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Abstract: Accurate streamflow modeling is crucial for effective water resource management. This
study used five machine learning models (support vector regressor (SVR), random forest (RF),
M5-pruned model (M5P), multilayer perceptron (MLP), and linear regression (LR)) to simulate one-
day-ahead streamflow in the Pranhita subbasin (Godavari basin), India, from 1993 to 2014. Input
parameters were selected using correlation and pairwise correlation attribution evaluation methods,
incorporating a two-day lag of streamflow, maximum and minimum temperatures, and various
precipitation datasets (including Indian Meteorological Department (IMD), EC-Earth3, EC-Earth3-
Veg, MIROC6, MRI-ESM2-0, and GFDL-ESM4). Bias-corrected Coupled Model Intercomparison
Project Phase 6 (CMIP6) datasets were utilized in the modeling process. Model performance was
evaluated using Pearson correlation (R), Nash–Sutcliffe efficiency (NSE), root mean square error
(RMSE), and coefficient of determination (R2). IMD outperformed all CMIP6 datasets in streamflow
modeling, while RF demonstrated the best performance among the developed models for both CMIP6
and IMD datasets. During the training phase, RF exhibited NSE, R, R2, and RMSE values of 0.95,
0.979, 0.937, and 30.805 m3/s, respectively, using IMD gridded precipitation as input. In the testing
phase, the corresponding values were 0.681, 0.91, 0.828, and 41.237 m3/s. The results highlight the
significance of advanced machine learning models in streamflow modeling applications, providing
valuable insights for water resource management and decision making.

Keywords: streamflow; CMIP6; machine learning; RF; SVR; MLP; water

1. Introduction

In order to better plan and control water use, accurate predictions using streamflow
models are essential. Water availability for different uses like drinking water supply,
irrigation, and hydroelectric power generation may be predicted by studying the effects
of changes in many random variables such as land use and climate using stream and
river flow models developed by hydrologists and engineers [1]. Streamflow modeling is
also useful for predicting extreme events (e.g., floods and droughts) for better planning
and evaluating the effectiveness of flood protection and water management systems [2].
Precipitation, topography, evapotranspiration, and human activities are only a few of the
many random elements that can affect streamflow, making it difficult to precisely predict
future streamflow. Thus, it is a highly nonlinear and complex hydrologic cycle that has
always attracted serious research attention. The three main types of streamflow models are
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the physical model, the conceptual model, and the black-box model. However, to provide
accurate estimates of hydrologic variables, like runoff, physical models need a great deal of
physical data and a detailed mathematical description of the hydrologic structure.

Unlike physical hydrological models, data-driven models may accurately anticipate
streamflow without describing the actual mechanics of many hydrological processes. AI
methods have been developed to deal with non-stationary and nonlinear streamflow
discharge data. More importantly, models based on artificial neural networks (ANNs) were
proven to accurately predict streamflow discharge. ANNs or “black-box models” could
provide results approximating the desired ones by tweaking their internal settings smartly.
Consequently, ANN has the capability to make predictions based on novel and unfamiliar
inputs due to the parameterization of the connection between input and output within
the structural framework of the model [3]. ANN models could identify the complicated
pattern with only a few inputs, such as rainfall and streamflow. The catchments’ spatial
and temporal variability makes monitoring these variables exceptionally challenging [4,5].
Rainfall–runoff modeling, streamflow prediction, reservoir inflow forecasting, rainfall
forecasting, river sediment modeling, and hydraulic energy estimates have all benefited
from the use of ANNs in hydrological research [6–11]. Several studies (e.g., [12–14])
have investigated the effectiveness of using ANNs for streamflow estimation and have
concluded that they yield acceptable outcomes. Ninety percent of hydrological applications
have employed a traditional feedforward neural network, such as MLP trained using
the backpropagation technique [15,16]. Similarly, support vector machines (SVM) are
commonly utilized for hydrological prediction and management [17]. For example, the
SVM model predicted China Huaxi station’s monthly river flow accurately, according
to [18]. Sedighi et al. [19] used the ANN model and SVM built on MODIS image data
from 2003–2005 to forecast streamflow in the Roodak region northeast of Tehran. Ghorbani
et al. [20] used SVM and ANN to estimate the daily water flow in Cypress, Texas, to
evaluate their ability in terms of river flow prediction. They came to the conclusion that
the SVM provided more accurate results than the ANN. Ghorbani et al. [21] tested hybrid
artificial intelligence models to estimate the monthly flow in Turkey’s Igdir river and found
that the firefly algorithm combo model performed best. Also, [21,22] compared SVM and
ANN models to predict the Zarineh-rood river’s discharge in Iran and found that the
former was more accurate. Alizadeh et al. [23] tested the hybrid wavelet SVM model’s
capacity to estimate daily US streamflow and found it to be very accurate. Several instances
of SVM’s use in streamflow modeling could be found in the works of Ghorbani et al. [24],
Lin et al. [25], and Seyam et al. [26]. Recently, many machine learning models have been
adopted to simulate streamflow across the globe, e.g., RF [27,28], MLP [29,30], SVM [25,31],
M5P [32,33], LR [34,35], and much more. A comprehensive examination of the applications
of data-driven models in hydrologic processes can be found in the following publications:
Fahimi et al. [36]; Hadi and Tombul [16].

