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Abstract: Machine learning (ML)-based methods of landslide susceptibility assessment primarily
focus on two dimensions: accuracy and complexity. The complexity is not only influenced by
specific model frameworks but also by the type and complexity of the modeling data. Therefore,
considering the impact of factor data types on the model’s decision-making mechanism holds
significant importance in assessing regional landslide characteristics and conducting landslide risk
warnings given the achievement of good predictive performance for landslide susceptibility using
excellent ML methods. The decision-making mechanism of landslide susceptibility models coupled
with different types of factor data in machine learning methods was explained in this study by
utilizing the Shapley Additive exPlanations (SHAP) method. Furthermore, a comparative analysis
was carried out to examine the differential effects of diverse data types for identical factors on model
predictions. The study area selected was Cenxi, Guangxi, where a geographic spatial database was
constructed by combining 23 landslide conditioning factors with 214 landslide samples from the
region. Initially, the factors were standardized using five conditional probability models, frequency
ratio (FR), information value (IV), certainty factor (CF), evidential belief function (EBF), and weights of
evidence (WOE), based on the spatial arrangement of landslides. This led to the formation of six types
of factor databases using the initial data. Subsequently, two ensemble-based ML methods, random
forest (RF) and XGBoost, were utilized to build models for predicting landslide susceptibility. Various
evaluation metrics were employed to compare the predictive capabilities of different models and
determined the optimal model. Simultaneously, the analysis was conducted using the interpretable
SHAP method for intrinsic decision-making mechanisms of different ensemble-based ML models,
with a specific focus on explaining and comparing the differential impacts of different types of
factor data on prediction results. The results of the study illustrated that the XGBoost-CF model
constructed with CF values of factors not only exhibited the best predictive accuracy and stability but
also yielded more reasonable results for landslide susceptibility zoning, and was thus identified as
the optimal model. The global interpretation results revealed that slope was the most crucial factor
influencing landslides, and its interaction with other factors in the study area collectively contributed
to landslide occurrences. The differences in the internal decision-making mechanisms of models
based on different data types for the same factors primarily manifested in the extent of influence
on prediction results and the dependency of factors, providing an explanation for the performance
of standardized data in ML models and the reasons behind the higher predictive performance of
coupled models based on conditional probability models and ML methods. Through comprehensive
analysis of the local interpretation results from different models analyzing the same sample with
different sample characteristics, the reasons for model prediction errors can be summarized, thereby
providing a reference framework for constructing more accurate and rational landslide susceptibility
models and facilitating landslide warning and management.
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1. Introduction

Landslides rank among the most devastating geological perils globally, characterized
by their wide distribution, frequent occurrence, and high destructiveness [1]. The eco-
logical environment incurs significant damage due to frequent geological disasters, and
there are considerable losses to agricultural and industrial production and people’s lives
and property [2]. According to data released by the China Geological Survey, there were
4810 landslides in China during 2020, marking an increase of 590 compared to 2019. These
landslides constituted 61.35% of the overall count of geological disasters [3]. Therefore, in
light of the growing occurrence of landslide catastrophes, constructing accurate and reliable
landslide susceptibility maps (LSMs) is essential for regional landslide susceptibility assess-
ment and risk analysis [4,5]. An LSM generally refers to a model that accurately predicts
the study area that determines the landslide susceptibility index (LSI) by examining the
relationship between the location of known landslide areas and the factors that contribute
to landslides. This analysis generates a probability map showing the likelihood of land-
slides occurring throughout the entire study area [6]. The LSI calculates the likelihood of
a landslide happening in a particular area by using a nonlinear combination of various
environmental factors. Thus, an LSM serves as the foundation for studying landslide
risks and finds wide applications in urban planning, early disaster prevention, and other
fields, providing a reliable theoretical basis for regional planning, disaster prevention,
and mitigation.

Due to the ongoing advancements in computer science, as well as geographic informa-
tion systems, remote sensing technology, and related disciplines, the approaches used for
studying landslide susceptibility have transitioned from qualitative and semi-quantitative
to quantitative analysis [7]. Abundant expert experience is typically required for quali-
tative and semi-quantitative analysis methods, such as expert scoring and the analytic
hierarchy process (AHP), to determine the likelihood of a landslide event occurring [8,9].
Nevertheless, these approaches heavily depend on subjective prior knowledge, and in
cases where expert opinions prove to be erroneous, the resulting calculations may diverge
from objective reality [10]. Driven by data, methods of quantitative analysis are more
practical for assessing susceptibility to landslide disasters. These methods primarily uti-
lize physical–mechanical, conditional probability, and machine learning (ML) models to
reflect the correlation between occurrences of landslides and the factors that contribute to
them [11]. Physical–mechanical models calculate and analyze the mechanism of landslide
occurrence based on geological and topographical parameters obtained through field inves-
tigations in landslide-prone areas [12]. They have the advantages of clear physical meaning
and accurate analysis results. However, they require many geological and hydrological pa-
rameters and are only suitable for analyzing specific types of landslides on a small scale [13].
Common conditional probability models include frequency ratio (FR), information value
(IV), certainty factor (CF), evidential belief function (EBF), and weights of evidence (WOE).
Statistical algorithms enable these models to effectively demonstrate the connection be-
tween landslides and various attribute intervals of individual conditioning factors. They
possess a simple computational nature but overly rely on the quality of samples and factors.
The weight and correlation of each indicator factor cannot be accurately expressed, nor
can the complex relationship between conditioning factors and landslide events be fully
conveyed [14,15]. Landslide susceptibility assessment has seen widespread application
of different machine learning models such as logistic regression, artificial neural network
(ANN), naive Bayes, support vector machine (SVM), and random forest (RF) in recent
years [16]. These models establish connections between landslide data and different condi-
tioning factors; by emphasizing the nonlinear association between landslides and factors,
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it is possible to achieve more precise predictive outcomes [17,18]. While the accuracy of
various machine learning models for predicting landslide susceptibility may differ within a
given location, it is widely recognized that ensemble-based machine learning models like
random forest (RF) and extreme gradient boosting (XGBoost) consistently offer notable
benefits over other machine learning models across all regions for landslide susceptibility
modeling: higher modeling efficiency, better predictive performance, and superior ability
to handle outliers [17,19,20].

In summary, different analysis methods have their advantages and limitations. Among
them, conditional probability models have the advantages of simplicity, strong operability,
and practicality. However, they only reflect the influence of landslides in various classifica-
tion intervals of combined conditioning factors, without taking into account the correlations
between these factors or the variations in their influence on landslide occurrence [21]. As
for ML models, although they can effectively capture the intricate nonlinear connection
between multiple conditioning factors and the occurrence of landslides, they are susceptible
to overfitting or underfitting when there is insufficient data or when the factor types are
too complex. Therefore, relying solely on a single prediction model cannot guarantee
the accuracy of the prediction [22]. To fully leverage the strengths of both conditional
probability models and ML models, many scholars have begun to adopt coupled models
combining the two approaches to study landslide susceptibility [23–25].

In recent years, research on landslide susceptibility with the help of machine learning
(ML) models has mainly focused on adopting superior algorithms or improving existing
algorithms in order to increase the precision and reliability of predicting landslide suscepti-
bility. However, such studies tend to ignore another essential characteristic of ML models:
complexity. The complexity of a model is reflected in its structural complexity, which is
affected by model characteristics and modeling data types. In landslide susceptibility stud-
ies, in addition to focusing on model prediction accuracy, it is more important to elucidate
the impact of the factors within the model on landslide events, facilitating the analysis
of causal factors and regional landslide characteristics [26]. Although some ML methods,
such as the neural-network-based connection weighting method for hidden layers [27],
average reduction accuracy in decision trees [28], and Gini index in random forests, have
been widely used to explain the importance of model factors, the evaluation methods
of different ML models are inconsistent. They can only reflect the relative influence of
the factors on the prediction results. The Shapley Additive exPlanations (SHAP) method
based on game-theoretic ideas can overcome this problem, explaining the contribution of
factors to the decision outcome in global and local dimensions and clearly explaining the
impact of complex interactions among factors on the prediction outcome. In the past few
years, there have been advancements made in landslide susceptibility modeling using ML
models, especially deep learning. However, the practical application of these models is
limited due to their opacity. To address this problem, SHAP, an interpretable ML-based
algorithm, was introduced to interpret model results. For example, Biswajeet Pradhan
et al. investigated landslide susceptibility using a convolutional neural network model,
which marked the first use of an interpretable ML model in landslide susceptibility model-
ing by demonstrating the process of elucidating the model to achieve a particular result
through SHAP plots, showing the feature interactions at both landslide and non-landslide
locations [29]. Ajaya Pyakurel et al. used a combination of ET-SHAP analysis and factor
importance analysis to reveal the critical influencing factors, emphasizing the importance
of earthquakes, terrain ruggedness, and slopes in causing landslides during earthquakes,
highlighting the significance of SHAP in explaining model results and factor importance in
geohazard research [30]. IBAN Muzaffer Can et al. utilized the SHAP method to examine
in depth how conditioning factors impact the occurrence of avalanches [31]. Deliang Sun
et al. utilized the SHAP technique to provide comprehensive explanations for the outcomes
prediction by models in landslide studies [32]. Zhang Junyi et al. constructed a model that
was developed to assess susceptibility to landslides using the SHAP-XGBoost algorithm.
Their analysis focused on examining the attributes and variations in space of the factors
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that impact landslides [33]. Ömer Ekmekcioğlu et al. applied a model agnosticism-based
game-theoretic SHAP algorithm to analyze the prediction influenced by the factors of
hazardous conditions of landslide and flood event outcomes [34]. Despite the extensive
research on ML-based models for predicting susceptibility to landslides and the preliminary
outcomes of utilizing the SHAP approach to interpret these models in terms of application,
the current research mainly focuses on exploring the decision-making mechanisms of using
the SHAP approach in explaining different ML models. It lacks the comparison and analysis
of the internal decision-making differences of models constructed based on different factor
data types. Therefore, exploring the internal decision differences of models in landslide
susceptibility built on various types of factor data can help further explain the intricacy of
models for predicting the likelihood of susceptibility to landslides.

