful
consideration of a multitude of factors in ZDM approach selection, adding to the body of
knowledge surrounding ZDM implementation and sustainable manufacturing.

5. Concluding Remarks and Future Work

This study aimed to address a notable gap in the ZDM literature: the need for clear
guidance on choosing between product-oriented and process-oriented ZDM approaches. By
developing and applying a model based on 13 control parameters and utilizing the ‘design
of experiments’ statistical method, we have made significant strides in understanding how
these factors impact the cost-effectiveness and efficiency of ZDM implementation.

Our findings suggest that the product-oriented ZDM generally outperforms the
process-oriented counterpart, offering valuable insights for manufacturers aiming to opti-
mize their defect management strategies. Such insights could transform the way Industry
4.0 technologies are utilized, enhancing manufacturing sustainability, and resource utiliza-
tion efficiency, and moving the industry closer to the goal of waste-free production.

Importantly, our study has shed light on the interactions between various factors that
influence the decision between product- and process-oriented ZDM. These findings enrich
our understanding of the complex dynamics at play in ZDM strategy selection, thereby
addressing the identified gap in the literature.

In the context of sustainable manufacturing, the implications of our study are signifi-
cant. Through the implementation of Zero Defect Manufacturing (ZDM) strategies, waste
is minimized, thus conserving valuable resources. This not only serves the environment
but also the economic aspect of sustainability by reducing unnecessary costs associated
with defects. By integrating our cost model into their decision-making process, companies
can make a more informed choice about implementing ZDM strategies that align with
their sustainability goals. These decisions ultimately contribute to both the ecological and
economic dimensions of sustainable manufacturing.

However, we acknowledge that our findings may not be universally applicable, as they
are based on specific industrial use-case. This highlights an avenue for future research, with
potential for further exploration and validation of our model across different industrial
contexts. Further research could also delve deeper into situations where the process-
oriented ZDM might outshine the product-oriented approach, offering a more nuanced
understanding of these two strategies.

In conclusion, our study contributes to the existing body of knowledge on ZDM by
providing manufacturers with a tangible tool for selecting the most suitable ZDM approach.
This contribution not only fills the identified research gap but also has the potential to
influence practical decision-making in the field, ultimately impacting the effectiveness of
ZDM implementation in the era of Industry 4.0.
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