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Abstract: Rampant disruptions have probed the fragility of supply chains: Renewed perspectives and
comprehensive operational models are needed to enhance resiliency and sustainability in business.
This paper proposes a new inventory management model that explicitly integrates process improve-
ment efforts to improve supply chain sustainability through the better use of capital (materials, assets,
and technology) and labor (workforce and know-how). Under a desired service-level constraint,
we study reducing setup (fixed) costs when they are expressed in terms of economic production
functions of two (input) decision variables: the level of capital (e.g., process change, and technology
investments) and the level of labor required. This research is motivated by lean manufacturing
practices, which rely on shaping the operating environment and operating optimally within that
business environment. Based on mathematical modeling and analysis, we provide closed-form
optimality expressions and structural results that lend themselves to decision insights. In particular,
we provide, along with illustrative numerical examples, results on the sensitivity of setup-reduction
efforts to demand rates, variability, and explicit expressions for determining the required labor and
capital resources. A generalization of the model for carbon emissions is also presented.

Keywords: process improvement; supply chain; economic production functions; disruptions;
sustainability

1. Background and Brief Literature Review

To enhance efficiency and effectiveness, streamlining supply chain (SC) operations is a
formidable but necessary task. From improving product quality to flawless shipment deliv-
ery to precise data-sharing for coordination and environmental compliance, SC members
need to invest in process-improvement efforts continuously to be viable in a competitive
marketplace [1–3]. SCs incur fixed costs in their operations in various forms, such as
overhead in management, setup in manufacturing, ordering costs in retailing logistics,
data acquisition for accurate forecasting, or process improvement for cost and carbon
savings. For instance, a buyer may commit to a fixed transport capacity, the utilization
of which may be wavering due to uncertainties in demand and supply. Often, fixed costs
dictate operational decisions (e.g., inventory management). Investments in reducing fixed
costs (e.g., choosing a more reliable and less costly third-party logistics provider) may
reduce overall costs and decrease environmental damage because of increased capacity
utilization [4]. Therefore, it is plausible to state that investments in process improvements
(fixed costs) impact the sustainability of SCs.

Although the literature is well-established in “economies of scale” (whereby, for
instance, given the fixed dispatch cost of a truck, a lower per unit transportation cost could
be attained if the truck’s carrying capacity is better utilized), more research is needed in
understanding the operational factors of and investing in reducing fixed costs. In this
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study, we focus on reducing fixed inventory replenishment costs when they are functions
of two (input) decision variables: the level of capital (e.g., process change, and technology
investments) and the level of labor required. This issue was first addressed in the context
of lean manufacturing practices, which rely on shaping the operating environment and
operating optimally within that business environment. As such, it is conventional to refer
to fixed cost improvements as ‘setup reductions.’ We shall retain this usage herein as
shorthand, although our analysis applies to both manufacturing and retail settings under
the given assumptions.

In his 1985 seminal work on the impact of investing in reduced setups, Porteus
investigates the economic justification of lean practices in an Economic Order Quantity
(EOQ) model with deterministic demands under stylized cost structures representing
improvement efforts [5], whereby the focus is on the linear, and power functions, and
logarithmic costs for reducing setups. Ref. [6] extends the setup-reduction problem to
the Economic Production Quantity (EPQ) model with deterministic demand and finite
production rate when the setup-reduction cost is a linear or exponential function of capital
investment. Ref. [7] studies the problem from the perspective of setup-reduction cost
curves and considers linear, concave-parabolic, convex-parabolic, logarithmic, logistic, and
exponential functions. Ref. [8] illustrates that setup-reduction costs may be step functions
corresponding to a fixed number of reduction opportunities (levels).

Although some of these structures have been widely accepted and utilized in various
succeeding versions of the basic model, empirical study must be conducted to verify
or justify the use of such analytically convenient functional forms. For example, all the
studies in setup-reduction literature that use the logarithmic investment function justify it
by citing [9] and referring to the Japanese process improvements discussed therein. Yet,
interestingly, [9] does not provide or allude to any structural form for setup-reduction
costs in Japan. To the best of our knowledge, [8] is the only study providing an empirical
comparison of setup-reduction efforts in practice based on four case studies. Data for
only one of these case studies are readily available in [8]; we employ these as base-case
data to motivate our research further and highlight the value of functional forms in setup
cost reduction. To that end, let ∆ denote a nonnegative scalar for the reduction effort.
Our analysis of these data reveals that the (continuous) functional relationship between
setup-reduction cost Γ(∆) and (1− ∆) × 100% reduction in setup (0 ≤ ∆ ≤ 1) is best
described by a power function Γ(∆) = 73.03∆−3.326 − 8349.91 with an R-squared = 0.999,
whereas the best logarithmic function fitted to the data (Γ(∆) = 73.03∆−3.326 − 8349.91)
has a corresponding R-squared = 0.853 (see Figure 1). Note that Γ(∆ = 1) ≡ 0 because no
action would incur no cost. The logarithmic form has been suggested and widely studied
in literature for analytical purposes. However, the power function form of reduction costs
arises naturally from fundamental economic activities, as we elucidate later. Thus, there
is a gap in the literature for a bottom-up approach to constructing setup-reduction cost
functions aside from mere analytical convenience. We attempted to carry this out by using
the so-called economic production functions.

Aside from a theoretical justification of a specific cost function, such an approach is also
beneficial from an organizational resource perspective. Currently, there is no study in the
literature that addresses the resource needs explicitly for setup-reduction efforts. This paper
assumes that setup-reduction activity is an input conversion process: capital (equipment,
tools, and automation) and labor are combined to achieve the desired reduction. For
example, a manager may purchase a new press that allows for faster changeovers (reducing
the setup time and related cost) by utilizing more capital or assigning more workers to
a changeover operation to achieve the same result. A product design change that would
result in faster changeover times might require the firm’s capital and labor investments.
We take this bottom-up approach in this work to represent the setup-reduction efforts. Our
approach to utilizing economic production functions to represent setup-reduction efforts
justifies models in the literature that use convex power functions. We provide closed-form
solutions for the resulting setup levels and the required inputs (resources) to be allocated
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to that purpose. As such, our findings bridge the decision areas of process improvement
and resource planning.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 24 
 

reduction efforts. Our approach to utilizing economic production functions to represent 
setup-reduction efforts justifies models in the literature that use convex power functions. 
We provide closed-form solutions for the resulting setup levels and the required inputs 
(resources) to be allocated to that purpose. As such, our findings bridge the decision areas 
of process improvement and resource planning. 

 
Figure 1. Comparison of setup cost-reduction functions with data in Trevino et al. [8]. 

There is a vast literature on the setup-reduction problem. Below, we review the liter-
ature focusing on the works that are most relevant in terms of demand stochasticity, ac-
counting for shortages, and functional forms for setup-reduction costs. 

In the presence of randomness in demands during lead times, the lot size-reorder 
point ( , )Q r  control policy is employed for inventory management in systems that are 
continuously monitored. (Periodic review policies and corresponding models are outside 
the scope of our work and, hence, are omitted in this review). The setup-reduction prob-
lem for the lot size-reorder point model with stochastic demand during lead time was first 
addressed in [10]. In their model, explicit shortage costs are charged per unit short, and 
setup-reduction costs are described by logarithmic and power functions of capital invest-
ment. Although the formulation is for general demands, the analysis and optimality re-
sults are restricted to the special cases of uniform and exponential demand distributions. 
Ref. [11] analyzes the special cases of geometric and exponential demands during lead 
time when shortage costs are explicitly accounted for by charging them per stockout in-
stance per unit time and per unit short. Setup reduction is achieved by employing a loga-
rithmic investment function. Following these early works, research has evolved in two 
directions: random yields in replenished quantities (defective deliveries) starting with [12] 
and lead-time-reduction option in conjunction with setup reductions following the 
deterministic model proposed in [13]. Models developed in either direction directly 
reduce to the basic setting as special cases: when the yield is 100% (expressed with a Dirac 
Delta function) and/or the lead-time reduction option is not executed. 

The case when delivered orders contain random defectives is studied in [12]. They 
account for shortage costs explicitly in the objective function, and the assumed setup-
reduction cost function is assumed to be logarithmic. Closed-form optimality results are 
derived for exponential and uniform demand distributions. Ref. [14] revisits the problem 
with a service constraint. However, they reformulate the service-level constraint through 
an approximation proposed in [15] and work with the worst-case scenario (upper bound) 
instead of the exact constraint. Ref. [16] extends this work by considering normally 
distributed demands and joint reductions in setups and lead times. Shortage costs are 

0
2
4
6
8

10
12
14
16

0 0.2 0.4 0.6 0.8 1

Γ(
Δ

)(
in

 1
00

0 
$)

 

Δ

Setup-reduction Cost Γ(Δ) vs.  Reduction Effort Δ

Observed

Power, R-squared=0.999

Logarithmic, R-squared=0.853

Figure 1. Comparison of setup cost-reduction functions with data in Trevino et al. [8].

There is a vast literature on the setup-reduction problem. Below, we review the
literature focusing on the works that are most relevant in terms of demand stochasticity,
accounting for shortages, and functional forms for setup-reduction costs.