According to Quinlan et al. [37], the M5 algorithm is categorized as a type of tree-
based structure that incorporates multiple linear regression models within its components.
Consequently, these model trees can be likened to piecewise linear functions. Although the
M5 model tree is a recent development in water resources, its usage in actual occurrences
has shown it to be fairly reliable. For instance, when it was applied to the water level–
discharge relationship by Bhattacharya and Solomatine [38], it was noticed that M5 had a
similar degree of prediction accuracy to an ANN created using the same data. M5 handles
jobs with very high dimensions and learns effectively [39]. Sihag et al. [40] examined
the optimum sediment estimation model utilizing M5P and RF regression and indicated
that the M5P-based model showed the best performance. In the Koyna River basin in
India, Bajirao et al. [32] evaluated the viability of many data-driven strategies for runoff
forecasting, including ANN, SVM, RF, and M5P models. Machine learning algorithms
were used by Reddy et al. [41] to forecast monthly surface runoff in the tropical Kallada
River Basin. They discovered that machine learning algorithms can effectively simulate the
rainfall–runoff process. Singh et al. [42] investigated the accuracy of the empirical Kostiakov
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model and the ANN, MLR, RF, and M5P prediction models to investigate the infiltration
process. They discovered that the ANN, MLR, RF, and M5P models outperformed the
empirical Kostiakov model in terms of performance. In their assessment of the RF model’s
potential for daily streamflow forecasting in several watersheds, Pham et al. [43] found that
RF can generate precise short-term streamflow forecasts for all examined watersheds.

Climate extremes are projected to increase in frequency and severity as global tem-
peratures rise, posing significant challenges for vulnerable communities, particularly in
developing economies with limited capacity for adaptation [44]. Streamflow modeling
plays a crucial role in mitigating the impacts of climate change on water resources. To
address uncertainties in weather and climate systems, the use of global circulation models
(GCMs) is essential for collecting large-scale geographical and temporal data [45]. GCMs
offer valuable insights into the climate system, complementing observational data for
streamflow modeling and enhancing the applicability of strategies for mitigation and
adaptation to changing climatic conditions [46].

Water resource management is of paramount importance for sustaining life, ecosys-
tems, and various human activities. Accurate streamflow forecasting plays a crucial role in
effective water resource planning, enabling stakeholders to make informed decisions and
mitigate risks associated with water availability and flood control, especially considering
the increasing impact of climate change and anthropogenic activities on hydrological pro-
cesses. In this study, our focus is on forecasting one-day-ahead streamflow in the Pranhita
subbasin (Wairagarh station), a vital part of the Godavari basin in India. To achieve this,
the application of several advanced machine learning models, namely SVR, RF, M5P, MLP,
and LR, as traditional hydrological models may have limitations in capturing the complex
and nonlinear relationships between hydrological variables. Leveraging various precipi-
tation datasets, including the IMD and bias-corrected CMIP6 (EC-Earth3, EC-Earth3-Veg,
MIROC6, MRI-ESM2-0, and GFDL-ESM4) datasets, and incorporating lag in streamflow,
to estimate streamflow one day in advance using maximum and minimum temperatures.
The delay in rainfall and streamflow is assessed through correlation attribute evaluation
and pairwise correlation attribute evaluation, utilizing a dataset spanning 7064 days from
1993 to 2014 for modeling. The study’s innovative approach employs bias-corrected CMIP6
precipitation and IMD gridded data, providing a more accurate streamflow forecast with
fewer inputs compared to traditional methods. These findings can offer valuable insights
for water resource management and informed decision making, benefiting policymakers
and stakeholders in coping with water-related challenges while ensuring the sustainable
use of water resources in the Godavari basin and similar hydrological contexts worldwide.

2. Study Area

The present research was performed in the Pranhita subbasin of the Godavari River basin
in the Indian state of Maharashtra. The research region has a total drainage area of 2600 km2

and is located between the longitudes 80◦5′ E–80◦40′ E and latitudes 20◦20′ N–20◦47′ N in
Maharashtra and a small area in Chhattisgarh. According to the digital elevation models
(DEM) produced by the Shuttle Radar Topography Mission (SRTM), the elevation of the
research region varies from its highest point, which is 660 m, to its lowest position, which
is 208 m. Figure 1 shows the map of the research region, along with the IMD gridded
stations, the Wairagarh Streamflow station, the stream network, and the DEM. The average
annual rainfall in the study area is 1421 mm, while temperatures range from 20.75 ◦C to
33.33 ◦C. Geology in the study area is dominated by Dongargarh Granite and little traces
of Wairagarh metasediments [47]. This study area comprises 76.01% deciduous broadleaf
forest, 22.72% cropland, and less than 1% shrubland and mixed forest [48]. Since the city of
Gadchiroli is located downstream of this research region, accurate streamflow modeling of
this study area will assist in managing water resources and developing policies to reduce
the risk of flooding.
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3. Materials and Methods

This study aims to forecast the streamflow of the Indian Godavari River. To achieve
this objective, the required data were collected and standardized. The scientific time series
data for discharge, temperature, and precipitation were gathered on a daily basis. After
organizing the data, the University of Waikato models were implemented using the Weka
3.8.6 application [49]. The software was utilized for two rounds of training and testing to
determine the optimal combination for each model. The best model for predicting was
chosen from among four machine learning models and linear regression developed in this
work, utilizing the IMD and CMIP6 datasets as training data. This procedure aimed to
choose the best model for machine learning to use for forecasting purposes using the IMD
and CMIP6 datasets. The optimal AI model architecture was chosen by calculating the
least value of RMSE while simultaneously maximizing the values of R2, NSE, and R. The
entire methodology and procedures of this investigation are presented in Figure 2 in a
flowchart format.
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3.1. IMD Data

The gridded IMD dataset for precipitation and temperature, available from 1901
to 2021, was used in this study. This dataset provides spatial resolutions of 0.25◦ for
precipitation and 1◦ for temperature. To create the dataset, IMD employed Shepard’s
interpolation method, utilizing data from 6695 gauges. It has been widely employed in
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India as a reference for precipitation data to rectify biases in CMIP6 models. IMD generated
a gridded precipitation dataset established on gauge observations [50,51].