In summary, this research is the first attempt to employ the SHAP method to explain
landslide susceptibility models constructed based on different factor data types and the
well-performing integrated ML method. Using 214 landslides in Cenxi as data samples,
the comprehensive evaluation took into account the spatial distribution of landslides and
identified 23 factors that contribute to the occurrence and mitigation of landslides. Next,
by coupling the initial factor data and the factor data transformed by five conditional
probability models (FR, IV, CF, EBF, and WOE) with two ensemble-based ML methods
(RF and XGBoost), a total of 12 models were built to assess susceptibility to landslides,
and the corresponding LSMs were generated. Then, various evaluation metrics were
used to examine and contrast the similarities and differences of the models built using
different ML methods and different types of factor data, and the best-performing model
was selected. Finally, in addition to different ML methods, this study focused on providing
comprehensive explanations using the SHAP method for landslide susceptibility models
constructed based on distinct categories of factor data. A comparison was made between
the impact of different data types on the internal decision mechanisms of the models, and
the reasons why the coupled models obtained using conditional probability models and
ML methods exhibited superior predictive performance were explored. By employing the
SHAP interpretation method, this study achieved transparency and rationality in model
interpretation, thoroughly dissecting the complexity of ML-based models.

In summary, the main contributions of this paper are presented as follows:

(1) This paper’s innovation is to focus on two critical aspects of landslide susceptibility
assessment: accuracy and complexity. The interplay between prediction accuracy and
modeling complexity is emphasized. This dual focus is rare in the existing literature
and highlights the need for highly accurate prediction and interpretable modeling.

(2) The innovation of the methodology in this paper is mainly reflected in data type and
model interpretability. Since different types of factor data may have different effects
on model predictions, different types of factor data are introduced, including initial
factor data and transformed conditional probability model data. In addition, the
SHAP method is used in this paper to explain the model predictions.

(3) The innovation of the experimental design and data analysis consists in its compre-
hensiveness and diversity. In this paper, two ensemble ML methods, random forest
(RF) and XGBoost, were chosen to construct the landslide susceptibility model. In
addition, this paper uses different data types and constructs multiple versions of the
model for each type.

(4) The innovation in error analysis and prediction error interpretation is reflected in its
in-depth analysis of prediction errors. Through local explanations and analysis, this
paper delves into the interpretation of model predictions for error samples.

The remainder of this paper is structured as follows: Section 2 provides a compre-
hensive introduction to the research field and the specific data set used for modeling.
Besides samples from landslides and non-landslides, the dataset also includes landslide
conditioning factors. Section 3 introduces the methodology in detail. Section 3.1 intro-
duces the process of assessing the independence of landslide adjustment factors, examined
thoroughly and comprehensively; five commonly used conditional probability models are



Sustainability 2023, 15, 13563 5 of 49

introduced in Section 3.2. Section 3.3 provides a detailed description of the principles of two
tree-structure-based ML algorithms (RF and XGBoost). Section 3.4 presents various evalu-
ation criteria that are employed for assessing the performance of the model’s prediction.
Furthermore, the basic principle and application status of the SHAP method is explained
in Section 3.5. Section 4 analyzes the test results of the independence of landslide condition
factors, the structure and optimization results of different models, the LSMs and precision
evaluation results generated by different models, and the decision-making mechanism
of landslide susceptibility prediction results of different models using the SHAP method.
Section 5 analyzes, in turn, the following: (1) The unique features and advantages of the
SHAP method compared to traditional feature importance ranking methods; (2) the SHAP
method being utilized to locally interpret different models using several typical samples.
(3) local interpretation of samples incorrectly predicted in a model with the best prediction
performance; and (4) a discussion of how the research results of this paper complement,
confirm, and contradict the current state of SHAP research and an exploration of feature
importance assessment for fused decision tree models. Finally, the concluding remarks are
provided in Section 6.

2. Study Region and Data Overview
2.1. Study Region

The research area is Cenxi, Wuzhou City, Guangxi Zhuang Autonomous Region.
Cenxi is located in the southeastern region of the Guangxi Zhuang Autonomous Region
and shares its eastern border with Guangdong Province. The geographical coordinates
range from 110◦43′ to 111◦22′ east longitude and 22◦37′ to 23◦13′ north latitude, with a
combined surface area of approximately 2783 square kilometers (see Figure 1a,b). The
elevation in the region ranges from 29 m to 1123 m; the southeast has elevated land while the
northwest has lower land. Cenxi can be found in the Bobai–Cenxi fault zone in southeastern
Guangxi and consists mostly of hilly and mountainous regions. Being abundant in mineral
resources, it serves as a notable supplier of granite in China. The region serves as a
convergence point between the Pearl River Delta Economic Zone and the southwestern
region of China, playing a significant role in transportation and the economy. In recent
years, the rapid expansion of urban areas has accelerated the deterioration of the fragile
ecological environment. Cenxi has become more susceptible to landslide disasters due to
the rise in human mining activities and the increasing occurrence of extreme weather events.
The serious threat of landslides to people’s lives and property demands our attention.

2.2. Data Acquisition

Having precise historical data on landslides is vital when examining and evaluating
the potential for landslide catastrophes in a particular region [12]. The landslide inventory
was created in this study using various methods such as Google Earth images, optical
satellite images, and disaster news reports. Multiple data sources were utilized in this
study to construct an inventory of historical landslides. First, the approximate locations
where historical landslides occurred were identified through visual interpretation with the
help of Google Earth software. Then, the location and extent of these landslides were fur-
ther confirmed using optical remote sensing imagery, specifically, optical satellite imagery.
These images provided high-resolution surface information that enabled more accurate
identification and definition of landslide areas. In addition, disaster news reports and
relevant literature were reviewed to obtain detailed information on historical landslide
events, including the exact time, location, and number of occurrences. A total of 214 histori-
cal landslide areas were ultimately collected, providing essential data for interpreting the
characteristics of landslides in the region and predicting their occurrence.
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Landslide occurrences are typically the result of a combination of internal geological
and topographic conditions within the slope and external environmental factors [35–37].
Therefore, the importance of choosing precise and suitable modeling data cannot be over-
stated when utilizing machine learning (ML) techniques to forecast landslide susceptibility.
In this research, the conditions for the development of landslides in Cenxi were studied,
which involved analyzing the geological and environmental information and the distri-
bution status of historical landslides. The research area encompassed various aspects,
including geological and soil information, topography, meteorological and hydrological
conditions, land cover, soil conditions, and human activities, for a total of 23 factors selected
to study the susceptibility to landslides. Table 1 provides the origins and explanations of
these conditioning factors that contribute to landslides. Due to variations in coordinate
systems and resolutions among different factors, the ArcGIS 10.2 software was used to
project all factor data onto the UTM-Zone48 coordinate area based on the WGS1984 ref-
erence surface. All factors were transformed to a uniform spatial resolution of 30 m by
generating a target raster using the Shuttle Radar Topography Mission (SRTM) data with a
resolution of 30 m by 30 m.

Table 1. Sources and scale of conditioning factors data used in this study.