In the presence of randomness in demands during lead times, the lot size-reorder
point (Q, r) control policy is employed for inventory management in systems that are
continuously monitored. (Periodic review policies and corresponding models are outside
the scope of our work and, hence, are omitted in this review). The setup-reduction prob-
lem for the lot size-reorder point model with stochastic demand during lead time was
first addressed in [10]. In their model, explicit shortage costs are charged per unit short,
and setup-reduction costs are described by logarithmic and power functions of capital
investment. Although the formulation is for general demands, the analysis and optimality
results are restricted to the special cases of uniform and exponential demand distributions.
Ref. [11] analyzes the special cases of geometric and exponential demands during lead time
when shortage costs are explicitly accounted for by charging them per stockout instance
per unit time and per unit short. Setup reduction is achieved by employing a logarithmic
investment function. Following these early works, research has evolved in two directions:
random yields in replenished quantities (defective deliveries) starting with [12] and lead-
time-reduction option in conjunction with setup reductions following the deterministic
model proposed in [13]. Models developed in either direction directly reduce to the basic
setting as special cases: when the yield is 100% (expressed with a Dirac Delta function)
and/or the lead-time reduction option is not executed.

The case when delivered orders contain random defectives is studied in [12]. They
account for shortage costs explicitly in the objective function, and the assumed setup-
reduction cost function is assumed to be logarithmic. Closed-form optimality results
are derived for exponential and uniform demand distributions. Ref. [14] revisits the
problem with a service constraint. However, they reformulate the service-level constraint
through an approximation proposed in [15] and work with the worst-case scenario (upper
bound) instead of the exact constraint. Ref. [16] extends this work by considering normally
distributed demands and joint reductions in setups and lead times. Shortage costs are
accounted for explicitly in the objective function. The authors use both logarithmic and
power investment functions for setup reductions. Our work differs from theirs in that
we impose a hard service-level constraint. Along the lines of [8], ref. [17] approximates
this model when setup reduction costs are logarithmic. Generally distributed random
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yields and normally distributed demands are analyzed in [18]. Shortage costs are explicitly
accounted for in the objective function. Capital investment in setup reduction is assumed
to be logarithmic in the reduction amount. Ref. [19] extends the model to allow for lead
time, setup reductions, and lead-lead-time-dependent backorder rates. The investment
function for setup reductions is logarithmic. Shortage costs are explicitly included in the
optimization but are then re-formulated by considering an upper bound as suggested
in [15]. The resulting approximate model holds for any demand distribution.

Ref. [20] considers defective deliveries with setup and lead-time reductions in conjunc-
tion with normally distributed demands. Shortages are explicitly costed in the optimization,
and setup reductions incur logarithmic costs. Finally, refs. [21,22] consider random demand
environments for the lot size-reorder point model when setup costs are step functions
corresponding to discrete levels of reduction possibilities. All of these works take lead
times to be independent of replenishment quantities. Ref. [23] examines the case for when
(manufacturing) lead time depends on the lot size. Specifically, they assume that it is the
sum of the setup time and the time to produce the lot, as proposed by [24]. They assume that
a service-level constraint is binding and that setup reduction is achieved by shortening the
setup time. Aside from convexity, no specific functional form is assumed for time reduction
cost, but an inversely proportional structure is used in the illustrative numerical example.
The direct interaction between lead times and setup times implies that reduction efforts in
setup times also decrease lead times; this renders their analysis fundamentally different
from and not applicable to settings with lot-size-independent (delivery) lead times. Thus,
we see that the setup-reduction problem for random demand environments with delivery
lead times has yet to be analyzed in an exact manner under a hard service-level constraint.
We attempt to fill this gap in the literature, as well. Next, we focus on positioning our study
in the big picture of sustainable SC management.

In the face of the pressing climate crisis, outbreaks, social instabilities, and changing
demographics and needs, sustainability is at the front and center of the business world,
which runs on supply chains (c.f., [25]). Hence, the sustainable supply chain management
literature has expanded (e.g., [26]). Parallel to advances in intelligent technologies and data
storing and processing capacities, supply chain analytics has emerged as an enabler for
better decision making with sustainability imperatives (see [27]). We note here that the
risks arising from natural disasters, labor strikes, outbreaks, and political conflicts, unlike
those attributable to coordination problems, disrupt and break supply chains [28], and
require integrated management systems [29] to cope with them (see Figure 2). A recent case,
COVID-19, has wreaked havoc on many SCs and exposed their fragilities [30]. This has
propelled researchers to integrate resiliency and technological advances into models taking
on the challenging task of synchronizing production, location/allocation, distribution,
transportation, and inventory management. For example, ref. [31] proposes a resilient
healthcare SC network while minimizing the design and operating, environmental, and
social costs. Several papers have highlighted the use of intelligent technologies in supply
chain planning and execution under disruptions (e.g., [32–35]).
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As regulations press firms to disclose their environmental, social, and governance
(ESG) impacts [36], SCs need to be better coordinated, transparent, engaged with their
customers, and resilient and intelligent in minimizing “waste”. According to [37], industrial
waste, a sign of inefficiency, surfaces in various ways, such as overproduction, unnecessary
processing, stocking and transportation, and the making of defective products. Waste
in both capital (e.g., materials, energy, the use of technology, the cost of unproductive
time, and landfills) and in labor (e.g., unnecessary human errors, lack of adequate level of
automation, and the cost of time to train workers) causes not only additional SC costs but
also hurts sustainability. In short, the ill-operated processes (how and where products are
produced, or services rendered) add additional costs. Hence, “leaning” the logistics systems
(see [38]), such as minimizing setup times for discrete manufacturing or maximizing
transport capacity utilization for retailers or carriers becomes a critical goal.

The analysis herein has implications in two such directions, as well. From the per-
spective of response to disruptions, our study provides explicit conditions on when and
how much investments are desirable in setup-reduction efforts in the face of demand
regime changes in terms of overall demand rates and lead-time demand variability. To
the best of our knowledge, such conditions have yet to be theoretically investigated for
setup-reduction efforts in the literature and, hence, this study. Coupled with resource-
allocation decisions, our findings provide valuable guidelines for managers for research
and development (R&D) activities in times of supply and demand uncertainties. From a
sustainability perspective, our models offer a framework to investigate the impact of setup
reductions on sustainability.

As greenhouse gas emissions have become a pressing global issue, the inventory
literature has seen the emergence of sustainable operations. (See [39] and its references
for a recent comprehensive review of green operations.) A particularly relevant stream of
research regarding sustainability is on the celebrated EOQ models where setup and/or
stock-keeping operations result in carbon emissions. Among these works, we cite the
following: Ref. [40] studies an EOQ model under a cap-and-trade mechanism and dis-
cusses managing the carbon footprints in inventory control. Ref. [41] investigates how
to incorporate carbon emissions concerns into the operational decision-making models.
Ref. [42] revisits the EOQ model with a cap on carbon emissions and analytically supports
the observations in [41]. Similarly, [43] addresses the inventory-replenishment problem
and carbon emission reduction investment with varying carbon regulation settings. In
Section 4, we briefly discuss how our model can be used to incorporate carbon emissions.

The contributions of this work can be summarized as follows. This paper is the first in
the literature to adopt a resource-based approach to investigate process improvement efforts.
This provides a justification for specific functional forms used in the literature. In particular,
we model setup reductions via (economic) production functions considering factor efficiencies.
For the least-cost process improvement level, we offer optimal levels of labor and capital
investments and the corresponding inventory system’s optimal control variables: optimal
reordering and replenishment quantity. This enables managers to plan for and allocate labor
and capital inputs for R&D activities while optimizing inventory decisions under demand
and lead-time uncertainty. The specific formulation of the stochastic inventory problem
under a hard service constraint fills a gap in the inventory literature with setup-reduction
efforts. Our results apply to any situation with fixed-replenishment opportunities in
manufacturing and retail settings. As another contribution, we reaffirm and extend the
results in the seminal work [5] using a bottom-up, nested optimization approach. Figure 2
displays a pictorial of the problem at hand.

The layout of this paper is as follows: In Section 2, we construct the cost functions and
relate them to the existing literature, present the mathematical model of the problem, and
cast the generic optimization model. Section 3 provides all the related optimality results and
structural insights. Section 4 describes some extensions on the generic models and provides
additional insights into how process improvements may impact resource planning and
allocation, guard against disruptions, and impact sustainability for SC operations. Then, in
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Section 5, we support our analytical results with a small numerical example and sensitivity
analyses. Finally, Section 6 concludes with some remarks and future research venues.

2. The Generic Model Formulation

Any process improvement incurs fixed costs. In times of technological disruptions
and to enhance their resiliencies, supply chains must invest in process-improvement costs.
Inventory management is a fundamental supply chain function in which one of the goals is
to benefit from economies of scale. To that end, we build on an inventory model to optimize
process-improvement costs (Recall Figure 2). The details of this generic model follow. The
list of key notations is given in Abbreviations. Any other less-used notation is explained
when needed in the remainder of the paper.

Consider a product to be manufactured (or replenished by a retailer) whose demand
is random with a mean rate D (units per unit time, say, per year). We assume that all the
uncertainties in demand and delivery can be represented through demand during lead
time. Demand during the lead time has a normal distribution with mean demand during
lead time denoted by µDL and the standard deviation of demand during lead time denoted
by σDL. There is a fixed cost S per setup (or order) associated with every order; units on
hand inventory cost at a rate of H per unit per unit time held in stock. All unmet demand is
backordered at a rate of π with a desired annual service level (fraction of immediately unmet
demand per year) η. Each unit is acquired at the cost of P. The inventory system employs a
lot size-reorder point (Q, r) policy. Making the conventional assumption of at most one
outstanding order at any time, the reorder point r = µDL + zσDL with the safety stock factor
z selected such that the annual service-level target is achieved: η = [(D/Q)L(z)σDL]/D
where L[z] denotes the loss function of a standard normal variable.