3.2. CMIP6 Model Data

The five CMIP6 models that were employed in this study to assess the streamflow
prediction are shown in Table 1. The Earth System Grid Federation (ESGF) archives,
available for review at https://esgf-node.llnl.gov/search/cmip6, accessed on 15 July
2022, provide access to GCMs data. To ensure consistency, all GCMs data were spatially
remapped to a standardized latitude and longitude grid of 0.25◦ × 0.25◦ using a bilinear
interpolation [52]. The selected datasets in this study, namely EC-Earth3, EC-Earth3-
Veg, MRI-ESM2-0, GFDL-ESM4, and MIROC6, are renowned for their representation
of extreme precipitation patterns in India [53]. EC-Earth3, EC-Earth3-Veg, MRI-ESM2-
0, and GFDL-ESM4 are advanced Earth System Models from ECMWF, MRI, and GFDL,
respectively, providing comprehensive representations of land–atmosphere interactions and
atmospheric, oceanic, and land components. MIROC6, with high-resolution atmospheric
and oceanic processes, is ideal for detailed regional climate simulations. These datasets
enable a comprehensive assessment of their performance in streamflow forecasting and
their relevance to water resource management in India.

Table 1. CMIP6 models used in the study.

Model Atmospheric Resolution Institution

EC-Earth3 0.7◦ × 0.7◦ EC-EARTH consortium
EC-Earth3-Veg 0.7◦ × 0.7◦ EC-EARTH consortium
GFDL-ESM4 1.3◦ × 1◦ Geophysical Fluid Dynamics Laboratory

MIROC6 1.41◦ × 1.41◦ JAMSTEC, AORI, NIES, and R-CCS
MRI-ESM2-0 1.1◦ × 1.1◦ Meteorological Research Institute

3.3. Streamflow Data

Daily streamflow data for the Wairagarh station were sourced from the India Water
Resources Information System portal (https://indiawris.gov.in/wris/#/ accessed on 10
April 2022) for the period spanning 1993 to 2014 [54].

3.4. Data Processing

The IMD provided gridded precipitation and temperature in NetCDF format. Data in
NetCDF format were processed and extracted using Climate Data Operators (CDO) [55]
and ArcGIS 10.3. When working with ArcGIS 10.3, the “make NetCDF table view” tool can
be found in the “multi-dimension tools” section of the “Arc Toolbox”. This tool is used to
extract grid-based data from NetCDF files [56]. After data extraction, there were 8 points of
gridded precipitation data from an IMD in the research region. The average rainfall across
the research region was estimated using the Thiessen polygon technique. Forecasting future
streamflow is a dynamically evolving natural process, where the current response of any
hydrologic process is shaped by the memory of past reactions stored within the hydrologic
system. The CMIP6 precipitation datasets were downscaled using the distribution mapping
method and the IMD dataset was used as a reference. To gain additional insights into the
distribution mapping approach, the following literature may be helpful [57,58].

The current and past reactions to various hydrologic parameters, such as precipitation,
runoff, and temperature, would determine the present and past streamflow response.
Consequently, the selection of data inputs for forecasting streamflow is performed using a
correlation attribute evaluation and pairwise correlation attribute evaluation; as seen in
Table 2, the top 5 influencing factors were considered in this study, where St represents
the current streamflow and St-1 indicates the precipitation from one day prior, similar to
how Pt indicates present-day precipitation and Pt-1, Pt-2 reflects precipitation from the
previous day, respectively. Of the data from 1993 to 2014, 70% (4944 days) were utilized
for training, and 30% (2120 days) were used for testing, after the deletion of the missing

https://esgf-node.llnl.gov/search/cmip6
https://indiawris.gov.in/wris/#/
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data. All inputs were normalized to a certain range between 0 and 1 for input data training
purposes. In this study, input parameters were normalized using Equation (1) to eliminate
their dimensionality and guarantee that all input variables were assigned sufficient weight
during the training phase. It facilitates the construction of models by enabling the quick
convergence of learning. It makes the model development more interpretable [59].

Snorm_i =
Si − Smin

Smax − Smin
, i = 1, 2, 3, 4 . . . . . . , n (1)

where Snorm_i is the normalized value of any parameter, Smin and Smax are the minimum
and maximum values of the datasets, and n is the total number of datasets used for training
and testing.

Table 2. Correlation and pairwise correlation attribute evaluation.

Correlation Attribute Evaluation Pairwise Correlation Attribute Evaluation

Parameter Score Parameter Score

Pt 0.678 St-1 9.6452
Pt-1 0.615 P 8.8522
St-1 0.611 Pt-1 8.3758
St-2 0.391 Pt-2 6.8578
Pt-2 0.371 St-2 6.8182
St-5 0.341 Pt-7 6.3642
St-4 0.34 Pt-4 6.3135
St-3 0.325 Pt-3 6.3092
St-6 0.323 Pt-6 6.3069
St-7 0.321 Pt-5 6.2276

3.5. SVR

SVR is a subclass of SVM designed specifically for tackling regression problems; it
was developed by [60]. SVR is used to forecast continuous values as opposed to class
labels, like SVM is used for classification [61]. The key to SVR’s success is identifying the
optimal border (or “hyperplane”) that divides the data into distinct groups. The objective
of SVR is to identify a boundary that keeps the data points within a specified distance of
the hyperplane while maximizing the margin between the data points and the hyperplane
(called the “epsilon-tube”). Because of this, SVR can better understand data with higher
noise. It is effective in dealing with large dimensional datasets and may be utilized for both
linear and nonlinear regression issues, making SVR a versatile tool. The SVM approach is
described in great length in a number of different published works [62,63]. A schematic
diagram of SVR can be seen in Figure S1. An SVR carries out two main tasks: (1) estimating
training-time prediction errors and (2) calculating output values from weight, bias, and
input data [64].

y =
n

∑
l=1

(αl − α∗l ).Kr(xl , xm) + c (2)

where c represents the bias, αl and α∗l represent Lagrange multipliers, and Kr(xl , xm)
represents the kernel function, which is shown in Equations (3) and (4).