Major Data Source Data Layer Scale/Resolution

SRTM DEM https://gdex.cr.usgs.gov/gdex
(accessed on 11 February 2020)

Elevation, slope, TWI, SPI,
profile curvature,
plane curvature,
slope variation,
slope direction

30 m × 30 m

Rainfall information
CHIRPS Pentad: Climate Hazards
Group InfraRed Precipitation With

Station Data

Total rainfall in 2020,
number of days with heavy rainfall

(rainfall for the day>25 in 2020)
0.05◦ × 0.05◦

Soil moisture
information

CLDAS Soil Volume
Moisture Content

Analysis Product V2.0
(http://data.cma.cn/data

(accessed on 11 February 2020))

Average daily soil moisture in 2020 0.0625◦ × 0.0625◦

Surface cover
information

Landsat-8 Operational Land Imager
(OLI) multispectral image

(https://earthexplorer.usgs.gov/
(accessed on 11 February 2020))

NDVI, MNDWI 30 m × 30 m

Ground hydrological
traffic information

National Catalogue Service For
Geographic Information (in Chinese)

(http://www.webmap.cn
(accessed on 11 February 2020))

River density, road density 1:250,000

Soil information

Harmonized World Soil Database
v 1.2 (HWSD)

(http://www.fao.org/soils-portal
(accessed on 11 February 2020))

Soil type, soil erodibility 1:5,000,000

Geological and
geomorphological

information

National Geological Archives Data
Center (in Chinese)

(http://dc.ngac.org.cn
(accessed on 11 February 2020))

Mineral point density,
fracture zone density,

hydrogeology,
thickness of weathering layer,

type of landform

1:200,000

Human activity

WordPop Open Population
Repository (WOPR)

(http://hub.worldpop.org
(accessed on 11 February 2020))

Population density 1 km × 1 km

https://gdex.cr.usgs.gov/gdex
http://data.cma.cn/data
https://earthexplorer.usgs.gov/
http://www.webmap.cn
http://www.fao.org/soils-portal
http://dc.ngac.org.cn
http://hub.worldpop.org
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2.3. Construction of the Modeling Dataset

The majority of landslides in the area typically happen on a limited scale, with the size
of the slope altering before and after the occurrence of the landslide. Therefore, the landslide
sample used for modeling was taken from the center raster of the landslide surface [38,39].
In selecting the non-landslide samples used for landslide susceptibility modeling, the
following principles were fully considered in this study to ensure the reasonableness and
representativeness of the sample selection:

(1) First, to avoid sampling in areas with similar geography to known landslides, areas
beyond 100 m from historical landslides were chosen as the selection range. This
helped to maintain sample diversity and avoid introducing unnecessary bias due to
geographic similarities.

(2) Second, land areas that do not contain permanent bodies of water were extracted
as the area for non-landslide samples. The consideration behind this principle is
that landslide events do not usually involve areas of water bodies, ensuring that
non-landslide samples were carefully selected; with an emphasis on this aspect,
the selected samples were more geographically and geomorphologically similar to
landslide events.

(3) Given that landslides typically occur on steep slopes possessing higher slope values,
areas with slopes less than 30◦ were extracted as extraction areas for the non-landslide
samples. This selection helps to maintain similarity to landslide events, as steep-slope
areas are more prone to landslides. Through this principle, we pursued maintaining a
reasonable match of geomorphic features in the sample selection process.

Based on the above principles, criteria for selecting non-landslide sample areas were
delineated. A total of 214 non-landslide samples were selected at random, maintaining
a ratio of 1:1 with the number of landslide samples. This ratio was chosen to help keep
the samples balanced and to allow the modeling dataset to contain a sufficient quantity of
positive and negative samples. A total of 428 samples were created by merging the chosen
landslide samples (labeled as 1) with the non-landslide samples (labeled as 0) for modeling
purposes. Eventually, the dataset containing all the relevant data was randomly split into a
training set with 299 samples and a test set with 129 samples, maintaining a ratio of 7:3.
The dispersion of sample points in the landslide moderator layer as shown in Figure 2a–i,
Figure 3a–i, Figure 4a–e.
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Figure 2. Landslide conditioning factors (Ⅰ). (a) Elevation; (b) slope; (c) slope variation; (d) profile 
curvature; (e) plane curvature; (f) TWI; (g) SPI; (h) MNDWI; (i) NDVI. 

Figure 2. Cont.
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Figure 2. Landslide conditioning factors (Ⅰ). (a) Elevation; (b) slope; (c) slope variation; (d) profile 
curvature; (e) plane curvature; (f) TWI; (g) SPI; (h) MNDWI; (i) NDVI. 

Figure 2. Landslide conditioning factors (I). (a) Elevation; (b) slope; (c) slope variation; (d) profile
curvature; (e) plane curvature; (f) TWI; (g) SPI; (h) MNDWI; (i) NDVI.
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Figure 3. Landslide conditioning factors (Ⅱ). (a) Fracture zone density; (b) mineral point den-
sity; (c) road density; (d) river density; (e) population density; (f) number of days with heavy 
rainfall; (g) soil erodibility; (h) soil moisture; (i) total rainfall. 

Figure 3. Cont.
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Figure 3. Landslide conditioning factors (Ⅱ). (a) Fracture zone density; (b) mineral point den-
sity; (c) road density; (d) river density; (e) population density; (f) number of days with heavy 
rainfall; (g) soil erodibility; (h) soil moisture; (i) total rainfall. 

Figure 3. Landslide conditioning factors (II). (a) Fracture zone density; (b) mineral point density;
(c) road density; (d) river density; (e) population density; (f) number of days with heavy rainfall;
(g) soil erodibility; (h) soil moisture; (i) total rainfall.
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Figure 4. Landslide conditioning factors (Ⅲ). (a) Slope direction; (b) soil type; (c) type of landform; 
(d) thickness of weathering layer; (e) hydrogeology. 
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learning framework. Additionally, the methodology of interpretability using SHAP is 
used to explain the influence of factors on data types, both globally and locally, in land-
slide susceptibility models to influence the decision mechanism of predictive results. The 
data processing platform used in this study is ArcGIS 10.2, and the programming lan-
guage utilized is Python. The research procedure encompasses the subsequent stages, as 
outlined in Figure 5. 

Figure 4. Landslide conditioning factors (III). (a) Slope direction; (b) soil type; (c) type of landform;
(d) thickness of weathering layer; (e) hydrogeology.

3. Methods

The main objective of this research is to examine how various types of factor data
affect the accuracy of landslide susceptibility models that rely on an ensemble machine
learning framework. Additionally, the methodology of interpretability using SHAP is used
to explain the influence of factors on data types, both globally and locally, in landslide
susceptibility models to influence the decision mechanism of predictive results. The data
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processing platform used in this study is ArcGIS 10.2, and the programming language
utilized is Python. The research procedure encompasses the subsequent stages, as outlined
in Figure 5.
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(1) The process involves preparing data and constructing a spatial database that includes
both samples from landslides and non-landslides, as well as conditioning factors that
contribute to landslides.

(2) Independence testing of landslide conditioning factors, including Pearson correlation
analysis and multicollinearity diagnosis, is performed.

(3) Preparation of the modeling dataset. In order to partition and standardize the at-
tribute intervals of each factor, five different conditional probability models were
employed: frequency ratio, statistical index, certainty factor, evidential belief function,
and weights of evidence. Afterward, the data of the initial and processed factors were
extracted to the sample points, resulting in the creation of six modeling datasets.

(4) Landslide susceptibility modeling. Based on the six different modeling datasets,
twelve landslide susceptibility prediction models were constructed using the random
forest and extreme gradient boosting algorithms, and landslide susceptibility maps
were generated.

(5) Evaluation of model predictive performance. The performance of the twelve models
as compared and analyzed using different statistical methods, identifying the best-
performing model.

(6) Shapley Additive exPlanations (SHAP) analysis. The influence of every factor on the
models was investigated through the creation of SHAP models for all twelve landslide
susceptibility models and the dependency relationship between the predictive results
and features in models built using different machine learning methods and types of
factor data.

3.1. Analysis of Conditioning Factors

Since landslides occur due to the combined effect of multiple adjustment factors, the
diversity and complexity of the factors need to be fully considered [40]. Based on historical
studies and expert experience, there may be statistical covariance among the initially
selected landslide adjustment factors, which can lead to the inability of the landslide
susceptibility model to accurately analyze the proper relationship between the evaluated
factors and landslides [41].

Conducting a correlation analysis on the 29 identified moderating factors is necessary
due to potential correlations among the indicator factors that may impact the accuracy
of the landslide susceptibility model. The aim of this paper is to utilize the Pearson
correlation coefficient (PCC) to evaluate the correlation between the layers of the factor.
The calculation formula is described as Equation (1). A weak correlation between the
factors is indicated if the PCC value is less than 0.6, and the opposite is also true. There
is a significant correlation [42]. In addition, to ensure the independence of the data when
building a multiple regression model, the degree of multivariate co-linearity of each factor
was measured by calculating the tolerance (TOL) and variance inflation factor (VIF). Severe
multicollinearity is indicated when the VIF value for a factor exceeds ten or the TOL value
is below 0.1 between the factor and other factors, and the factor should be removed from
the model The calculation formula is:

PCC =
∑n

i=1(xi − x)∑n
i=1(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(1)

VIF =
1

TOL
=

1
(1− R2)

(2)

where xi and yi denote the i-th variable between factor x and factor y; x and y are the
means of all variables in factor x and factor y, respectively, and n is the number of variables
in the factor; the coefficient of determination R2 is utilized to measure how well the
independent variable explains the variation in the dependent variable in regression analysis.
Additionally, TOL and VIF are reciprocally related to each other.
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3.2. Conditional Probability Models

When evaluating landslide susceptibility, the factors evaluated at all levels are not
only characterized by high data volume but also exhibit inconsistency in magnitude, which
may lead to overfitting or underfitting after inputting into the model. To avoid this effect,
the conditional probability model can subdivide and standardize each factor to establish a
preliminary link in the interaction between landslides and the factors that moderate them.
The connection between the pre-existing probability of landslides for each factor under
evaluation and the probability of landslides occurring in various classification states is
established based on historical landslide data [43,44]. Therefore, in this study, the frequency
ratio, statistical index, certainty factor, evidential belief function, and weights of evidence
were selected to convert the initial data of landslide adjustment factors into values reflecting
landslide susceptibility, and the ML model utilized the calculated results to generate maps
indicating the susceptibility to landslides.