Then, the expected total operating cost per unit time can be written as follows:

OC(Q, r) = SD/Q + H[Q/2 + (r− µDL)] + πηD + PD (1)

For the given system parameters, the decision variables are the values of the inventory
control policy variables Q and r.

Proposition 1. The cost-minimizing replenishment policy is to manufacture (or order) Q∗ whenever
the inventory level hits r∗(= µDL + z∗σDL) where Q∗ =

√
SD/H(1/2− η/(1−Φ(z∗)) and z∗

uniquely solves [L(z∗)]2 = SDη2/[H(1/2− η/(1−Φ(z∗))/σ2
DL]. Then, the ensuing optimal

cost per unit time OC∗is given by

OC∗ = OC(Q = Q∗, z = z∗)
=
√

SDH
(√

(1−Φ(z∗)− 2η)/
√

2(1−Φ(z∗)) +
√

2(1−Φ(z∗))/
√
(1−Φ(z∗)− 2η)

)
+Hz∗σDL + (πη + P)D

=
√

2SDH
√
(1−Φ(z∗)− η)2/(1−Φ(z∗))(1−Φ(z∗)− 2η) + Hz∗σDL + (πη + P)D

(2)

Proof of Proposition 1: The necessary first-order condition (FOC) for optimality on Q
gives ∂OC(Q)/∂Q = ∂/∂Q{SD/Q + HQ/2} + ∂/∂Q{HzσDL} = 0 where ∂z/∂Q is ob-
tained by differentiating both sides of the desired annual service-level condition η =
[(D/Q)L(z)σDL]/D. Also, ∂L(z)/∂z = −(1 − Φ(z)), ∂z/∂Q = −η/[(1 − Φ(z))σDL].
Then, ∂OC(Q)/∂Q = −SD/Q2 + H/2− HσDLη/[(1− Φ(z))σDL] = −SD/Q2 + H/2−
Hη/(1−Φ(z)) = 0. Solving for the optimal replenishment quantity for a given z value,
we obtain Q ∗ |z =

√
SD/H(1/2− η/(1−Φ(z))). Note that the second-order condition

(SOC) ∂2z/∂Q2 =
[
−ηφ(z)σDL/[(1−Φ(z))σDL]

2
]
[−η/[(1−Φ(z))σDL]] > 0 guarantees

that the optimal quantity obtained minimizes the expected total cost rate. Substituting the
conditional optimal quantity expression into the desired annual service-level expression
and squaring both sides, the corresponding optimal safety stock factor z∗ is found to solve



Sustainability 2023, 15, 13117 7 of 23

[L(z∗)]2 = SDη2/H(1/2− η/(1−Φ(z∗)))/σ2
DL. Direct substitution gives the optimal cost

rate. This completes the proof. �

We see that the optimal batching decision and the resulting expected cost rate depend
on both the fixed cost S and, indirectly, the uncertainties faced by the operations as captured
by σDL. To alleviate the negative impact of uncertainty, a firm may engage in improvement
efforts in two ways. (i) Externally by trying to reduce σDL directly through improving
variabilities in demand, lead times, etc. (ii) Internally by reducing the fixed cost S. Extra-
firm improvements typically involve other stakeholders who may show organizational
resistance to change. It may also not be physically possible to eliminate the sources of
uncertainties in times of crisis, as were experienced globally during the recent COVID-19
pandemic, which disrupted all supply chains. Intra-firm improvements, on the other hand,
require less managerial burden due to direct control over operations and provide faster
results. Therefore, we consider the latter option and focus on fixed-replenishment (setup or
order) cost-reduction efforts.

With process-improvement efforts, the fixed cost S associated with each replenishment
becomes a managerial decision variable. A firm can reduce fixed costs through process
improvements by employing capital (in terms of automation, equipment, etc.) and labor.
Such process improvements have been very well documented. We represent the effective
setup level as S .

= S0∆, where S0 denotes the current setup level prior to reduction efforts
and ∆ ≤ 1 is a scalar representing the reduction effort. Let Γ(∆) denote the cost of achieving
a (1− ∆)× 100% fixed-replenishment cost reduction.

We depart from the existing literature on setup-reduction efforts in a fundamental way.
Instead of envisioning the ‘acquisition’ of available reduction technologies from outside at
a specific cost, we consider an intra-firm technology development capability. We assume
that internal technology development can be modeled via economic production functions.
That is, ∆ is an output of capital K and labor L input levels devoted to the reduction activity
in the firm: ∆ = θ(K, L). In economics parlance, such input conversion relationships have
been called “production functions”. (See, for example, [44] for a basic introduction to
economic production functions to describe input conversion processes.) Currently, the
firm is assumed to possess some inherent human know-how L0 and technical capital
stock K0 so that θ(K0, L0) = 1. In other words, the firm could have achieved its current
process capabilities and desired to improve them with additional labor L′ and capital K′

investments for process R&D. Thus, ∆ = θ(K′ + K0, L′ + L0). Additional labor and capital
are acquired at unit variable costs cK and cL, respectively. We assume that acquisition costs
of inputs are (annually) amortized values but suppress the explicit cost of capital notation.
Noting that current assets K0 and K0 are variable but fixed costs, Γ(∆) .

= cKK′ + cLL′.
In the presence of fixed-replenishment cost-reduction efforts, a cost-minimizing deci-

sion maker’s optimization problem involves the determination of (i) the optimal values of
the inventory control policy parameters, Q∗ and r∗ or, equivalently, z∗(= (r∗ − µDL)/σDL),
(ii) the optimal setup-reduction rate, ∆∗ and (iii) the optimal allocation of capital and
labor inputs to achieve that reduction, K′ ∗ (∆∗) and L′ ∗ (∆∗). Thus, we have a nested
optimization problem.

P0 : min
Q,r

min
∆

min
K′ ,L′

Z0


= S0D∆/Q + H[Q/2 + (r− µDL)] + πηD + PD + [cKK′ + cLL′]∣∣∣∣ ∆ = θ(K′ + K0, L′ + L0), z = (r− µDL)/σDL,

ηQ = L(z)σDL



. (3)

This nested optimization problem can be posed equivalently in different ways. The
research problem at hand emerged in the literature as selecting the optimal setup level
with a corresponding cost of setup reduction (Porteus). For consistency with the literature
and elucidation of the impact of economic inputs, we also recast the optimization in this
equivalent canonical form and state it as P1.
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P1 : min
∆

Z1

{
=
√

2S0DHη(1 + ηΦ(z∗)/2ηΦ(z∗)
√

∆ + Γ∗(∆)
+[Hz∗σDL + (πη + P)D]

∣∣∣∆ ≤ 1, [L(z∗)]2(1−Φ(z∗)) = 2ηS0D∆/Hσ2
DL

}
. (4)

where ∆ is now the non-negative decision variable and Γ∗(∆) denotes the least cost of
reducing the fixed-replenishment cost. That is, Γ∗(∆) is the solution to problem P2 as in
Equation (5).

P2 : min
K′ , L′

Γ(∆)
{
= cKK′ + cLL′

∣∣∆ = θ(K′ + K0, L′ + L0)
}

, (5)

The functional form of Γ∗(∆) depends on the adopted specific functional form
of θ(•) and the solution type ( ĵ) when the least cost is achieved: a corner solution.
( ĵ = 0; L′∗ = K′∗ = 0), a boundary ( ĵ = 1; L′∗ > 0, K′∗ = 0, or ĵ = 2; L′∗ = 0,
K′∗ > 0) or an interior solution ( ĵ = 3; L′∗ > 0, K′∗ > 0). Aside from their mathemat-
ical interpretation, the solution types also correspond, respectively, to the following
input-usage policies: the no-change policy, the labor-reliant single input policy, the
capital-reliant single input policy, and the dual input policy. Such specific input-usage
policies may be of interest or even dictated to managers due to organizational factors
such as freezes on new labor recruits, new capital expenditures, or business environment
conditions such as labor shortages or inability to access new capital in crises.

To facilitate our exposition, let θ ĵ(•) and Γ̂ ĵ(∆) denote, respectively, the particular
structure of the setup-reduction rate function and the corresponding least cost when a
particular solution type ĵ is imposed. By definition, ∆ = 1 and Γ̂ ĵ(∆) := 0 for ĵ = 0. Then,

Γ∗(∆) = min
ĵ

Γ̂ ĵ(∆). Thus, the best input usage policy obtains the minimal cost of setup

reduction in achieving a non-zero setup cost reduction ĵ∗(∆) = argmin
{

Γ∗
ĵ
(∆) : ĵ = 1, 2, 3

}
.

There may be multiple optima for ĵ∗(∆) for a given reduction rate, corresponding to
intersection points of least-costs for different input usage policies. In such cases, we will
interpret ĵ∗(∆) as the smallest of the set. For example, ĵ∗(∆) = 1 if labor-reliant and capital-
reliant single-input policies give the same reduction costs for ∆. We emphasize that the
model herein enables one to determine the value (or cost) of imposed input-usage policies
and may be used to study R&D budget or labor constraints.