Polynomial Kernel:
Kr(xl , xm) = (xl .xm)

d (3)

Gaussian Radial Basis function:

Kr(xl , xm) = exp
(
−‖ xl − xm ‖2

2σ2

)
(4)

3.6. RF

RF is a type of ensemble learning method first presented by [65]. It is a slight mod-
ification of bagged decision trees that are created from a wide collection of uncorrelated
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trees and requires the adjustment of only a few variables [66]. As a “supervised learning
method”, RF draws conclusions about a given dataset by employing a collection of “deci-
sion trees” to draw such conclusions. By lowering precision, it creates trees whose growth
is dependent on that of their neighbors. In a manner analogous to that of a “Decision
Tree,” it is compatible with “classification” as well as “regression” models. A schematic
representation is shown in Figure S2.

The training process for the random forest is accomplished by constructing a large
number of decision tree models that are unconnected to one another [h(X, θk); k = 1, . . .].
The modes of the data are the final result of the classification process, and each of these
unique decision trees makes its own prediction on the classification of the sample. The
efficacy of the random forest model is improved by the inclusion of additional training
sets that are unrelated to one another. The output of the random forest based on the many
classifications learned from training sets is decided by following Equation (5)

H(x) = argmax
z ∑k

i=1 I(hi(x) = Z)I(.) (5)

where Z is the outcome variable and I(.) is the indicative function. Here, H(x) is the
RF model, and hi is the single decision tree model. Random forests enhance accuracy in
classification and regression issues while also reducing the likelihood of decisions being
overly tailored to their context. In addition, data normalization is not required because
the model is governed by a set of rules. However, in order to construct a large number of
decision trees and obtain the output, a larger amount of processing power and training
time is required. It is impossible to assess each variable’s relevance using the random forest
classifier, and its interpretability is also compromised.

3.7. MLP

Inspired by the neurons in our brains, neural networks are a sort of algorithm. Its
primary purpose is to find regularities in huge datasets. In the last several decades, ANNs
have been more popular for dealing with hydrology-related issues due to their flexibility
and effectiveness in simulating nonlinear and complex hydrologic processes [67–70]. The
ANN technique differs from previous computing approaches because it operates in parallel.
An ANN consists of many neurons organized into input, output, and hidden layers. The
data signals are received and processed by the artificial input neurons, which then send the
output to the remaining neurons in the system. Multilayer feedforward refers to the method
of organizing layers and processing forward. The weighted linkages feed activations in the
forward path from input to output. Adjusting the “weights” of the various connections
between nodes trains a neural network to carry out a predetermined task [71]. The basic
operation of an MLP neural network is shown in a simplified form in Figure S3. The
neurons in MLP’s input, hidden, and output layers reveal the basic layout of the network.
To generate an output, a transfer function is applied to the weighted sum of the inputs from
outer space or the outputs of the preceding layer at each node in the hidden and output
layers. Neuronal function is developed using Equation (6)

Yj =
n

∑
i=1

f (wijxi + bj) (6)

Here, Yj represents the output at node “j”, wij is the weight connecting node “i” and
node “j” of the previous and current layer, xi represents the sequence of inputs, and bj
represents bias at node “j”.

3.8. M5P

M5P is a decision tree technique that can perform both classification and regression;
it was proposed by [37]. The “P” in M5P refers to “piecewise,” indicating that this is a
variant of the M5 decision tree method. To provide more precise predictions, M5P employs
linear regression models rather than a single constant value at the branch nodes of the
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decision tree. The technique can also work with category variables and missing data. The
splitting criteria are used to decide upon a characteristic by which to partition the training
data into subsets T, of which each ultimately approaches a distinct node. Each feature
is evaluated by computing the predicted reduction in error at a certain node, where the
standard deviation of the class in T represents the error. At each node, the predicted
error reduction is maximized by selecting the characteristic for a split that maximizes that
reduction. For an estimate of the predicted error reduction, use Equation (7) to obtain the
standard deviation reduction (SDR) [39].

SDR = sd(T)−∑
|Ti|
|T| ∗ sd(Ti) (7)

where Ti is the collection of attributes along which the node was divided when it was
initially created. Continuous quantitative characteristics are predicted via linear regression
models at the leaf level. They are like piecewise linear functions, but when you put them
all together, you obtain a nonlinear function [38]. The goal is to build a model that predicts
an output value based on the input attribute values of the training examples. In most
circumstances, a model’s quality will be determined by how well it can predict the values
of unknown cases. When the remaining number of instances is small, or the standard
deviation is just slightly smaller than the standard deviation of the original set, the splitting
procedure ends.

3.9. LR

One of the fundamental challenges in statistical analysis is developing a model that
accurately describes the connection between a dependent variable and a group of inde-
pendent variables [72]. Simply put, it is a statistical method for examining the interplay
between a number of predictor variables (or features) and a single dependent variable (also
known as the response variable or outcome). MLR seeks to identify the optimal linear
combination of predictor factors for a given response. It is similar to linear regression
but uses several factors to draw conclusions. Fitting a linear function as a model for a
quantitative connection is what linear regression is all about, and we see it in Equation (8):

y = γ0 + γ1x1 + γ2x2 + γ3x3 + . . . . . . . . . + γnxn (8)

where y is the streamflow at Wairagarh, and x1 to xn are the independent variables such as
lag in precipitation, streamflow, and temperature [73–75].