3.2.1. Frequency Ratio

The method of bivariate statistics known as the frequency ratio (FR) is straightforward.
The likelihood of a landslide happening is calculated by the analytical model, which allows
for a quantitative assessment of landslide susceptibility in different secondary classification
intervals for each factor, combined with spatial data [45,46]. FR has been widely used in
hazard probability assessment involving several geographic layers [47]. The formula for
the calculation is as follows:

FRij =
Nij/N

Sij/S
(3)

where FRij is the frequency ratio of the j-th secondary classification level of the i-th mod-
erating factor. FRij > 1 means that the corresponding factor conditions are favorable for
landslide occurrence; FRij < 1 indicates that the attributes of the factor interval are weakly
related to landslide occurrence; FRij = 0 means that the factor i does not provide landslide
development information in the state j. Nij is the number of landslides occurring in the j-th
secondary classification interval of factor i; Sij is the quantity of rasters in the interval; N is
the number of landslides; and S is the number of rasters in the interval.

3.2.2. Information Value

The derivation of information value (IV) involved the creation of a blend of statistical
models and information theory. The assessment of geohazard susceptibility is performed
using a statistical method that relies on informative values. This method transforms
the distribution of landslides across various factors in the study area into quantifiable
magnitudes that provide valuable information. By examining the amount and level of detail
in the data pertaining to regions affected by landslides, we can determine the likelihood of
landslides occurring in the research region. The formula for the calculation is as follows:

IVij = ln
(Dij

D

)
= ln

[(
Nij/Sij

N/S

)]
(4)

where IVij represents the quantity of information at the j-th level of secondary classification
for the i-th adjustment factor; Dij is the landslide density in the j-th secondary classification
interval of the i-th adjustment factor; and D is the landslide density in the whole area. The
parameters of Nij, Sij, N, and S are the same as those in Section 3.2.1.

3.2.3. Certainty Factor

In 1975, Shortliffe and Buchanan proposed a segmented probability function called
the Certainty Factor (CF). In 1986, the model was further improved by Heckerman to
analytically study the sensitivity of factors affecting the occurrence of an event. The



Sustainability 2023, 15, 13563 14 of 49

statistical relationship is believed to determine the probability of landslide occurrence
between known landslides and adjustment factors [48]. The representation is as follows:

CFij =


PPij−PPs

PPs(1−PPij)

(
PPij < PPs

)
PPij−PPs

PPij(1−PPs)

(
PPij ≥ PPs

) (5)

where CFij indicates the certainty coefficient of landslide occurrence in the j-th secondary
classification interval of the i-th factor and takes values in the range of [–1, 1]. When CF > 0,
a more significant value indicates a higher probability of landslide; when CF < 0, a smaller
value indicates a lower probability of landslide; when CF = 0, it is impossible to judge
whether a landslide will occur. PPs is the a priori probability of landslides occurring in the
entire study area, expressed as the ratio of the total number of landslides in the whole study
area to the total number of rasters in the study area. PPij is the conditional probability
of landslides occurring in the j-th secondary classification interval of the i-th adjustment
factor, which is usually expressed as the ratio between the number of landslides and the
number of rasters in the factor classification used for the study.

3.2.4. Evidential Belief Function

The Evidential belief function (EBF) is a model that incorporates spatial integration
and is rooted in the theory of the Dempster–Shafer evidence algorithm [49]. The EBF
method has been widely adopted in numerous research domains and has yielded favorable
outcomes when investigating susceptibility to landslides [50]. EBF has the benefit of being
able to effectively process diverse incomplete data, resulting in outputs that specifically
reflect belief (Bel), disbelief (Dis), uncertainty (Unc), and plausibility (Pls). There are four
parameters that comprise the EBF model, which are calculated by the following equations:

WEij =

N(L∩Eij)
N(L)

N(Eij)−N(L∩Eij)
N(A)−N(L)

(6)

Belij =
WEij

∑m
j=1 WEij

(7)

WEij =

N(L)−N(L∩Eij)
N(L)

N(A)−N(L)−[N(Eij)+N(L∩Eij)]
N(A)−N(L)

(8)

Disij =
WEij

∑m
j=1 WEij

(9)

Uncij = 1− Disij − Belij (10)

Plsij = 1− Disij (11)

where Belij is the degree of belief; Disij is the degree of disbelief; Uncij is the degree of
uncertainty; and Plsij is the degree of plausibility. The range of values is [0, 1]. N(L ∩ Eij)
and N(Eij) are the number of landslides and the number of rasters in the j-th secondary
classification interval of the i-th factor, and N(L) and N(A) are the number of landslides
and the number of rasters in the whole region, respectively. In this study, Bel was used as a
factor importance evaluation index. A higher Bel indicates a higher probability of landslide
occurrence, while a decrease in Bel indicates a decrease in the likelihood of landslides
occurring, and when Bel is 0, it means that no landslide data are available to prove the
probability of landslide occurrence.
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3.2.5. Weights of Evidence

An event’s likelihood of happening by combining different pieces of evidence can
be estimated using the weights of evidence (WOE) approach, which is a quantitative
method that employs a Bayesian criterion. It has been widely used by many scholars for
multivariate information synthesis and spatial decision support systems [51,52]. Nowadays,
many scholars use this model to assign weights to each landslide moderator to evaluate
and analyze the landslide susceptibility of a district [51,53]. The weights, both positive and
negative, along with the final combined weight, are calculated as follows:

Wij
+ = ln

P
(

B
D

)
P
(

B
D

) (12)

Wij
− = ln

P
(

B
D

)
P
(

B
D

) (13)

Cij = Wij
+ −Wij

− (14)

In the equation, P
(

B
D

)
and P

(
B
D

)
represent the probabilities of landslide occurrence

and non-occurrence, respectively, under the secondary classification level of a regulating
factor; P

(
B
D

)
and P

(
B
D

)
represent the probabilities of landslide occurrence and non-

occurrence, respectively, in areas except for the secondary classification level of a regulating
factor; within the second-level classification of this factor, B and D denote the count of
landslides and non-landslides, respectively, and, except for the second-level classification
of this factor, B and D correspond to the count of landslides and non-landslides; Cij stands
for comprehensive weight, the weight of the j-th secondary classification interval of the
i-th factor to the landslide. The larger the value of Cij, the more indicative the secondary
classification level of the factor is of the probability of landslide occurrence. If Cij = 0,
it means that the secondary classification level of the factor does not indicate landslide
occurrence; Cij > 0 indicates a favorable condition for landslide occurrence; and Cij < 0
indicates an unfavorable condition for landslide occurrence.

3.3. Tree-Based Machine Learning Models
3.3.1. Random Forest

An algorithm called random forest (RF) was proposed by Breiman to integrate mul-
tiple decision trees. It mainly extracts a plurality of samples from the initial dataset and
proceeds to train these gathered samples using the decision tree algorithm, then derives the
ultimate prediction outcome based on the combined decision tree results through a voting
process [30]. The RF algorithm finds its utility in both classification and regression tasks.
In contrast to conventional machine learning techniques like artificial neural networks,
logistic regression, and support vector machines, RF prevents model overfitting through
random sample selection and exhibits a level of resilience towards outliers. In addition,
it has high accuracy, facilitating comprehensive data examination of high-dimensional
feature data [19]. This research applies the RF algorithm within the Python 3.9 environment
using the ”sklearn. Encrypt” package.

3.3.2. Extreme Gradient Boosting

Chen T et al. introduced a technique called extreme gradient boosting (XGBoost) in
2016, representing a novel machine learning approach which can be used to scale up the tree
boosting algorithm, a popular method for landslide susceptibility modeling prediction in
recent years. Like RF, XGBoost is an integrated learner that uses decision trees as building
blocks. However, unlike RF, XGBoost uses boosting in its integration learning process [54].
By utilizing weak decision trees as the foundational learner during training, it amalgamates
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preferences to produce a robust collective evaluator. The algorithm effectively prevents
the occurrence of overfitting. It improves the model accuracy by improving the boosting
algorithm by adding a regularization term when addressing the loss function’s extreme
values. In addition, the convergence speed is faster and computational efficiency higher
than other algorithms. The main practical function of XGBoost is shown in Equation
(15). This research incorporates this technique within the Python 3.9 environment through
utilization of the “XGBoost” Python package.