Next, we delineate the functional form of the setup-reduction rate function θ(•). For
some forms of θ(•), one can a priori determine the range of system parameters for which
a particular solution type would be the least-cost solution for any given reduction ∆.
The notion is identical to determining the demand ranges for which a particular process
alternative is best in process-selection decisions. We discuss some examples later. However,
in general, delineating such regions analytically seems practically intractable. Instead,
the base problem is best solved by treating each solution type as a separate problem and
choosing the feasible solution as the global optimal. In general, the optimal solution is
obtained by considering four possible candidates. But, for certain functional forms, we
provide sufficient conditions for only one solution type to be optimal.

Economic production functions are mathematical constructs invented to describe the
existing characteristics of an economic activity in a particular setting. The suitability of a
specific functional form can only be tested empirically for individual firms. As such, no
one functional form can be viewed as the most applicable to all firms across all industries.
That is, managers are not at liberty to select a production function to describe their own
process-improvement efforts. Data on past projects would indicate an organization’s input-
conversion capabilities to generate process improvements. Therefore, optimal decisions
must be investigated within different formulations of process-improvement efforts via
economic production functions.

In our analysis, we first consider the Cobb–Douglas production function, the most
commonly used functional form in the literature. As demonstrated below, it is amenable
to obtaining closed expressions for optimality results. Moreover, it results in a piece-
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wise power function. Thereby, it provides a resource-based bottom-up justification of the
commonly assumed technology acquisition cost structure in the operations management
literature. However, the piecewise nature introduces novelties in optimality results hereto-
fore not investigated in the literature. Subsequently, we present and discuss the Constant
Elasticity of Substitution (CES) and Leontief production functions and their modeling and
optimization implications.

3. Optimality and Structural Results for Different Production Functions

In this section, we derive analytical results for the optimal cost-reduction values (and
their corresponding optimal values of capital and labor levels for each reduction-rate
function). We begin our analysis with the Cobb–Douglas function.

The Cobb–Douglas production function is given by

θ1 = θ(K, L) = AKβK LβL = A(K′ + K0)
βK (L′ + L0)

βL , (6)

where A is interpreted as the productivity or technological efficiency for the overall conver-
sion process, and the parameters βK(< 0) and βL(< 0) determine the elasticities of capital
and labor inputs, respectively. The surrogate parameter ρ

.
= βK + βL denotes the elasticity

of scale, which shows the extent of the effect of changing inputs on the output. In 1928,
Cobb and Douglas were the first to introduce this input–output relation based on capital
stock, labor force, and GNP for the US manufacturing industries from 1899–1922 [45]. Since
then, it has been widely applied to energy generation [46,47], for several labor-intensive
sectors in Japan [48], for applications in paper, steel, and oil industries [49], for regional
agricultural production in Türkiye [50], for supply chain operations [51], for the energy
sector [52] and radio frequency identification (RFID) productivity in retail SCs [53].

Proposition 2. When the fixed-replenishment cost-reduction rate is of the Cobb–Douglas form,
the minimal cost of setup reduction in achieving a non-zero(1−∆)× 100% fixed-replenishment
cost reduction is obtained by the best input-usage policy ĵ∗(∆) = argmin

{
Γ∗

ĵ
(∆) : ĵ = 1, 2, 3

}
with the optimal capital input level K̂∗(∆| ĵ∗) = K̂′(∆| ĵ∗) + K0, the optimal labor in-
put level L̂∗(∆| ĵ∗) = L̂′(∆| ĵ∗) + L0, the corresponding minimal cost of setup reduction
Γ∗(∆) = min ĵ

{
Γ̂ ĵ(∆) : ĵ = 1, 2, 3

}
where each input usage policy ĵ has the

following properties.

(a) Under the labor-reliant (single input) policy (ĵ = 1), the (least-cost) additional capital input
is K̂′(∆| ĵ) = 0, the additional labor input is L̂′(∆| ĵ) = (∆/A)1/βL K0

−βK/βL − L0 and
the corresponding minimal cost of fixed cost reduction is Γ∗1(∆) = Ψ1∆1/βL − ψ1 where
Ψ1 = cL(∆/A)1/βL K0

−βK/βL and ψ1 = cLL0.
(b) Under the capital-reliant (single input) policy (ĵ = 2), the (least-cost) additional labor

input is L̂′(∆| ĵ) = 0, the additional capital input is K̂′(∆| ĵ) = (∆/A)1/βK L0
−βL/βK − K0

and the corresponding minimal cost of fixed cost reduction Γ∗2(∆) = Ψ2∆1/βK − ψ2 where
Ψ2 = cK(∆/A)1/βK L0

−βL/βK and ψ1 = cKK0.
(c) Under the dual input policy (ĵ = 3), the least-cost additional labor input L̂′(∆| ĵ), the least-cost

additional capital input K̂′(∆| ĵ) and the corresponding minimal cost of fixed cost reduction
Γ∗3(∆) follow.

K̂′ ∗ (∆| ĵ∗) = (Ω−βL ∆/A)
1/ρ − K0,

L̂′ ∗ (∆| ĵ∗) = (ΩβK ∆/A)
1/ρ − L0,

Γ̂3(∆) = Ψ3∆1/ρ − ψ3,

(7)

where Ω = cKβL/cLβK = L̂∗(∆| ĵ∗)/K̂∗(∆| ĵ∗), ρ = (βK + βL), Ψ3 = k1cK + k2cL,

k1 =
(
ΩβL A

)−1/ρ, k2 =
(
Ω−βK A

)−1/ρ, and the final term ψ = cKK0 + cLL0.
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Proof of Proposition 2. Setting θ = ∆ in Equation (6) and solving for labor input, we

obtain L′ + L0 =
(

∆(K′ + K0)
−βK /A

)1/βL
and accordingly from Equation (5), we can

derive Γ(∆) = cKK′ + cLL′ = cKK′ + cL

(
∆(K′ + K0)

−βK /A
)1/βL − (cKK0 + cLL0). For

the boundary solutions, the least-cost value of the non-zero input can be obtained di-
rectly. For the boundary solution type ĵ = 1, suppressing the solution type notation

for inputs, we obtain L′ ∗ +L0 =
(
∆K0

−βK /A
)1/βL and Γ∗

ĵ
(∆) = cL

(
∆K0

−βK /A
)1/βL −

cLL0 =
[
cL
(
K0
−βK /A

)1/βL
]
∆1/βL − cLL0. For the boundary solution type ĵ = 2, we obtain

K′ ∗+K0 =
(
∆L0

−βL /A
)1/βK and Γ∗

ĵ
(∆) =

[
cK
(

L0
−βL /A

)1/βK
]
∆1/βK − cKK0. For the inte-

rior solutions ( ĵ = 3), via standard multivariable calculus, from FOCs, obtaining K′∗ such
that ∂Γ3(∆)/∂K′∗ = 0 and rewriting L′ in terms of K′∗, we derive the following optimal
capital and labor levels. Once the expressions K′∗ and L′∗ are plugged into Γ(∆), after
some algebra, we find the closed-form optimality expressions as in Equation (7). �

Next, we determine the sufficiency conditions on the system parameters for the best
input-usage policy given in Corollary 1 below.

Corollary 1. When the setup cost-reduction rate is of the Cobb–Douglas form, the best input-
usage policy giving the minimal cost of fixed-replenishment cost reduction in achieving a non-zero
(1− ∆)× 100% fixed cost reduction follows.

(a) If ∆ > max
{

AΩβL K0
ρ, AΩ−βK L0

ρ
}

, the best input usage policy achieving the least cost for
∆ is the dual input usage policy (ĵ∗(∆) = 3) and Γ∗(∆) = Γ̂3(∆).

(b) If ∆ ≤ max
{

AΩβL K0
ρ, AΩ−βK L0

ρ
}

, cL(∆/A)1/βL K0
−βK/βL − cLL0 ≤

cK(∆/A)1/βK L0
−βL/βK − cKK0, then the best input-usage policy achieving the least cost for ∆

is the labor-reliant single input-usage policy (ĵ∗(∆) = 1) and Γ∗(∆) = Γ̂1(∆).
(c) If ∆ ≤ max

{
AΩβL K0

ρ, AΩ−βK L0
ρ
}

, cL(∆/A)1/βL K0
−βK/βL − cLL0 >

cK(∆/A)1/βK L0
−βL/βK − cKK0 then, the best input-usage policy achieving the least cost for

∆ is the capital-reliant single-input-usage policy (ĵ∗(∆) = 2) and Γ∗(∆) = Γ̂2(∆).
(d) If the initial capital and labor endowments K0 and L0 have been chosen according to the

marginal cost condition cK∂Γ(∆)/∂L0 = cL∂Γ(∆)/∂K0, then it is always optimal to use the
dual-input policy.

Proof of Corollary 1. The conditions (a)–(c) on the parameters follow immediately from
solving for positive additional inputs. Condition (d) follows the same logic behind
the relationship obtained between the additional inputs in the preceding Proposition
2, cKβL/cLβK = L̂∗(∆| ĵ∗)/K̂∗(∆| ĵ∗). This condition also holds for total inputs under the
dual-input-usage policy. �

Note that when θ(•) is of the Cobb–Douglas form, the least cost of achieving ∆ is a
power function under each input usage policy. Hence, the technology acquisition costs of
the power function form used in the literature have a theoretical foundation in economic
production functions. But the overall least cost Γ∗(∆), the minimum of all reduction costs
arising from the three different input usage policies for any given ∆, is a piecewise power
function expressed via power functions that are valid only over specific intervals. Therefore,
when technology is produced in-house, there is not a single power function that represents
a reduction cost for all reduction rates. In this way, our work differs from the research in
the extant literature.