Tables 3–6 display the hyperparameters of the various methods employed in this
original study model creation. Weka 3.8.6 was used to create many SVM, RF, MLP, and
M5P models for this research.

Table 3. Hyperparameters used for SVR.

Parameter Value

batchSize 100
C 1.0

filterType Normalize training data
kernel PolyKernel

numDecimalPlaces 2
cacheSize 250,007
exponent 1.0

regOptimizer RegSMOImproved
epsilon 1 × 10−12

epsilonParameter 0.001
seed 1

tolerance 0.001
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Table 4. Hyperparameters used for RF.

Parameter Value

bagSizePercent 100
batchSize 100
maxDepth 0

numDecimalPlaces 2
numExecutionSlots 1

numFeatures 0
numiterations 100

seed 1

Table 5. Hyperparameters used for MLP.

Parameter Value

batchSize 100
hiddenLayers 5
learningRate 0.3
momentum 0.2

numDecimalPlaces 2
seed 0

trainingTime 500
validationSetSize 0

validationThreshold 20

Table 6. Hyperparameters used for M5P.

Parameter Value

batchSize 100
minNumInstances 4.0
numDecimalPlaces 4

3.10. Model Evaluation Metrics

The Wairagarh station employs four commonly used evaluation metrics, namely R2,
NSE, RMSE, and R, to analyze the daily streamflow measurements. NSE is a widely used
statistical measure that quantifies the ratio of the residual variance to the variance of
the observed data [51,54,76]. The NSE metric quantifies the level of agreement between
observed streamflow and modeled streamflow data, as indicated by their alignment with
the 1:1 line. The NSE ranges are explicitly specified in Table 7, accompanied by the
corresponding formula [77]. The variable R serves as a measure of the degree of similarity
between simulated data and observed data. RMSE is a commonly utilized statistical metric
that is employed to quantify the disparity between the predicted values generated by
a product and the corresponding actual values. R2 quantifies the extent to which the
observed data exhibits variability. Table 7 displays the expressions, parameter range,
and performance value for evaluation metrics. In this table, Si

O denotes the observed
streamflow data, Si

S denotes the simulated streamflow, and SO denotes the mean of the
observed streamflow data.
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Table 7. Model evaluation metrics.

Parameter Expression Range Performance

Nash–Sutcliffe efficiency
NSE = 1−

n
∑

i=1
(Si

O−Si
S)

2

n
∑

i=1
(Si

O−SO)
2

0.75 < NSE ≤ 1.00
0.65 < NSE ≤ 0.75
0.50 < NSE ≤ 0.65
0.4 <NSE ≤ 0.50

NSE ≤ 0.4

Very good
Good

Satisfactory
Acceptable

Unsatisfactory

Pearson correlation
R = n

n
∑

i=1
(Si

OSi
S)−(

n
∑

i=1
Si

O)(
n
∑

i=1
Si

S)√
(n

n
∑

i=1
(Si

O)
2−(

n
∑

i=1
Si

O)
2
)

√
(n

n
∑

i=1
(Si

S)
2−(

n
∑

i=1
Si

S)
2
)

 −1 to 1 -

Root means square error
RMSE =

√
n
∑

i=1
(Si

O−Si
S)

2

n
0 to ∞ -

Coefficient of
determination

R2 = n
n
∑

i=1
(Si

OSi
S)−(

n
∑

i=1
Si

O)(
n
∑

i=1
Si

S)√
(n

n
∑

i=1
(Si

O)
2−(

n
∑

i=1
Si

O)
2
)

√
(n

n
∑

i=1
(Si

S)
2−(

n
∑

i=1
Si

S)
2
)


2

0.7 < R2 ≤ 1
0.6 ≤ R2 < 0.7
0.5≤ R2 < 0.6
0.0≤ R2 < 0.5

Very good
Good

Satisfactory
Unsatisfactory

4. Results

In this current study, five models, namely SVR, RF, MLP, M5P, and LR, were used to
predict one-day-ahead streamflow with two-day streamflow lag, maximum temperature,
minimum temperature, and numerous precipitation datasets (such as IMD, EC-Earth3,
EC-Earth3-Veg, MRI-ESM2-0, MIROC6, and GFDL-ESM4) with two-day lag. The models
were also used to predict one-day-ahead streamflow; Table 8 presents the statistical char-
acteristics of the information that was used. The generated models are simulated from
the years 1993 to 2014. Table 8 demonstrates the data for streamflow, Tmin, Tmax, and
different precipitation datasets. Streamflow and all precipitation datasets have considerably
skewed distributions (in the range of 3.94 to 13.43). However, the data for Tmax and Tmin
are symmetrical.

Table 8. Statistics of streamflow, IMD precipitation, maximum temperature, minimum temperature,
and CMIP6 datasets.

Statistic Streamflow
(m3/s)

IMD
(mm)

Tmin
(◦C)

Tmax
(◦C)

EC-
Earth3
(mm)

EC-
Earth3-

Veg
(mm)

MIROC6
(mm)

MRI-
ESM2-0

(mm)

GFDL-
ESM4
(mm)

Training

Mean 40.91 4.15 20.57 33.12 3.67 3.68 3.88 2.91 2.73
Median 0.31 0.00 22.45 31.88 0.00 0.00 0.00 0.00 0.00

Minimum 0.00 0.00 6.58 21.70 0.00 0.00 0.00 0.00 0.00
Maximum 2732.00 312.60 32.89 46.57 147.38 121.56 221.50 481.70 261.80
Standard
Deviation 138.74 13.22 5.16 4.77 11.04 11.06 12.42 13.74 12.33

Skew 8.31 7.51 −0.46 0.76 4.79 4.42 5.70 13.43 9.28

Testing

Mean 24.56 4.06 21.27 33.29 3.43 3.86 3.16 2.53 2.83
Median 0.46 0.00 22.94 31.90 0.00 0.00 0.00 0.00 0.00

Minimum 0.00 0.00 7.66 20.66 0.00 0.00 0.00 0.00 0.00
Maximum 1405.00 305.15 32.14 46.24 81.10 118.40 166.06 157.75 155.64
Standard
Deviation 73.06 12.74 5.01 4.94 10.07 11.40 10.31 9.50 11.93

Skew 7.38 9.45 −0.48 0.73 3.94 4.26 5.89 5.74 7.21
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Tables 9–14 illustrate the predictive performance of the five chosen models for stream-
flow forecasting one day in advance.