ŷi
(t) =

t

∑
k=1

fk(xi) = ŷi
(t−1) + fk(xi) (15)

where ŷi
(t) represents the sample’s predictive outcome i after the t-th iteration; ŷi

(t−1)

signifies the preceding predictive outcome of t − 1 trees; fk(xi) denotes the function
associated with the t-th tree.

3.4. Model Evaluation Criteria
3.4.1. Receiver Operating Characteristic

The ROC curve is frequently utilized to assess the results of landslide susceptibility
experiments in a qualitative manner [55]. The horizontal axis corresponds to the false
positive rate (1-specificity), illustrating the accumulating percentage of terrain classified
from high to low susceptibility. Meanwhile, the vertical axis signifies the true positive
rate (sensitivity), indicating the accumulating percentage of landslide samples. The AUC
value reflects the probability of a randomly chosen positive sample outranking a randomly
chosen negative sample, and the model’s effectiveness in accurately predicting landslide
occurrence or absence is evaluated based on this metric [13]. In the case of AUC > 0.5,
a higher AUC value signifies a superior model fit. The formula for the calculation is
as follows:

AUC =
(∑ TP + ∑ TN)

(P + N)
(16)

where TP represents the count of accurately predicted landslide samples; TN represents the
count of correctly predicted non-landslide samples; P represents the total count of landslide
samples; and N represents the total count of non-landslide samples.

3.4.2. Confusion Matrix

When assessing the accuracy performance of a binary classification model for landslide
susceptibility, a confusion matrix is often used [56]. The true positive (TP) in the confusion
matrix indicates the number of accurately predicted landslide samples, whereas the false
negative (FN) signifies the quantity of incorrectly predicted landslide samples. Additionally,
the term “true negative” (TN) is used to describe the count of correctly predicted samples
that are not landslides. An incorrect prediction of non-landslide samples is what is known
as a false positive (FP). Using five statistical indicators, this study evaluated the accuracy of
the landslide susceptibility model in predicting future occurrences, including true positive
rate (TPR), true negative rate (TNR), accuracy (ACC), F1 score (F1), and kappa coefficient
(KC). In detail, TPR represents the proportion of correctly classified landslide samples;
TNR represents the proportion of correctly classified samples that are not landslides; Acc
represents the proportion of accurately classified samples in the entire set; and the F1
value is capable of offering a thorough evaluation of the model’s prediction performance
for landslide samples. It quantitatively represents the degree of consistency between
the predicted attributes of the samples and their actual attributes. The formula for the
calculation is as follows:

TPR(True Positive Rate) =
TP

TP + FN
(17)
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TNR(True Negative Rate) =
TN

FP + TN
(18)

Acc =
TP + TN

TP + FP + FN + TN
(19)

F1− score =
2TP

2TP + FN + FP
(20)

KC =
P0 − Pe

1− Pe
where P0 =

TP + TN
TP + FN + FP + TN

, Pe =
(TP + FN)(TP + FP)(TN + FN)(FP + TN)

(TP + FN + FP + TN)2 (21)

3.4.3. Root Mean Square Error between the Predicted and Actual Values of the Sample

To evaluate the precision of a model’s prediction, the commonly used approach is
to utilize the root mean square error (RMSE). A smaller RMSE value signifies that the
prediction results of the sample data are more closely aligned with the actual attributes,
and the model performs better [56]. In this research, the RMSEs for predicting the overall,
landslide, and non-landslide samples with their corresponding true values are calculated
in this paper. The results are named RMSE, RMSE-1, and RMSE-0, respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − f (Xi))
2 (22)

where N represents the number of samples within the specific category from which the
calculation will be performed; Yi represents the true value of the i-th sample; and Xi is the
predicted value of the i-th sample after model operation.

3.5. Shapley Additive ExPlanations

Shapley Additive exPlanations (SHAP) was suggested by Lundberg and Lee in 2017
as a game theory-based approach to interpret any machine learning model. In detail, the
term “Shapley” pertains to the calculation of the Shapley value for every characteristic
variable in the model, for each sample. The term “Additive” indicates that, for each sample,
the Shapley value of every characteristic variable can be combined. The term “exPlanation”
refers to the explanation of how each characteristic variable influences the predictive value
of the model for each individual sample. The Shapley value of each feature illustrates its
contribution to the final outcome forecast in order to explain the difference between the
actual and average predicted values [57,58]. The interpretability of features is provided by
SHAP both globally and locally and considers the interaction synergy between variables
while considering the impact of individual variables. Given the excellent interpretability
of SHAP for ML models, it has seen extensive use in interpreting disaster susceptibility
and ecological environment domains [59]. The purpose of this research was to develop a
landslide susceptibility model utilizing the RF and XGBoost algorithms, which was then
interpreted and analyzed using the Shapley value estimation method from the SHAP theory
of treeSHAP. The implementation of SHAP utilized the Python 3.9 library version 0.39.0 for
SHAP. The SHAP value can be calculated. The formula for the calculation is as follows:

ϕj(x) = ∑S⊆N\{j}
|S|!(|N| − |S| − 1)!

|N|!

[
f
(

xS∪{j}

)
− f (xS)

]
(23)

where ϕj(x) represents the SHAP value of the j-th feature, indicating the effect of that
feature on the sample x; N is the total number of features; S is a subset of N with feature j
removed; f (xS) represents the removal of features in j after removing the set of features
xS corresponding to the model predictions; f

(
xS∪{j}

)
represents the model predictions
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corresponding to the feature set xS∪{j} after inclusion of feature j; |S| denotes the size of
the set S; and |N| denotes the total number of features.

The average of the SHAP values is designed to measure the overall impact of the
features in the sample set on the model predictions. With the formula for calculation as
follows, we can calculate the average of the SHAP value.

Ij =
1
n ∑n

k=1

∣∣∣ϕ(k)
j

∣∣∣ (24)

where Ij represents the average SHAP value of the feature j; n is the size of the sample set;

and ϕ
(k)
j represents the SHAP value of the feature j in the sample k.

4. Results
4.1. Landslide Conditioning Factors Analysis

In this paper, correlations between 23 landslide moderation factor layers were calcu-
lated using MATLAB R2022a software. After obtaining the correlation coefficients between
the factors, we used the matplotlib.pyplot library in Python to visualize the correlation ma-
trix. According to Figure 6, the positive correlation between the factors becomes stronger as
the color gets lighter; the strength of the negative correlation between the factors increases
as the color becomes darker. The results show that, among the 23 factors, the magnitude
of the correlation coefficient between any pair of factors is below 0.6, indicating that the
correlation between the evaluation factors is small. In addition, this paper used SPSS 20.0
software to analyze the factors for multicollinearity, and the results are shown in Table 2.
All landslide adjustment factors had TOL values that were greater than 0.1; the VIF values
were less than 10. Among them, the lowest TOL was 0.31, while the highest VIF was
3.24, indicating no multicollinearity among the factors. The combined analysis of the two
indicators indicates that all factors satisfy the requirement of mutual independence and
can be involved in landslide susceptibility modeling and evaluation [60].

Table 2. Collinearity diagnostic results of landslide conditioning factors.

Factor TOL VIF Factor TOL VIF

MNDWI 0.8 1.25 Slope 0.31 3.21
NDVI 0.41 2.43 Slope variation 0.79 1.27

SPI 0.46 2.18 Slope direction 0.91 1.1
TWI 0.36 2.76 Profile curvature 0.61 1.65

Thickness of weathering layer 0.69 1.45 Number of days with heavy rainfall 0.6 1.67
Fracture zone density 0.67 1.5 Population density 0.71 1.4

Type of landform 0.55 1.82 Hydrogeology 0.66 1.52
Elevation 0.31 3.24 Soil erodibility 0.58 1.73

River density 0.74 1.36 Soil type 0.74 1.35
Mineral point density 0.45 2.2 Soil moisture 0.7 1.43

Road density 0.78 1.27 Total rainfall 0.63 1.59
Plane curvature 0.57

4.2. Model Structuring and Optimization

Before constructing a landslide susceptibility model utilizing the ML method, the
hyperparameters used for the different models need to be optimized [61]. After dividing
the sample data randomly into training and test sets in the ratio of 7:3 (295:129), to improve
the models’ ability to generalize, the training set was used to train the models with 10-fold
cross-validation. Additionally, the hyperparameters were optimized using the grid search
method [62]. The optimized hyperparameter values were also substituted into the model
for training to construct a model for determining the likelihood of a landslide. Table 3
displays the explanations and names of the hyperparameters that will be modified in the RF
and XGBoost models used in this research. Furthermore, the hyperparameters of different
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models that were optimized to obtain the optimal values using RF and XGBoost are listed
in Tables 4 and 5, respectively. The results showed that, based on the same modeling
method, the hyperparameter values varied when modeling using different factor data
types. Compared with the default parameters, when the optimized hyperparameters were
employed, the model showcased enhanced accuracy in both training and validation.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 52 
 

23
   

 2
2 

   
 2

1 
  2

0 
   

19
   

 1
8 

   
 1

7 
   

 1
6 

   
15

   
  1

4 
   

13
   

 1
2 

   
 1

1 
   

10
   

  9
   

   
 8

   
   

 7
   

   
6 

   
  5

   
   

 4
   

   
3 

   
  2

   
   

1

 
Figure 6. Correlation analyses between landslide conditioning factors. 1: MNDWI; 2: NDVI; 3: SPI; 4: 
TWI; 5: type of landform; 6: fracture zone density; 7: thickness of weathering layer; 8: elevation; 9: river 
density; 10: mineral point density; 11: road density; 12: plane curvature; 13: slope; 14: slope variation; 
15: slope direction; 16: profile curvature; 17: number of days with heavy rainfall; 18: population den-
sity; 19: hydrogeology; 20: soil erodibility; 21: soil type; 22: soil moisture; 23: total rainfall. 