Next, we consider the Constant Elasticity of Substitution (CES) production function of
the form

θ3 = θ(K, L) =
(

α1(K′ + K0)
βK + α2(L′ + L0)

βL
)γ

(8)
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where γ determines the elasticities of the inputs and of the overall transformation, and
the other parameters are the same as in Equations (3) and (4). To ensure decreasing
rates of return on capital and labor inputs, we assume γβL < 0 and γβK < 0. The CES
production function was initially proposed in 1961 by Arrow et al. in a particular form
where βK = βL = β and γ = −β−1 [54]. Since then, it has been generalized to allow for
different elasticities and has been successfully used in energy generation (e.g., [55]) and
automation studies (e.g., [56]).

Proposition 3. When the fixed-replenishment cost-reduction rate is of a special case CES
form (βK = βL = β, γ = −1/β), the minimal cost of fixed-cost reduction in achieving a
non-zero (1− ∆)× 100% fixed-cost reduction is obtained by the best input-usage policy
ĵ∗(∆) = argmin

{
Γ∗

ĵ
(∆) : ĵ = 1, 2, 3

}
with the optimal capital input level

K̂∗(∆| ĵ∗) = K̂′(∆| ĵ∗) + K0 , the optimal labor input level L̂∗(∆| ĵ∗) = L̂′(∆| ĵ∗) + L0 , the
corresponding minimal cost of setup reduction Γ∗(∆) = min ĵ

{
Γ̂ ĵ(∆) : ĵ = 1, 2, 3

}
where

each input usage policy ĵhas the following properties.

(a) Under the labor-reliant (single input) policy (ĵ = 1), the (least-cost) additional capital input is

K̂′(∆| ĵ) = 0, the additional labor input is L̂′(∆| ĵ) = [(1/αL)∆−β − (αK/αL)K0
β]

1/β − L0
and the corresponding minimal cost of setup reduction is
Γ̂1(∆) = cL[(1/αL)∆−β − (αK/αL)K0

β]
1/β − cLL0.

(b) Under the capital-reliant (single input) policy (ĵ = 2), the (least-cost) additional labor input is

L̂′(∆| ĵ) = 0, the additional capital input is K̂′(∆| ĵ) = [(1/αK)∆−β − (αL/αK)L0
β]

1/β − K0
and the corresponding minimal cost of setup reduction is
Γ̂2(∆) = cK[(1/αK)∆−β − (αL/αK)L0

β]
1/β − cKK0.

(c) Under the dual-input policy (ĵ = 3), the least-cost additional labor input L̂′(∆| ĵ), the least-cost
additional capital input K̂′(∆| ĵ) and the corresponding minimal cost of fixed-cost reduction
Γ̂3(∆) follow:

(K̂′(∆| ĵ) + K0)/(L̂′(∆| ĵ) + L0) = (cLαK/cKαL)
1/(β−1)

K̂′(∆| ĵ) = ∆−1
[
αK + αL(cLαK/cKαL)

β/(β−1)
]−1/β

− K0,

L̂′(∆| ĵ) = ∆−1
[
αL + αK(cKαL/cLαK)

β/(β−1)
]−1/β

− L0,

Γ∗3(∆) = Ψ3∆−1 − ψ3,

(9)

where Ψ3 = cK

[
αK + αL(cLαK/cKαL)

β/(β−1)
]−1/β

and the final term ψ3 = cKK0. Equiva-

lently, Ψ3 = cL

[
αL + αK(cKαL/cLαK)

β/(β−1)
]−1/β

and the last term ψ3 = cLL0.

Proof of Proposition 3. For the boundary solutions, the least-cost value of the non-zero
input can be obtained directly. For the interior solutions ( ĵ = 3), via standard multivariable
calculus, we obtain ∂K′/∂L′ = −(αL/αK)(L/K)β−1 and ∂L′/∂K′ = −(αK/αL)(K/L)β−1.
From FOC by applying the chain rule, we obtain K′∗, which is found to be inversely
proportional to ∆ and vice versa. Similar relationships hold for K′∗. Substitution into Γ(∆)
gives the closed-form optimality expressions as in Equation (9). �

For the CES production function, the least cost is inversely proportional to the fixed-
cost reduction rate ∆ when the best input usage policy employs both additional labor and
capital for improvement efforts. The sufficiency conditions on the system parameters for
this case are given below.



Sustainability 2023, 15, 13117 12 of 23

Corollary 2. When the setup cost reduction rate is of the CES form, the best input-usage policy
giving the minimal cost of setup reduction in achieving a non-zero (1− ∆)× 100% setup-cost
reduction is the dual-input-usage policy (ĵ∗(∆) = 3) and Γ∗(∆) = Γ̂3(∆)if

(a) ∆ > max
{

K0

[
αK + αL(cLαK/cKαL)

β/(β−1)
]1/β

, L0

[
αL + αK(cKαL/cLαK)

β/(β−1)
]1/β

}
,

or
(b) the initial capital and labor endowments K0 and L0 have been chosen according to the marginal

cost condition K0/L0 = (cLαK/cKαL)
1/(β−1).

Proof of Corollary 2. The condition on the initial endowments K0 and L0 satisfies the
marginal cost balance cK∂∆/∂L0 = cL∂∆/∂K0 and, thereby, reasonably precludes subopti-
mal decision making prior to current process improvement efforts. �

Proposition 4. When the reduction cost rate is of CES form, the optimal reduction rate ∆∗, optimal
replenishment quantity Q∗ and reorder point r∗ are given by the simultaneous solution of the
following relationships:

[(αL/cL)S0D/Q∗]β/(1−β)∆∗2β + ∆∗βαKK0
β/αL − 1/αL = 0,

Q∗ =
√

2DS0(1−Φ(z∗))/Hη
√

∆∗,

and r∗ = µDL + z∗σDL, where z∗ solves [L(z∗)]2(1−Φ(z∗)) = 2ηS0D∆∗/Hσ2
DL.

Proof (sketch) of Proposition 4. Rests on standard multivariate calculus and the neces-
sary FOCs. �

Aside from this special case, CES is not amenable to obtaining closed-form expressions
for optimal reduction efforts and requires numerical methods. For completeness, we
provide the following result on the optimal decision variables.

Proposition 5. Under the dual-input-usage policy, the optimal reduction rate, replenishment
quantity and the reorder point for CES follow:

∆∗ =
[
S0DΨ3

2/[H(1/2− η/((1−Φ(z))σDL))]
]1/3

,

Q∗ =
[
S0DΨ3/[H(1/2− η/((1−Φ(z))σDL))]

2
]1/3

,

and r∗ = µDL + z∗σDL where z∗ solves ηQ∗ = L(z)σDL.

Proof of Proposition 5. Having already obtained Γ̂ ĵ(∆), the nested optimization is carried
out by first optimizing on ∆ for given inventory-control policy parameters and then optimiz-
ing the policy parameters themselves. First, note that TC(∆|Q, r) = S0D∆/Q + HQ/2 +
H(r − µDL)σDL + PD + πηD + Ψ3∆−1 − ψ3. From the SOC, ∂2TC/∂∆2 = 2Ψ3∆−3 > 0,
meaning TC is strictly convex in ∆. Therefore, the FOC gives the unique minimizer
∆ ∗ |Q, r =

√
Ψ3Q/S0D. The expected total cost rate can now be written in terms of only

the inventory-control policy parameters:

TC(Q, r) =
√

S0DΨ3Q−1+1/2 + HQ/2 + H(r− µDL)σDL + PD + πηD + Ψ3
√

S0D/Ψ3Q−1/2 − ψ3
= 2
√

S0DΨ3Q−1/2 + HQ/2 + H(r− µDL)σDL + PD + πηD− ψ3

FOC on Q given z is ∂TC/∂Q = −
√

S0DΨ3Q−3/2 + H(1/2− ησDL/((1−Φ(z))σDL)) = 0.

Solving for Q, we obtain Q∗ =
[
S0DΨ3/[H(1/2− η/((1−Φ(z))σDL))]

2
]1/3

with z∗ satis-

fying the service-level condition. Noting that the SOC ∂2TC/∂Q = (3/2)
√

S0DΨ3Q−5/2 −
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Hη/((1−Φ(z))2)(−η/(1 − Φ(z))σDL) > 0 guarantees optimality. Substitution of all
entities gives the result

∆∗ =
√

Ψ3/S0D
[
S0DΨ3/[H(1/2− η/((1−Φ(z))σDL))]

2
]1/6

= (S0D)1/6−1/2Ψ3
1/6+1/2[H(1/2− η/((1−Φ(z))σDL))]

−1/3

=
[
S0DΨ3

2/[H(1/2− η/((1−Φ(z))σDL))]
]1/3,

Q∗ =
[
S0DΨ3/[H(1/2− η/((1−Φ(z))σDL))]

2
]1/3

, and r∗ = µDL + z∗σDL where z∗

solves η
[
S0DΨ3/[H(1/2− η/((1−Φ(z))σDL))]

2
]1/3

= L(z)σDL. This completes
the proof. �

Finally, we consider the Leontief production function which is of the form

θ2 = θ(K, L) = min
(

AK(K′ + K0)
βK , AL(L′ + L0)

βL
)

, (10)

where AK and AL denote the productivity or technological efficiencies of the capital and
labor inputs, respectively, and the parameters βK(< 0) and βL(< 0) are the corresponding
input elasticities, as in Equation (3). Leontief introduced this functional form in 1947 [57].
The Leontief production function assumes that the inputs are complementary to each
other. The Leontief production function may also represent the settings where, typically,
changes in the production process and product characteristics are not possible in the
short term. Among the applications, we refer to [46] for the steam power industry in the
U.S.; [58] for various industries such as petroleum refining, primary metals, and electric
power; [48] for sectors with large-quantity processing, large-scale assembly production,
and capital-intensive technology; and [59] for the iron and steel industry in Japan.