Table 9. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using EC-Earth3 dataset.

EC-Earth3 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.356 0.604 0.365 111.327 0.539 0.749 0.562 49.572
RF 0.916 0.969 0.938 40.192 0.496 0.777 0.604 53.878

MLP 0.467 0.686 0.470 101.306 0.500 0.751 0.563 51.669
M5P 0.452 0.673 0.452 102.646 0.502 0.756 0.572 51.556
LR 0.400 0.633 0.400 107.426 0.484 0.722 0.521 52.478

Table 10. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using EC-Earth3-Veg dataset.

EC-Earth3-
Veg Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.357 0.605 0.366 111.228 0.543 0.751 0.564 49.398
RF 0.917 0.967 0.936 39.988 0.406 0.748 0.560 56.278

MLP 0.405 0.698 0.488 107.021 0.108 0.783 0.612 69.001
M5P 0.453 0.673 0.453 102.604 0.493 0.754 0.568 52.019
LR 0.403 0.634 0.403 107.224 0.482 0.722 0.522 52.599

Table 11. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using GFDL-ESM4 dataset.

GFDL-
ESM4 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.354 0.602 0.362 111.529 0.539 0.747 0.558 49.571
RF 0.917 0.970 0.940 39.859 0.441 0.754 0.568 54.594

MLP 0.470 0.693 0.481 100.943 0.579 0.779 0.607 47.390
M5P 0.452 0.672 0.452 102.698 0.493 0.752 0.565 51.991
LR 0.400 0.632 0.400 107.466 0.479 0.719 0.517 52.724

Table 12. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using IMD dataset.

IMD Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.604 0.787 0.619 87.321 0.796 0.892 0.796 33.027
RF 0.951 0.979 0.959 30.805 0.681 0.910 0.829 41.238

MLP 0.716 0.850 0.723 73.972 0.652 0.862 0.743 52.514
M5P 0.748 0.865 0.748 69.597 0.483 0.882 0.778 52.542
LR 0.692 0.832 0.692 76.938 0.491 0.851 0.725 52.098

Table 13. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using MIROC6 dataset.

MIROC6 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.354 0.602 0.363 111.484 0.539 0.747 0.559 49.603
RF 0.917 0.968 0.938 39.931 0.512 0.766 0.586 51.975

MLP 0.419 0.700 0.490 105.693 0.202 0.788 0.622 65.235
M5P 0.451 0.672 0.451 102.775 0.496 0.753 0.567 51.839
LR 0.399 0.632 0.399 107.528 0.480 0.720 0.518 52.674
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Table 14. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using MRI-ESM2-0 dataset.

MRI-
ESM2-0 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.353 0.602 0.362 111.547 0.539 0.747 0.558 49.603
RF 0.918 0.969 0.939 39.693 0.430 0.755 0.569 55.144

MLP 0.385 0.701 0.491 108.814 0.137 0.768 0.589 67.874
M5P 0.581 0.764 0.584 89.746 0.467 0.755 0.570 53.323
LR 0.399 0.632 0.399 107.503 0.482 0.720 0.519 52.567

Table 9 represents the performance evaluation indices using the EC-Earth3 dataset;
NSE, R, R2, and RMSE values of the selected finest model RF were observed to be 0.916,
0.969, 0.938, and 40.192 m3/s, correspondingly, during training and 0.496, 0.777, 0.604,
and 53.878 m3/s, correspondingly, during testing. Similar to the EC-Earth3 dataset, the
EC-Earth3-Veg dataset was used as input in the place of precipitation, in which the NSE, R,
R2, and RMSE values of the selected best model RF were observed to be 0.917, 0.967, 0.936,
and 39.988 m3/s during training and 0.406, 0.748, 0.560, and 56.278 m3/s during testing, as
shown in Table 10. As shown in Table 11, EC-Earth3-Veg precipitation was replaced with
GFDL-ESM4 to run all five models, and model evaluation metrics such as NSE, R, R2, and
RMSE for the RF model were seen to be 0.917, 0.970, 0.940, and 39.859 m3/s, respectively,
during training and 0.44, 0.754, 0.568 and 54.594 m3/s, correspondingly, during testing.
Table 13 shows MIROC6 as the input precipitation used where the evaluation metrics NSE,
R, R2, and RMSE were observed to be 0.917, 0.968, 0.938, and 39.931 m3/s while training
and 0.512, 0.766, 0.586, and 51.975 m3/s while testing for the RF model. Table 14 indicates
that the MRI-ESM2-0 was used as the input dataset, in which the evaluation metrics were
NSE, R, Rˆ2, and RMSE, which are 0.918, 0.969, 0.939, and 39.693 m3/s during training and
0.430, 0.755, 0.569, and 55.144 m3/s during testing.