Table 2. Collinearity diagnostic results of landslide conditioning factors. 

Factor TOL VIF Factor TOL VIF 
MNDWI 0.8 1.25 Slope 0.31 3.21 

NDVI 0.41 2.43 Slope variation 0.79 1.27 
SPI 0.46 2.18 Slope direction 0.91 1.1 
TWI 0.36 2.76 Profile curvature 0.61 1.65 

Thickness of weathering 
layer 0.69 1.45 

Number of days with 
heavy rainfall 0.6 1.67 

Fracture zone density 0.67 1.5 Population density 0.71 1.4 
Type of landform 0.55 1.82 Hydrogeology 0.66 1.52 

Elevation 0.31 3.24 Soil erodibility 0.58 1.73 
River density 0.74 1.36 Soil type 0.74 1.35 

Mineral point density 0.45 2.2 Soil moisture 0.7 1.43 
Road density 0.78 1.27 Total rainfall 0.63 1.59 

Plane curvature 0.57     
  

Figure 6. Correlation analyses between landslide conditioning factors. 1: MNDWI; 2: NDVI; 3: SPI;
4: TWI; 5: type of landform; 6: fracture zone density; 7: thickness of weathering layer; 8: elevation;
9: river density; 10: mineral point density; 11: road density; 12: plane curvature; 13: slope; 14:
slope variation; 15: slope direction; 16: profile curvature; 17: number of days with heavy rainfall;
18: population density; 19: hydrogeology; 20: soil erodibility; 21: soil type; 22: soil moisture; 23:
total rainfall.

Table 3. Interpretation of main hyperparameters of the RF and XGBoost models.

Methods Hyperparameter Definition and Explanation

XGBoost

n_estimators Number of sub-models
learning_rate The weights of the model generated for each iteration
max_depth Maximum depth of the tree, often used to avoid over-fitting

min_child_weight The sum of the minimum leaf node sample weights, which can effectively control overfitting

gamma Specifies the minimum loss function descent value required for node splitting. The larger the
value of this parameter, the more conservative the algorithm

subsample The proportion of subsamples used to train the model to the entire set of samples
colsample_bytree The proportion of features randomly sampled when building the tree

RF
n_estimators The number of decision trees in the forest
max_depth Maximum depth of the tree

max_features Number of features to consider when finding the optimal segmentation
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Table 4. Values of hyperparameters for XGBoost models based on different data types.

XGBoost-Initial XGBoost-FR XGBoost-IV XGBoost-CF XGBoost-EBF XGBoost-WOE

n_estimators 60 80 70 90 90 100
learning_rate 0.1 0.1 0.1 0.1 0.2 0.1
max_depth 10 10 10 10 10 10

min_child_weight 2 2 2 2 4 2
gamma 0.01 0.01 0.03 0 0.02 0.01

subsample 0.8 0.8 0.7 0.9 0.8 0.8
colsample_bytree 0.6 0.8 0.9 0.7 0.7 0.7

Table 5. Values of hyperparameters for RF models based on different data types.

RF-Initial RF-FR RF-IV RF-CF RF-EBF RF-WOE

n_estimators 70 80 80 80 80 80
max_depth 9 9 9 9 8 8
max_features 7 8 8 8 8 8

4.3. Landslide Susceptibility Maps for Different Models

This study constructed 12 landslide susceptibility prediction models using two ML
methods (RF and XGBoost) combined with six-factor data types (Initial, FR, IV, CF, EBF,
and WOE), respectively. Then, the LSIs for all raster cells in the study area were es-
timated. The estimated values cover a range of values [0, 1]. Finally, to generate the
corresponding LSMs, the LSIs of all raster cells in the study area were visualized using
ArcGIS10.2 software. In order to compare and analyze the zoning results of different
landslide susceptibility models, it is necessary to unify the classification thresholds of
susceptibility classes. Therefore, this study classified the LSMs in the study area into
five landslide susceptibility classes: very low, low, medium, high, and very high sus-
ceptibility. This classification was based on the fixed threshold method using intervals
of [0,0.20], (0.20,0.50], (0.50,0.90], (0.90,0.95], and (0.95,1.0]. As a result, six LSMs us-
ing the RF model (see Figure 7) and six LSMs using the XGBoost model (see Figure 8)
were obtained.

Overall, on the premise of the same factor data type, the LSI distributions obtained
using the RF and XGBoost models predictions are approximately the same, with significant
differences in details. In addition, LSMs generated using factor data processed by different
conditional probability models based on the same ML model have a high similarity in the
scattering of LSIs across the region. Compared with the LSMs generated using initial factor
data, there are fewer high-susceptibility areas, eliminating the spatially discontinuous
anomalous areas and effectively improving the reasonableness of the prediction results of
landslide susceptibility.

In order to conduct a quantitative analysis of the distribution of landslides across
various areas classified by their susceptibility levels, the statistical analysis tools in Ar-
cGIS10.2 were used to calculate the area, the quantity, and the frequency ratio of land-
slides in areas of distinct susceptibility grades (see Tables 6 and 7). The frequency ratios
of all models are on the rise with an increase in the susceptibility level except the sus-
ceptibility level area with the frequency value of 0 (not statistically significant). More-
over, the frequency ratio exhibited by all models within the high-risk zone significantly
surpasses that observed in the low-risk region. The LSMs generated in this study are
all reasonable.
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Figure 7. Landslide susceptibility maps based on different types of data using the RF model. (a) RF-
Initial; (b) RF-FR; (c) RF-IV; (d) RF-CF; (e) RF-EBF; (f) RF-WOE. 

Figure 7. Landslide susceptibility maps based on different types of data using the RF model. (a) RF-
Initial; (b) RF-FR; (c) RF-IV; (d) RF-CF; (e) RF-EBF; (f) RF-WOE.
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Figure 8. Landslide susceptibility maps based on different types of data using the XGBoost model. (a) 
XGBoost-Initial; (b) XGBoost-FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF; (f) XGBoost-WOE. 

In order to conduct a quantitative analysis of the distribution of landslides across vari-
ous areas classified by their susceptibility levels, the statistical analysis tools in ArcGIS10.2 
were used to calculate the area, the quantity, and the frequency ratio of landslides in areas 
of distinct susceptibility grades (see Tables 6 and 7). The frequency ratios of all models are 
on the rise with an increase in the susceptibility level except the susceptibility level area with 
the frequency value of 0 (not statistically significant). Moreover, the frequency ratio exhib-
ited by all models within the high-risk zone significantly surpasses that observed in the low-
risk region. The LSMs generated in this study are all reasonable. 

Table 6. Results of landslide susceptibility partition analysis using RF models. 

Models 
Landslide  

Susceptibility  
Partition 

Number of  
Rasters in Par-

tition 

Percentage of the  
Number of Rasters 

in  
Partition (%) 

Number of  
Landslides in 

Partition 

Percentage of the  
Number of Land-
slides in Partition 

(%) 

Frequency  
Ratio 

RF-Initial 

very low 963793 31.072 0 0 0 
low 399163 12.869 1 0.467 0.036  

medium 966350 31.155 30 14.019 0.450  
high 296372 9.555 21 9.813 1.027  

very high 476116 15.350 162 75.701 4.932  

RF-FR 

very low 985601 31.775 1 0.467 0.015  
low 328415 10.588 0 0 0 

medium 1207486 38.929 41 19.159 0.492  
high 255378 8.233 35 16.355 1.987  

very high 324914 10.475 137 64.019 6.112  

Figure 8. Landslide susceptibility maps based on different types of data using the XGBoost
model. (a) XGBoost-Initial; (b) XGBoost-FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF;
(f) XGBoost-WOE.
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The main objective of evaluating regional landslide susceptibility prediction outcomes
is to identify and be alert about areas at risk of landslides [63]. Therefore, in this study, the
“extremely high + high” susceptibility areas of different landslide susceptibility models is
mapped as the landslide risk area (see Figure 9). The statistical results show that, based
on the same factor data type, LSMs generated by XGBoost have marked more landslide
risk areas and have more landslide samples. However, the mapping of RF to the landslide
risk area is insignificant. For the XGBoost model, LSMs generated by different types of
factor data have different responses to landslide risk areas. With the exception of the
XGBoost-Initial model, the XGBoost-CF model, determined by the CF values of factor
data, encompasses a landslide risk region that constitutes 24.959% of the entire study
area, encompassing 91.121% of all landslide samples across the study area. The XGBoost-
CF model completely contains both landslide risk areas and those pertinent to landslide
samples and has good zoning results.