Proposition 6. When the reduction cost rate is of Leontief form, the best input-usage policy is
always a dual-input policy, and the optimal capital input level (K∗(∆) = K̂′3(∆) + K0), the optimal
labor input level (L∗(∆) = L̂′3(∆) + L0), the corresponding minimal cost of setup reduction
Γ* (∆) in achieving a (1− ∆)× 100% setup-cost reduction follow.

K∗(∆) = (∆/AK)
1/βK ,

L∗(∆) = (∆/AK)
1/βL ,

Γ∗(∆) = cK

[
(∆/AK)

1/βK − K0

]
+ cL

[
(∆/AL)

1/βL − L0

]
.

(11)

Proof (sketch) of Proposition 6. Similar to the proof of Proposition 1, but this time with
the setup-cost-reduction rate being in the form of Leontief production function, i.e., θ2 in
Equation (10). �

Thus, when improvement efforts are represented via the Leontief production function,
the firm must devote additional labor and capital to achieve fixed-cost reductions. The
resulting least cost is a polynomial in ∆ and does not lend itself to closed-form expressions
for the optimal fixed-cost reduction rate. However, the optimality results for P1 can be
established from first-order conditions as stated below.

Corollary 3. When the reduction cost rate is of Leontief form, the optimal reduction rate ∆∗,
optimal replenishment quantity Q∗ and reorder point r∗ are given by the simultaneous solution of
the following relationships:

S0D/Q + (cK/βK)∆∗(1−βK)/βK (1/AK)
1/βK + (cL/βL)∆∗(1−βL)/βL(1/AL)

1/βL = 0,
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Q∗ =
√

2DS0(1−Φ(z∗))/Hη
√

∆∗, and r∗ = µDL + z∗σDL, where z∗ solves [L(z∗)]2(1−
Φ(z∗)) = 2ηS0D∆∗/Hσ2

DL.

For both the Leontief and general CES functional forms, one can also recommend very
versatile conic quadratic solution techniques in practice (e.g., [60,61]).

Having derived the optimality results for the input levels and the total setup cost
reduction cost, we are now ready to determine the conditions for and find the optimal level
of reduction effort, ∆∗. We encapsulate these results in Proposition 7.

When setup-reduction efforts are expressed by Cobb–Douglas in general and equal
input elasticity CES functions under the dual-input-usage policy (c.f., Propositions 1 and 3),
the optimal setup-reduction cost, Γ∗(∆), is a power function of the form κ∆−λ − ϕ, where
∆ ∈ [0, 1], λ > 0, and ϕ > 0; this is the cost structure assumed in [5] and the majority
of the following research stream. Thus, we can establish that the power function form
of the setup-reduction cost directly follows from the fundamental economic production
functions and may be verified in empirical settings. Conversely, an approach utilizing
economic production functions to represent setup-reduction efforts justifies models in
the literature that use convex power functions. The optimal setup-reduction level can be
obtained directly from the result in [5], which we recast in Proposition 7.

Proposition 7. Suppose that Γ∗(∆) = κ∆−λ − ϕ with ∆ ∈ [0, 1], λ > 0, and ϕ > 0. Then, the
optimal reduction rate ∆∗, replenishment quantity Q∗, and reorder point r∗follow.

∆∗ = [λκ/S0D]1/(1+λ)Q∗1/(1+λ),

Q∗ =
[
λ
[
S0D[λκ/S0D]1/(1+λ) + κ[λκ/S0D]−λ/(1+λ)

]
/[(1 + λ)H(1/2− η/(1−Φ(z∗)))]

](1+λ)/(1+2λ)
,

and r∗ = µDL + z∗σDL, where z∗ solves ηQ∗ = L(z∗)σDL.

Proof of Proposition 7. Recall TC(∆, Q, z) = S0∆D/Q + H(Q/2 + zσDL) + πηD + PD +

Γ∗(∆). The FOC on ∆ gives ∆∗|Q, z = [λκ/S0D]1/(1+λ)Q1/(1+λ). Substituting the conditional
best reduction rate, the expected total cost rate can be cast as TC(∆, Q, z) =

S0D
(

λκ
S0D

) 1
1+λ Q1/(1+λ)−1 + H

(
Q
2 + zσDL

)
+πηD+ PD+ κ

(
λκ

S0D

) −λ
1+λ Q−λ/(1+λ)− ϕ. Then,

by collecting the terms, we obtain TC(∆, Q, z) =

[
S0D

(
λκ

S0D

) 1
1+λ

+ κ
(

λκ
S0D

) −λ
1+λ

]
Q−λ/(1+λ) +

H
(

Q
2 + zσDL

)
+ πηD + PD− ϕ. The FOC on Q gives ∂TC(Q, z)/∂Q = 0 resulting in[

S0D[λκ/S0D]1/(1+λ) + κ[λκ/S0D]−λ/(1+λ)
]
(−λ/(1 + λ))Q−λ/(1+λ)−1 + H(1/2 + σDL∂z/∂Q) = 0

Solving for Q gives Q∗|z as follows:

Q∗|z =
[
λ
[
S0D[λκ/S0D]1/(1+λ) + κ[λκ/S0D]−λ/(1+λ)

]
/[(1 + λ)H(1/2 + σDL∂z/∂Q)]

](1+λ)/(1+2λ)
, and rear-

ranging terms and expanding over the term with the derivative, we obtain

Q∗|z =
[
λ
[
S0D[λκ/S0D]1/(1+λ) + κ[λκ/S0D]−λ/(1+λ)

]
/[(1 + λ)H(1/2− η/(1−Φ(z)))]

](1+λ)/(1+2λ)
, where,

at optimality, z∗ satisfies Q∗η = L(z∗)σDL. Noting that ∂2TC(Q, z)/∂Q2 = Ã(−λ/(1 +
λ))(−(1 + 2λ)/(1 + λ))Q−(1+2λ)/(1+λ)−1 + HσDL∂2z/∂Q2 > 0, where
Ã =

[
S0D[λκ/S0D]1/(1+λ) + κ[λκ/S0D]−λ/(1+λ)

]
> 0, we show the convexity and the

joint optimality. �

Finally, we consider a special case of Proposition 7 in which the parameters are
now considered rather deterministic, and the lead times are insignificant (i.e., assumed
to be 0). When there are no uncertainties in the system (regarding demand and sup-
ply deliveries) and negligible lead times, the inventory setting reduces to that studied
in [5]. Demand is now constant with the rate D (units per unit time), and delivery
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lead time is negligible. In our notation, we set µDL, σDL and η to zero; we retain the
rest of the setting and notation. In this setting, the optimal continuous control policy is
known to be of the EOQ- type, in which the total cost per unit time for an order size Q is
TC(Q) = QS/D + QH/2 + PD. Then, Q∗ = argmin{TC(Q) : Q > 0} =

√
2DS/H, i.e.,

the EOQ. Thus, the cost-minimizing ordering policy is to manufacture (or order) Q∗ when-
ever the inventory level hits zero. Then, the ensuing optimal cost per unit time is given by
TC(Q = Q∗) =

√
2DSH + PD. The setup-reduction optimization problem now becomes

PD : min
∆

Z
{
=
√

2DHS0∆ + PD + Γ∗(∆)
∣∣∆ ≥ 0

}
, where ∆ and Γ∗(∆) are as defined before.

Corollary 4. Suppose Γ∗
ĵ
(∆) = Ψ ĵ∆

a ĵ − ψĵ. Then, the optimal setup-reduction rate is given by

∆∗ = −(1/2Ψ ĵa ĵ)[2S0DH]
1/(2a ĵ−1). If this much reduction were to be implemented under the

input-usage policy j, then the resulting setup-reduction cost would be

Γ̂j(∆∗ĵ ) = Ψj(−(1/2Ψ ĵa ĵ)[2S0DH]
1/(2a ĵ−1)

)
aj − ψj.

4. Some Insights on Process Improvements for Sustainable Supply Chains

This section illustrates how the models herein may benefit managerial practice. We
develop some extensions on our generic models and discuss the impact of resource planning
and allocation, disruptions, and carbon emissions penalties.

4.1. Resource Planning and Allocation

Our construction of the setup-reduction costs employing multi-factor production
functions enables managers to determine not only the optimal level of setup reduction but
also the required labor and capital resources to achieve that. The resources are found to
be one-to-one related to the reduction level, albeit nonlinearly. This is the most significant
practical contribution of our models.