The IMD gridded precipitation used by the five models is shown in Table 12. The
values of the NSE, R, R2, and RMSE of the chosen SVR model were found to be 0.604, 0.787,
0.619, and 87.321 m3/s during training, and 0.796, 0.892, 0.796, and 33.027 m3/s during
testing. The best RF model was picked in the same way as SVR, utilizing quantitative
statistical performance evaluation criteria. The results for the chosen RF model’s NSE, R,
R2, and RMSE were found to be 0.951, 0.979, 0.959, and 30.805 m3/s during training, and
0.681, 0.910, 0.829, and 41.238 m3/s during testing. Statistical performance indicators were
used to choose the optimal MLP model from among the several that had been built. The
chosen MLP model was found to have NSE, R, R2, and RMSE training values of 0.716, 0.850,
and 73.972 m3/s and testing values of 0.652, 0.862, 0.743, and 52.514 m3/s. The optimum
M5P model was also chosen through an iterative process of trial and error. The chosen M5P
model had training-time NSE, R, R2, and RMSE values of 0.748, 0.865, and 69.597 m3/s,
and test-time values of 0.483, 0.882, and 52.542 m3/s. To the same effect, a process of trial
and error was used to determine which LR model performed the best. It was found that the
training NSE, R, R2, and RMSE values of the chosen M5P model were 0.692, 0.832, 0.692,
and 76.938 m3/s, whereas the testing values were 0.491, 0.851, 0.725, and 52.098 m3/s.
Based on training and testing performance using IMD gridded precipitation, the RF model
was shown to be better capable of simulating one-day-ahead runoff time series compared
to SVR, RF, MLP, M5P, and LR. Training and testing results showed that RF models had the
best prediction performance, followed by SVR, MLP, M5P, and LR models. IMD gridded
precipitation performed exceptionally well in terms of model assessment criteria compared
to other climate datasets.

Time series and scatter plots of predicted vs. actual streamflow were used to qualita-
tively compare the performance of various models’ predictions. Here, the assessment was
carried out visually by comparing the predicted and actual hydrographs. Figures 3 and 4
represent the time series plots of all five models during training and testing using IMD
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gridded precipitation as input. Figures 5 and 6 represent the scatterplot of all the models
during training and testing using IMD gridded precipitation as input.
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As seen in Figures 3 and 4, RF performed the best in matching the hydrograph pattern,
especially in the remaining testing models, i.e., SVR underestimated peak flows, and MLP,
M5P, and LR overestimated the peak flows. Still, RF captures all the peak flows similarly to
the observed hydrograph. Similarly, Figures 5 and 6 represent RF performing outstandingly
in capturing the streamflow with an R2 of 0.959 and 0.829 during training and testing. In
training, RF is the best model, followed by M5P, MLP, LR, and SVR, with an R2 of 0.748,
0.723, 0.692, and 0.619. Even during testing, RF is best-performing model in terms of R2

followed by SVR, M5P, MLP, and LR, with values of 0.796, 0.778, 0.743, and 0.725.
Figures 7 and 8 represent the radar chart during training and testing using IMD

gridded precipitation as input data. In Figures 7a and 8a, both NSE and R are mapped;
in Figures 7b and 8b, RMSE is plotted in a radar chart. Figure 7a clearly demonstrates RF
performing best, with a maximum value of NSE and R compared to other models. Figure 7b
shows that a minimum RMSE was observed in the RF model, with a value of 30.805 m3/s.
Similarly, during testing, Figure 8a,b exhibit both RF and SVR performing better in terms
of NSE, R, and RMSE. RMSE is 41.237 m3/s in RF and 33.027 m3/s in SVR in testing.
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The violin plots seen in Figure 9a,b were designed for both training and testing using
IMD gridded precipitation as input. For each model, violin plots were created for the
interquartile range that was less than 95%, with the higher extreme flow values left out. RF
was the best model in which the simulated streamflow displayed flow behavior that was
more similar to the flow data of the actual streamflow than the other four models.
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Figures 10–15 represent the Taylor diagrams of all five models using different precip-
itation datasets, i.e., EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, IMD, MIROC6, and MRI-
ESM2-0. It is abundantly evident in the Taylor diagrams that the results mentioned before
are validated. The training and testing results indicate that RF is the model that performs
the best in all scenarios. IMD is the best-performing precipitation dataset compared to the
other CMIP6 datasets, making it the ideal choice for modeling streamflow.
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5. Discussion

In this study, the applicability of CMIP6 precipitation datasets for simulating stream-
flow were assessed with the IMD using five different models, i.e., SVR, RF, MLP, M5P,
and LR. During the training and testing phases, time-lagged streamflow observations,
lagged precipitation datasets, minimum temperature, and maximum temperature were
used as model inputs, and each method was analyzed for its efficiency. In most cases,
the error variance between the observed and simulated values was used to evaluate the
correctness of the model using metrics like R2, NSE, RMSE, R, MAE, MBE, and so on, as
utilized in earlier research [68,69,71,78]. From previous studies, only precipitation data
as input are insufficient to simulate streamflow. Therefore, the present study included a
lag in the streamflow and temperature [68,79,80]. Compared to all the CMIP6 datasets,
IMD performs best in terms of all evaluation metrics. When considering models, RF best
predicted 1-day streamflow simulation in both CMIP6 and IMD datasets. Metrics such as
NSE, R, R2, and RMSE were observed to be 0.95, 0.979, 0.937, and 30.805 m3/s and 0.681,
0.91, 0.828, and 41.237 m3/s during training and testing using IMD gridded precipitation
dataset as input for RF model development. These findings agree with many other studies
found: In general, RF has superior performance. [28,32]. A similar type of was result
obtained in previous studies on Indian river basins by Kumar et al. [81], concluding that
RT and RF outperform other models, such as MLP and ANN, in simulating river discharge
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prediction. Hussain and Khan [78] conducted a study in Pakistan to simulate monthly
streamflow forecasts and concluded that RF outperformed SVR and MLP. A study carried
out by Essam et al. [82] over various river basins in Malaysia identified that ANN performs
best in predicting daily streamflow values when compared to SVM and LSTM. One more
study conducted in Malaysia by Muhammed et al. [83] concluded that RF-based models
performed the best compared to LS-SVM and other M5P models, which supports the
results obtained in this study. As part of their investigation on streamflow forecasting,
Gianni Vesuviano et al. [84] conducted a study in the Wairagarh catchment using a lumped
sub-catchment modeling approach with a single parameter set, which resulted in an NSE
value of 0.172 and an R of 0.472. In contrast, our study implemented five machine learning
models (SVR, RF, M5P, MLP, and LR) for one-day-ahead streamflow forecasting, with the
RF model utilizing IMD gridded precipitation data as input. Our developed RF model
demonstrated significantly improved performance, with an NSE value of 0.95 and R of
0.979. These results highlight the superiority of our machine learning models over the
lumped sub-catchment modeling approach, offering more accurate and reliable streamflow
predictions for the Wairagarh station.