Table 6. Results of landslide susceptibility partition analysis using RF models.

Models
Landslide

Susceptibility
Partition

Number of
Rasters in
Partition

Percentage of the
Number of Rasters in

Partition (%)

Number of
Landslides in

Partition

Percentage of the
Number of

Landslides in
Partition (%)

Frequency
Ratio

RF-Initial

very low 963,793 31.072 0 0 0
low 399,163 12.869 1 0.467 0.036

medium 966,350 31.155 30 14.019 0.450
high 296,372 9.555 21 9.813 1.027

very high 476,116 15.350 162 75.701 4.932

RF-FR

very low 985,601 31.775 1 0.467 0.015
low 328,415 10.588 0 0 0

medium 1,207,486 38.929 41 19.159 0.492
high 255,378 8.233 35 16.355 1.987

very high 324,914 10.475 137 64.019 6.112

RF-IV

very low 1,007,537 32.482 0 0 0
low 306,201 9.872 2 0.935 0.095

medium 1,152,358 37.151 37 17.290 0.465
high 276,690 8.920 36 16.822 1.886

very high 359,008 11.574 139 64.953 5.612

RF-CF

very low 987,481 31.836 1 0.467 0.015
low 319,689 10.307 0 0 0

medium 1,128,281 36.375 48 22.430 0.617
high 267,800 8.634 25 11.682 1.353

very high 398,543 12.849 140 65.421 5.092

RF-EBF

very low 951,642 30.680 0 0 0
low 386,748 12.469 0 0 0

medium 1,090,413 35.154 39 18.224 0.518
high 279,600 9.014 41 19.159 2.125

very high 393,391 12.683 134 62.617 4.937

RF-WOE

very low 970,618 31.292 0 0 0
low 533,070 17.186 2 0.935 0.054

medium 855,243 27.573 38 17.757 0.644
high 305,781 9.858 27 12.617 1.280

very high 437,082 14.091 147 68.692 4.875



Sustainability 2023, 15, 13563 23 of 49

Table 7. Results of landslide susceptibility partition analysis using XGBoost models.

Models
Landslide

Susceptibility
Partition

Number of
Rasters in
Partition

Percentage of the
Number of Rasters in

Partition (%)

Number of
Landslides
in Partition

Percentage of the
Number of

Landslides in
Partition (%)

Frequency
Ratio

XGBoost-Initial

very low 1,078,778 34.779 0 0 0
low 315,682 10.177 1 0.467 0.046

medium 883,914 28.497 13 6.075 0.213
high 260,888 8.411 21 9.813 1.167

very high 562,531 18.136 179 83.645 4.612

XGBoost-FR

very low 969,022 31.241 1 0.467 0.015
low 359,445 11.588 0 0 0

medium 1,050,424 33.865 18 8.411 0.248
high 211,581 6.821 20 9.346 1.370

very high 511,322 16.485 175 81.776 4.961

XGBoost-IV

very low 990,492 31.933 0 0 0
low 336,805 10.858 2 0.935 0.086

medium 968,651 31.229 28 13.084 0.419
high 231,242 7.455 29 13.551 1.818

very high 574,604 18.525 155 72.430 3.910

XGBoost-CF

very low 1,000,714 32.262 1 0.467 0.014
low 391,725 12.629 0 0 0

medium 935,183 30.150 18 8.411 0.279
high 220,239 7.100 5 2.336 0.329

very high 553,933 17.858 190 88.785 4.972

XGBoost-EBF

very low 943,278 30.411 0 0 0
low 449,747 14.500 0 0 0

medium 993,538 32.031 24 11.215 0.350
high 200,146 6.453 28 13.084 2.028

very high 515,085 16.606 162 75.701 4.559

XGBoost-WOE

very low 931,095 30.018 0 0 0
low 480,175 15.481 1 0.467 0.030

medium 900,990 29.047 18 8.411 0.290
high 214,484 6.915 23 10.748 1.554

very high 575,050 18.539 172 80.374 4.335

4.4. Model Accuracy Evaluation

The ROC curves express the correlation between the cumulative proportion of land-
slide occurrences and the landslide susceptibility index. They are used to evaluate the
models’ overall performance and generalization ability. Figure 10 displays the ROC
curves for the different models, which were derived from the testing set; Figure 11 dis-
plays the ROC curves of the various models when considering the entire sample set.
Figure 11 displays the AUC values for the RF model and the XGBoost model on the
testing set and the full sample set, considering different types of factor data. The AUC
values of both the RF and XGBoost models for the testing set and the full sample set
are nearly equal to 1. This implies that there is strong generalization ability among all
models, and there is no occurrence of overfitting or underfitting. In addition, for the
same type of factor data, the AUC values of the XGBoost model exhibited greater signif-
icance compared to those of the RF model, which proves the superiority of the XGBoost
model again.
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Figure 9. The statistical results of risk area. (a) RF models; (b) XGBoost models.
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In this study, the prediction accuracy and feasibility of different landslide susceptibility
models were evaluated based on the confusion matrix and sensitivity, specificity, accuracy,
F1 score, and kappa coefficient with the premise of validating the overall performance of
the models. The accuracy evaluation of distinct RF models and XGBoost models, based on
the complete sample dataset, is depicted in Tables 8 and 9, respectively. Overall, all models
can provide an accurate representation of the landslide susceptibility in the study area. The
maximum number of prediction errors for landslide samples is two; a maximum of five
predictions can be made for non-landslide samples. In general, models built with XGBoost
had higher prediction accuracy than RF models when using the same type of factor data
for the samples. In addition, the LSMs generated using factor data processed by different
conditional probability models have higher prediction accuracy than the initial factor data.
Among them, RF-EBF and XGBoost-EBF models constructed based on EBF data for factors
had the highest prediction performance. They have improved TPR by 0.467, TNR by 1.869,
accuracy by 1.168, F1 score by 0.012, and kappa coefficient value by 0.023 compared to the
RF-Initial and XGBoost-Initial models. The XGBoost-CF model and XGBoost-FR model
each had a prediction error number of one for landslide and non-landslide samples, and
the prediction performance of landslide susceptibility ranked second.

Table 8. Statistics of landslide susceptibility partition results based on RF models.

TP FN TN FP TPR TNR Acc F1 KC

RF-Initial 213 1 209 5 99.533 97.664 98.598 0.986 0.972
RF-FR 213 1 212 2 99.533 99.065 99.299 0.993 0.986
RF-IV 212 2 214 0 99.065 100 99.533 0.995 0.991
RF-CF 213 1 212 2 99.533 99.065 99.299 0.993 0.986

RF-EBF 214 0 213 1 100 99.533 99.766 0.998 0.995
RF-WOE 212 2 212 2 99.065 99.065 99.065 0.991 0.981

Table 9. Statistics of landslide susceptibility partition results based on XGBoost models.

TP FN TN FP TPR TNR Acc F1 KC

XGBoost-Initial 213 1 209 5 99.533 97.664 98.598 0.986 0.972
XGBoost-FR 213 1 213 1 99.533 99.533 99.533 0.995 0.991
XGBoost-IV 212 2 214 0 99.065 100 99.533 0.995 0.991
XGBoost-CF 213 1 213 1 99.533 99.533 99.533 0.995 0.991