Furthermore, most changes in processes face resistance and incur fixed costs. Our
models consider in-house process-improvement efforts, which reduce the likelihood of
“change resistance” because the incumbent labor and management undertake a collective
goal. An excellent example of such effective process improvements is the concept of a
“quality circle”, in which a designated group of employees work toward a solution to a
specific, smaller-scope problem in the company. While emerging intelligent technologies
such as Blockchain and IoT seem promising in enhancing sustainability performance (a pro-
cess improvement), caution needs to be taken when assessing the fixed cost of establishing
their infrastructure and implementation. At that stage, our models may also be employed
as tools for cost–benefit analysis. Consider, for instance, a dyadic supply chain with a
retailer and a manufacturer. The retailer may optimize its scheduled deliveries from the
manufacturer while the manufacturer synchronizes its production lots to be loaded on the
retailer’s fleet of trucks. In such a case, a logistics service improvement could entail better
coordinating the order–production–delivery process, which may be achieved by investing
in an advanced transport management system. Then, both the manufacturer and the retailer
can assess their current capital and labor constraints and decide on whether it will be more
economical for them to invest in reducing their common fixed costs compared to the cost of
purchasing and implementing alternative new technologies (c.f., [62]). Proposition 7 could
be utilized in such a trade-off scenario.

4.2. Impact of Disruptions

We first consider the disruptive changes that may occur in the demand regimes.
Disruptions may cause drastic changes in the average demand rate D, increases in demand
variability, average delivery lead time, and lead-time variability. In some disruptions, as
experienced during the recent pandemic, firms may desire or be obliged to satisfy a larger
portion of the demand. Our models enable one to investigate the impact of these changes
on setup-reduction efforts. We focus on the setup-reduction problem when reductions can
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be expressed through the Cobb–Douglas and equal input elasticity case of CES functions.
As shown above, the setup-reduction cost function is of power form Γ∗(∆) = κ∆−λ − ϕ
in such instances. (All results are obtained from Proposition 7 using standard calculus;
therefore, their derivations are omitted).

The impact of the average demand rate on the reorder point is given by
∂r∗/∂D = σDL∂z∗/∂D where ∂z∗/∂D = −η/[σDL(1− Φ(z∗))]∂Q∗/∂D(< 0), which im-
plies that the reorder point is decreasing in the average demand rate (due to the bind-
ing shortage constraint.) The impact of the lead-time demand variability is given by
∂r∗/∂σDL = z∗ + σDL∂z∗/∂D, where

∂z∗/∂σDL = L(z∗)/[σDL(1−Φ(z∗))]− η/[σDL(1−Φ(z∗))]∂Q∗/∂σDL.

The latter is nonnegative for nonnegative z∗ and positive otherwise, because the
optimal lot size increases in the lead-time demand variability as shown below.

The impact of demand on the lot size is given by

∂Q∗/∂D =
λ/[(1 + λ)D]

(1 + 2λ)/[(1 + λ)Q∗] + η2φ(z∗)/[(1/2− η/(1−Φ(z∗)))σDL(1−Φ(z∗))3]

and the impact of the lead-time demand variability on the lot size is given by

∂Q∗/∂σDL =
ηφ(z∗)/[(1/2− η/(1−Φ(z∗)))σDL(1−Φ(z∗))3]

(1 + 2λ)/[(1 + λ)Q∗] + η2φ(z∗)/[(1/2− η/(1−Φ(z∗)))σDL(1−Φ(z∗))3]
.

We see that 0 < ∂Q∗/∂σDL < 1/η and 0 < ∂Q∗/∂D < Q∗/D.
The impact of the demand parameters on the optimal setup-reduction decision is attained

by the comparative statics conditions ∂∆∗/∂D = [(1/Q∗)∂Q∗/∂D− 1/D]∆∗/(1 + λ) and
∂∆∗/∂σDL = [∆∗/[(1 + λ)Q∗]]∂Q∗/∂σDL. Combining the two results, we obtain

∂∆∗/∂D
∂∆∗/∂σDL

=
∂Q∗/∂D

∂Q∗/∂σDL
− Q∗

D
,

where
∂Q∗/∂D

∂Q∗/∂σDL
= λ/[(1+λ)D]

ηφ(z∗)/[(1/2−η/(1−Φ(z∗)))σDL(1−Φ(z∗))3]

= λ(1/2−η/(1−Φ(z∗)))σDL(1−Φ(z∗))3

(1+λ)Dηφ(z∗) .

Hence,

∂∆∗/∂D
∂∆∗/∂σDL

=
λ(1/2− η/(1−Φ(z∗)))σDL(1−Φ(z∗))3

(1 + λ)Dηφ(z∗)
− Q∗

D
.

We notice that ∂∆∗/∂D < 0 since ∂Q∗/∂D < Q∗/D and that ∂∆∗/∂σDL > 0. That is,
as the average demand rate increases (decreases), the optimal setup reduction increases
(decreases); however, as variability in the lead-time demand increases (decreases), the
optimal setup reduction decreases (increases). Suppose the demand parameters in case
of disruptions can be expressed through an underlying ‘disruption severity’ parameter,
u(≥ 0) as follows. Let D = D0 + νDu describe the average demand rate in the presence of
a disruption with a base demand rate (prior to disruption) D0 and a disruption sensitivity
of νD. Similarly, let σDL = σ0 + νσu account for the standard deviation of demand during
lead time in the presence of a disruption with a base variability (prior to disruption) σ0
and a disruption sensitivity of νσ. Then, the overall impact of disruption on the optimal
setup-reduction effort is cast as ∂∆∗/∂u = ∂∆∗

∂D
∂D
∂u + ∂∆∗

∂σDL

∂σDL
∂u . Dividing that derivative by

the positive term ∂∆∗
∂σDL

, we note that ∂∆∗/∂u < (>)0 if
(

∂∆∗/∂D
∂∆∗/∂σDL

)
∂D
∂u < (>)−∂σDL

∂u .
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We see that ∂∆∗/∂u < (>)0 if ∂∆∗
∂D

∂D
∂u < (>)−∂∆∗

∂σDL

∂σDL
∂u . Equivalently, if(

−∂∆∗/∂D
∂∆∗/∂σDL

)
∂D
∂u < (>) ∂σDL

∂u , then ∂∆∗/∂u < (>)0. Now, let

U :=
∂∆∗/∂D

∂∆∗/∂σDL
=

∂Q∗/∂D
∂Q∗/∂σDL

− Q∗

D
=

λ(1/2− η/(1−Φ(z∗)))σDL(1−Φ(z∗))3

(1 + λ)Dηφ(z∗)
− Q∗

D
.

By considering the conditions on ∂∆∗/∂u < (>)0, we observe that some disruption
scenarios necessitate (encourage) setup reductions, whereas, in others, keeping the current
setup level is optimal. Specifically, we find the following.

It is optimal to keep the current setup level when (i) a disruption reduces the average
demand rate (νD < 0) and increases lead-time demand variability (νσ > 0). This case was
observed for a wide range of consumer products as lockdowns decreased the demands and
logistical bottlenecks increased delivery lead times.

It is optimal to engage in setup reduction only when a disruption (i) increases average
demand rate (νD > 0) and decreases lead-time demand variability (νσ < 0), or (ii) increases
both average demand rate and lead-time demand variability (νD, νσ > 0) and νσ/νD < −U,
or (iii) decreases both average demand rate and lead-time demand variability (νD, νσ < 0
and νσ > −UνD. The first case occurred during the pandemic for medical equipment
demands by healthcare facilities (such as face masks, staff gowns, etc.) for providers with
government contracts; the second case occurred for companies that had to acquire them
from unreliable suppliers. The last case refers to a setting where firms could only serve
local markets with local suppliers.

We also see that ∂∆∗/∂η > 0; that is, optimal setup reduction increases as the desired
service level decreases. This was also the case during the pandemic when businesses aimed
to capture as much of the (reduced) demand as possible and to satisfy almost all of the
demand for particular medical goods.

4.3. Incorporation of Carbon Emissions Penalties

Our model is versatile enough to provide a framework for analyzing the setup-
reduction efforts and sustainability concerns. Specifically, it can be used for inventory
settings where carbon emissions may be costly. We briefly sketch below how our model
can be extended in that direction.

We retain all prior notations. In addition, we define unit carbon emissions as follows.
Let εS, εH , εP, επ denote the carbon emissions per setup, per unit of inventory held in stock
per unit time, per unit of item acquired, and per unit short, respectively. Also, let εK, εL
denote the unit carbon emissions per unit of capital and labor employed per unit time.
These would correspond to the carbon footprints of equipment and personnel. Suppose a
carbon tax (or penalty) τ is charged per unit of carbon emissions.

We assume that when firms are engaged in setup-reduction activities, their efforts
may result in an actual reduction of setup costs (as discussed above) and carbon emis-
sions reductions. Specifically, we assume that setup cost is reduced to S0∆ and carbon
emissions due to a setup become ζεS∆. Then, carbon emissions per unit time associated
with operations are given by emOPS = ζεS∆D/Q + εH [Q/2 + (r− µDL)] + εPD + τεπηD.
Carbon emissions per unit time associated with capital and labor employed for setup-
reduction efforts are given by em∆ = εKK′ + εLL′. In the presence of carbon emissions
from individual operations, the expected cost rate TCCARBON(Q, r, ∆) consists of the op-
erational costs of inventory management, setup-reduction costs, and carbon emissions
taxes (or penalties.) Thus,

TCCARBON(Q, r, ∆) = OC(Q, r) + Γ∗(∆) + τ[emOPS + em∆]
= (S0 + τζεS)∆D/Q + (H + τεH)[Q/2 + (r− µDL)] + πηD + (P + τεP)D
+[(cK + τεK)K′ + (cL + τεL)L′]

The new optimization problem in the presence of carbon emissions is written as
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PCARBON : min
Q,r

min
∆

 min
K′ ,L′

Z0


=
{

S0 + τζεS
}

∆D/Q +
{

H + τεH
}
[Q/2 + (r− µDL )] + {π + τεπ}ηD +

{
P + τεP

}
D + [

{
cK + τεK

}
K′ +

{
cL + τεL

}
L′ ]∣∣∣∣ ∆ = θ(K′ + K0, L′ + L0), z = (r− µDL )/σDL ,

ηQ = L(z)σDL



. (12)

The modified optimization problem in Equation (12) is identical in all properties if
one redefines the cost parameters in curly brackets. Thus, all of our conclusions above also
hold for this case.