Even for long-term datasets, RF performs far better than ANN, SVM, and boosted
tree regression (BTR) [85]. At the same time, compared to conceptual hydrological models
(AWBM and Sacramento), AI models perform best in predicting daily streamflow [54].
In addition, Contreras et al. [86] employed RF for 4, 12, and 24 h, and they said that the
proposed RF models achieved an excellent result in discharge forecasting with minimal
statistical errors. Their discoveries have the potential to be helpful in the development
of fully operational early warning devices. Also, the results of this study correlate with
those found by Peng et al. [87], who revealed that RF outperformed the BP neural network
and the SVM in terms of accurate prediction and computation time while working with
complicated and nonlinear hydrological models. Our results, supported by Li et al. [27],
explain that RF captures peak flows better than other machine learning models such as
ELM-kernel, BPNN, and SVR.

This is supported by the fact that the RF performed better in both of these methods.
The model assessment results reveal that the RF performs significantly better in basins
controlled by snowmelt than in basins driven by rainfall [88]. One more study by Singh
et al. [89] supported that RF exhibits strong potential for simulating streamflow over the
Himalayan catchment in India compared to MLR, MARS, and SVM. Even for medium-
and long-term runoff forecasting, RF performs best compared to SVM and IARMA [90].
Compared to neural networks and SVM, the RF model offers greater prediction accuracy
and requires less computation when working with highly nonlinear hydrological time
series, when considering monthly streamflow simulations [87]. Not only for streamflow
modeling, but RF has also been applied in various studies like predicting total nitrogen
(TN), total suspended solids (TSS), total phosphorus (TP), and ortho-phosphorus (Ortho-P)
EMCs in urban runoff [91].

There are several limitations attached to machine learning models. The location is a
limitation of the above optimal model (the RF model). Since the RF model was trained
using data from the Wairagarh catchment, it is more likely to produce correct findings
when applied to other catchments. The significant degree of randomness in the streamflow
pattern has necessitated the application of several machine learning algorithms in a variety
of geographic areas to locate appropriate models for reliable forecasting. It is, therefore,
a continuous challenge to investigate and build an expert model for use in hydrological
modeling. If it is used for other catchments, it will need to be retrained on the past data of
the concerning catchments.

6. Conclusions

In this study, five models, i.e., SVR, RF, MLP, M5P, and LR, were developed to simulate
1-day-ahead streamflow at Wairagarh station in the Pranhita subbasin (Godavari basin) of
India. For this analysis, different precipitation datasets were considered. CMIP6 precipi-
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tation datasets were downscaled using the distribution mapping method. Models were
developed for 1993–2014, in which 70% of data were used for training, and the remain-
ing 30% were used for testing, after excluding any missing data. The input parameters
were chosen using correlation and pairwise correlation attribution evaluation methods.
Important takeaways are outlined here:

Both CMIP6 and IMD performed better in streamflow forecasting using lagged
data (precipitation and streamflow), minimum temperature, and maximum temperature
as input.

Using CMIP6 datasets as input, RF and M5P performed very well according to different
evaluation metrics. RF showed very good (0.75 < NSE < 1 and 0.7 < R2 < 1) performance
in training and acceptable (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) performance in testing.
Similarly, M5P represented a satisfactory (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) performance
in both training and testing. For CMIP6 input precipitation dataset is found to be MRI-
ESM2-0 for the M5P model and MIROC6 for the RF model.

Compared to downscaled CMIP6 precipitation datasets, IMD outperformed all the
models in evaluation metrics. In comparison with all five models, RF outperformed the
others, with NSE, R, R2, and RMSE values of 0.95, 0.979, 0.937, and 30.805 m3/s and 0.681,
0.91, 0.828, and 41.237 m3/s during training and testing, respectively. RF showed the best
performance in evaluation metrics and in capturing peak flow events and hydrograph
patterns in both training and testing.

Overall, the best-performing models in forecasting streamflow one day in advance
when using IMD gridded precipitation as input are ranked in the following order: RF, SVR,
M5P, MLP, and finally LR. However, the last two methods exhibited very poor performance
for the chosen study area.

The findings of this study hold crucial implications for water resource management
and hydrological research. The accurate streamflow forecasting models developed using
advanced machine learning algorithms can empower decisionmakers with better water
planning strategies, flood control, and drought management. Incorporating multiple
gridded satellite precipitation datasets and bias-corrected CMIP6 data enhances the under-
standing of climate change impacts on hydrological processes. However, limitations exist,
such as data availability, model generalization, and uncertainties in climate models. Future
research can explore ensemble machine learning modeling, real-time streamflow predic-
tions, and risk assessment studies. Additionally, efforts can be directed toward addressing
hydrological complexities and refining model validation techniques. By overcoming these
limitations and pursuing further research, the field of streamflow forecasting can advance,
contributing to sustainable water management and preparedness for water-related chal-
lenges worldwide.
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