5. Numerical Examples

In this section, we illustrate by way of numerical examples the impact of disruptions
on setup-reduction efforts. The base case has the following system parameters. The
setup-reduction cost is of power form with K = $32,500, λ = 0.25, and ϕ = $32,500. This
assumes a one-time investment of $250,000 annualized at a rate of 15%. The base average
demand rate per unit time, D0 = 100,000 with base lead-time demand standard deviation
σ0

DL = D0/3. The unit holding cost rate is H = $10 and the setup cost before improvements
is S0 = $1000 per setup. The average demand rate is taken as 1.0, 0.9, and 0.8 multiples
of D0, corresponding to disruption scenarios of 10% and 20% decreases. The variability
of the lead-time demand is taken as 0.05, 0.1, 0.2, and 0.4 multiples of the base variability,
corresponding to decreasing and increasing variabilities during disruptive demand regime
changes. Three different service levels are considered: η = 1%, 2% and 5%. The optimal
lot size, safety stock factor, and setup reduction are presented in Tables 1–3.

Table 1. Optimal lot size Q∗, optimal safety stock factor z∗ and optimal setup reduction ∆∗ in response
to disruptive demand regime changes (λ = 0.25, K = 32,500, ϕ = 32, 500, D0 = 100,000, D = D0,
σ0

DL = D0/3, H = 10, S0 = 1000).

η σDL/σ0
DL Q∗ z∗ ∆∗

0.01 0.05 7628.2 1.29 0.68

0.1 8748.3 1.54 0.76

0.2 11,041.7 1.74 0.92

0.4 11,128.7 1.98 1.00

0.02 0.05 7825.4 0.93 0.70

0.1 9082.2 1. 0.78

0.2 11,522.0 1.42 0.95

0.4 11,978.4 1.68 1.00

0.05 0.05 8257.9 0.35 0.73

0.1 9702.5 0.68 0.83

0.2 8927.7 1.11 1.00

0.4 14,073.2 1.22 1.00

Table 2. Optimal lot size Q∗, optimal safety stock factor z∗ and optimal setup reduction ∆∗ in response
to disruptive demand regime changes (λ = 0.25, K = 32,500, ϕ = 32,500, D0 = 100,000, D = 0.9D0,
σ0

DL = D0/3, H = 10, S0 = 1000).

η σDL/σ0
DL Q∗ z∗ ∆∗

0.01 0.05 7523.9 1.30 0.73

0.1 8664.1 1.55 0.82

0.2 10,849.5 1.74 0.98

0.4 11,280.1 1.99 1.00

0.02 0.05 7717.2 0.94 0.75

0.1 8924.1 1.21 0.84
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Table 2. Cont.

η σDL/σ0
DL Q∗ z∗ ∆∗

0.2 7760.2 1.58 1.00

0.4 12,189.2 1.69 1.00

0.05 0.05 8141.0 0.36 0.78

0.1 9603.1 0.69 0.89

0.2 8683.5 1.12 1.00

0.4 13,351.0 1.22 1.00

Table 3. Optimal lot size Q∗, optimal safety stock factor z∗ and optimal setup reduction ∆∗ in response
to disruptive demand regime changes (λ = 0.25, K = 32,500, ϕ = 32,500, D0 = 100,000, D = 0.8D0,
σ0

DL = D0/3, H = 10, S0 = 1000).

η σDL/σ0
DL Q∗ z∗ ∆∗

0.01 0.05 7406.4 1.31 0.80

0.1 8495.6 1.55 0.89

0.2 7260.3 1.90 1.00

0.4 10,635.0 1.99 1.00

0.02 0.05 7595.5 0.95 0.81

0.1 8819.6 1.22 0.92

0.2 7697.1 1.60 1.00

0.4 11,492.1 1.69 1.00

0.05 0.05 8009.8 0.37 0.85

0.1 9487.1 0.70 0.97

0.2 8409.7 1.13 1.00

0.4 13,680.3 1.23 1.00

The behavior of the decision variables confirms the theoretical sensitivity analysis: as
the demand rate decreases (increases), the optimal setup reduction (1− ∆∗)% decreases
(increases), whereas lead-time demand variability has the opposite effect. Tightening
(loosening) the service level also increases (decreases) the optimal setup reduction.

6. Concluding Remarks and Future Research

In this paper, we incorporated the capital and labor levels as endogenous decision vari-
ables in optimizing in-house process-improvement efforts embedded in the classical (Q, r)
inventory system widely used when the demand and lead time are probabilistic—mostly the
case in practice. In so doing, we utilized production functions that relate two inputs (capital
and labor) to the output efficiency (production level). To the best of our knowledge, this
is the first study to consider a resource-based approach to construct such cost functions in
process improvements.

We identified the conditions under which closed-form solutions exist. Notably, for each
of the production functions considered (Cobb–Douglas, CES, and Leontief), we provided
the conditions under which optimal interior or boundary solutions exist, ascertaining
uniqueness. These structural analytical results were obtained via multivariate calculus
(first- and second-order conditions), and we showed joint convexity.

In particular, we built on and extended the setup cost reduction model developed
in [5]. Exposed in the forms of propositions and corollaries, our structural results provide
neat, closed-form solutions for optimal input levels (capital and labor) and inventory
control variables (reorder point and replenishment quantity) to achieve the optimal cost
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of (in-house) process improvement level (i.e., setup cost reduction effort) for a given
inventory service (i.e., safety stock) level, all while the uncertainties in both demand and
the delivery/manufacturing lead time are accounted for. In the end, via Proposition
7, we bring together all the production functions considered (Cobb–Douglas, CES, and
Leontief) and unify them in the form of a general power function—a crucial step toward
implementable analytical results in developing decision tools for lean inventory systems
in supply chain management. Our analysis of published data (see Figure 1) supports the
importance and illustrates possible verification of the multi-input functions we considered
in this paper.

Albeit stylized, our models enable tractable solutions and general, robust insights.
Sensitivity analysis on the optimal decision variables reveals that (1) as the demand
rate decreases (increases), the optimal setup reduction (1− ∆∗)% decreases (increases);
(2) lead-time demand variability has the opposite effect; and (3) tightening (loosening) the
service level also increases (decreases) the optimal setup reduction. This is verified in an
illustrative numerical study.

Lastly, we generalized the model to incorporate taxes/penalties for carbon emis-
sions. This framework can be utilized to investigate the sustainability impacts of process
improvements in future work.

We hope our prescriptive models and new structural results in this paper will germi-
nate numerous research ideas. It would be interesting, for example, to analyze industry-
specific data and see how each production function best fits for which type of SC (e.g.,
responsive vs. efficient). In the context of sustainable SCs, an imminent study may explore
process improvement and design problems through the lenses of economic, environmental,
social, and cultural imperatives. It is worthwhile to develop a formal model that optimizes
process leanness and resiliency of SCs under disruptions. Some other future research could
investigate the optimal timing of process improvement efforts for competing SCs, and how
external risks due to the ramifications of climate change (a significant disruption) can be
integrated into SC decision support systems.
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Abbreviations

Notations
D Mean demand rate (units per unit time, say, per year)
µDL Mean demand during lead time
σDL The standard deviation of demand during lead time
S Fixed cost per setup (or order)
H Inventory cost rate per unit per unit time held in stock
π Backordering cost rate per unit
η Desired service level (fraction of immediately unmet demand per year)
P Unit acquisition cost
Q Lot size
r Reorder point
z Safety stock factor



Sustainability 2023, 15, 13117 21 of 23

L[z] The loss function of a standard normal variable
Φ(z) Cumulative distribution function (cdf) of a standard normal variable
OC(Q, r) Expected total operating cost/unit time for lot size-reorder (Q, r) policy
S0 Setup level before reduction efforts
∆ A nonnegative scalar (≤ 1) denoting the reduction effort
Γ(∆) Cost of achieving a (1− ∆)× 100% fixed-replenishment cost reduction
Γ∗(∆) Least-cost of achieving a reduction of ∆ in fixed-replenishment cost
K Capital input level devoted to the reduction activity
L Labor input level devoted to the reduction activity
K0 Inherent technical capital stock
L0 Inherent human know-how
K′ Additional capital investment
L′ Additional labor investment
K′ ∗ (∆∗) Optimal allocation of capital input to achieve that reduction
L′ ∗ (∆∗) Optimal allocation of labor input to achieve that reduction
θ(K, L) Production function describing reduction activity
A Productivity or technological efficiency for the overall conversion process
AK Capital productivity or technological efficiency in Leontief function
AL Labor productivity or technological efficiency in Leontief function
βK Capital input elasticity in Leontief production function (< 0)
βL Labor input elasticity in Leontief production function (< 0)
ρ The elasticity of scale for Cobb–Douglas production function
ĵ Solution type when the least cost is achieved
ĵ∗(∆) Optimal input usage policy
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