XGBoost-EBF 214 0 213 1 100 99.533 99.766 0.998 0.995
XGBoost-WOE 213 1 212 2 99.533 99.065 99.299 0.993 0.986
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The reliability of the model is crucial in the work of predicting landslide susceptibil-
ity. Suppose we only pay attention to the model’s prediction accuracy and disregard its
reliability and stability. Under these circumstances, the landslide susceptibility model will
lose substantial application significance [64]. Therefore, this study examined the model’s
reliability and stability in addition to assessing its prediction performance. Figures 12
and 13 show the analysis of the scatter of target and output values of the sample data set
based on different types of data types for the RF and XGBoost models, respectively. The
RMSE values for the XGBoost model were lower than those for the RF model, including
RMSE, RMSE-1, and RMSE-0, when using the same factor data, which were more stable and
reliable models. Among them, the RMSE values were reduced by 0.0151–0.0305, RMSE-1
by 0.0077–0.0276, and RMSE-0 by 0.0163–0.0367.
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Figure 12. RMSE for RF models based on different data types. (a) RF-Initial; (b) RF-FR; (c) RF-IV; (d) 
RF-CF; (e) RF-EBF; (f) RF-WOE. 
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Figure 13. RMSE for XGBoost models based on different data types. (a) XGBoost-Initial; (b) 
XGBoost-FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF; (f) XGBoost-WOE. 
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Figure 12. RMSE for RF models based on different data types. (a) RF-Initial; (b) RF-FR; (c) RF-IV; (d) 
RF-CF; (e) RF-EBF; (f) RF-WOE. 
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Figure 13. RMSE for XGBoost models based on different data types. (a) XGBoost-Initial; (b) 
XGBoost-FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF; (f) XGBoost-WOE. 
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In addition, the landslide susceptibility model built using the factor data obtained after
conditional probability model processing exhibits a reduced RMSE for predictive reliability
compared to the initial factor data for the same machine learning model. The RMSE values
were reduced by 0.0074–0.0185 for the RF models except for RF-WOE. For the XGBoost
models, the RMSE values were decreased by 0.0117–0.0186 except for XGBoost-WOE. The
WOE model did not improve the performance of the other conditional probability models.
The reason that the WOE model did not improve the model performance as much as
other conditional probability models was that the weights of evidence for the secondary
classification of the factors depended on the number of pixels of the landslides during
the modeling process, and the method overestimates or underestimates the weights if
the second level of classification for a factor is minimal and the landslides are not evenly
distributed. Accordingly, instead of calculating the area of each landslide, the number of
spaces where landslides occur was chosen as a modeling sample in this paper. Therefore,
it is inevitable that the WOE model does not enhance or even reduce the performance of
the landslide susceptibility prediction model in this study. From a comprehensive analysis,
the above findings demonstrate that selecting a suitable conditional probability model has
an essential influence on developing stable and reliable landslide susceptibility models.
Moreover, among the 12 models, the XGBoost-CF model has the lowest RMSE value (RMSE
= 0.0807, RMSE-1 = 0.0929, RMSE-0 = 0.0663) and the highest stability and reliability.

In summary, the XGBoost model effectively enhances the prediction performance of
landslides compared with the RF model. Among them, the XGBoost-CF model stands out
as an effective solution for enhancing the accuracy of predictions made by the model while
ensuring the reasonableness of landslide susceptibility zoning results and has the highest
stability and reliability among all models. Therefore, the XGBoost-CF model outperforms
the other 11 models in this study, making it the most optimal choice.

4.5. Shapley Additive ExPlanations (SHAP) Analysis
4.5.1. Factor Importance Based on Shapley Value

To obtain a general understanding of which adjustment factors hold the greatest signif-
icance in relation to the landslide susceptibility model, this study uses the “summary_plot”
function to draw the Shapley value of each adjustment factor for each sample, which shows
which factors have the most critical influence on the landslide and their influence range
on the data set. As shown in Figures 14 and 15, four landslide susceptibility models based
on both Initial and CF types of factor data and using RF and XGBoost rank the factors
according to the sum of Shapley values of all sample data and use Shapley values to show
the influence distribution of each factor on the model output. The points in the figure
represent the sample data, and the color indicates whether the factor value of each sample
is high or low (red: high, blue: low). The color enables us to match how the change in factor
eigenvalue affects the change in landslide susceptibility. The position on the horizontal
axis is determined by each Shapley value. However, the overlapping points fluctuate in the
vertical axis direction so that we can know the Shapley value distribution of each factor,
and their importance sorts these features.

The outcomes showed that there was both uniformity and variability in the distribu-
tion and ranking of Shapley values across various landslide susceptibility models. The
uniformity is demonstrated by the fact that slope, SPI, TWI, mineral point density, and
elevation are all rated as the most influential factors in the different models. Among them,
the slope has the highest Shapley value due to its extensive extension in the horizontal
axis direction, so it is considered the factor with the highest importance and interaction in
landslide susceptibility prediction. As for the several factors ranked lower in the different
summary plots of SHAP, although their Shapley values are lower, they also impact the
prediction performance of the model and are indispensable for constructing excellent and
comprehensive landslide susceptibility models.
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The differences are mainly manifested in two aspects. Firstly, although different
models have good performance in predicting landslides, the chosen models could improve
the consistency of their decision-making mechanisms, causing variations in the distribution
of Shapley values for the same factor across different models. Secondly, when founded
on the initial factor data, the positive and negative correlations of different factors on
landslide susceptibility prediction are different in the model. On the contrary, in the model
constructed using the factor data obtained after the conditional probability model, almost
all factors positively correlate with landslide prediction. For example, when using the initial
data of factors, continuous factors such as TWI, NDVI, MNDWI, road density, and plane
curvature and discrete factors such as hydrogeology and the occurrence of landslides are
more favorable when the factor value is lower, indicating a negative correlation with soil
type. However, the data processed by conditional probability models such as FR, IV, and CF
positively correlate with landslide prediction. This is because the conditional probability
model based on statistical thought can standardize the factors with landslide data, as when
the factor value increases, the risk of landslide also increases. On the premise of improving
the prediction accuracy, the significant influence of factors on landslide prediction can be
expressed more clearly, and the interpretability of the model to factors and their data can
be increased.

The above analysis results show that the integrity of landslide adjustment factors, the
data types of factors, and the prediction performance of the landslide susceptibility model
will be greatly influenced by the modeling methods.

The average of the absolute Shapley values for each sample in Figures 14 and 15
was computed in order to determine the individual significance of each feature in pre-
dicting landslides, and the factor importance was plotted using the “shap.plots.bar”
function (Figures 16 and 17). The outcomes showed that the contribution and impor-
tance ranking of the main factors affecting landslide prediction (top nine) varied among
the different landslide susceptibility models. However, among all the models, the five
factors of slope, SPI, TWI, mineral point density, and elevation are in the top five po-
sitions and make the main contribution to the accurate prediction of landslides. The
sum of average SHAP absolute values of the following 14 factors are in the range of
[0.04, 0.12], which have less influence on landslide prediction. Secondly, compared
to the RF model, the XGBoost model highlights the pronounced impact of the slope
factor more.
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4.5.2. Influence of Factors on Prediction Result

In order to systematically display the overall results of the sample data set in the
model and the influence degree of the main features on the predicted values of the samples,
the Shapley value matrix is transferred to the “Shapley. Plots. Heat Map” function, and
the heat maps of the RF model and XGBoost model based on different types of factor data
are drawn by this function (Figures 18 and 19). In the figure, the X axis is each sample, the
ranking of samples is based on the hierarchical clustering method, and the samples are
clustered by Shapley value. The Y axis is the influence of each factor on the sample. The
color describes the impact of the factor on the sample. Above the color matrix is a curve
formed by connecting the output values of the model. The bar chart on the right shows the
global importance of each factor in the model.
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According to the analysis, the heatmap can clearly show how the landslide adjustment
factors generate the predicted value of each sample through the stacking of factors. It also
shows the direction and strength of a factors’ influence on predicting landslide susceptibility,
which achieves the interpretability and transparency of the model. In addition, for the
same type of factor data, the heatmap’s prediction curves indicate that the XGBoost model
produces highly smooth prediction results, while the RF model’s prediction results show
relatively low smoothness. Among them, the XGBoost-CF model stands out among the
others with its smooth prediction curve, as well as achieving the highest levels of prediction
accuracy and stability. The findings of this research align with the analysis findings
presented in Section 4.4, which again proves the superiority of the XGBoost-CF model.
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4.5.3. Dependence and Interaction of Factors

Dependence plots show the marginal effect of one or two features on the predicted
outcome of a landslide susceptibility model, and they can show whether the relationship
between landslide moderators and predicted values is monotonic, non-monotonic, or more
complex. Dependency plots of factors fall into two categories. One describes how a single
factor affects the predicted outcome of landslide susceptibility across the entire dataset.
The other describes the effect of variables from two factors on the predicted development
under interaction [36,65].

Examples of models used in this study include XGBoost-Initial and XGBoost-CF,
based on different types of factor data from the whole modeling dataset. The function
“shap.dependence_plot” is utilized for plotting single-factor dependence plots and an-
alyzing the impact of the primary influential factors in each model on the prediction
outcomes. Every variable in the dataset is represented by a point on the dependence plot;
the value of a specific factor in the dataset is plotted on the horizontal axis, while the
Shapley value for each sample of that feature is plotted on the vertical axis. The Shap-
ley value indicates the extent to which that feature influences the prediction outcomes
of the model. Figure 20 shows the factor dependence plots of the top nine most impor-
tant factors in the XGBoost-Initial model. Different factors have different relationships
with the prediction results across the entire dataset. Firstly, taking the slope factor as
an example, the slope and the prediction results are monotonic. When the slope is less
than 10 or more than 20, the increase in slope does not obviously result in an increase
in the probability of a landslide, which shows that this range is conducive to landslide
detection. However, when the slope is in the range of [8,18], the model is insensitive to
detecting landslides, and most of the prediction errors are in this range. Among them,
when the slope is greater than 18, the occurrence of landslides benefits from a Shapley
value that is greater than 0. Secondly, SPI is not monotonic with the predicted results,
and Shapley’s value changes sharply with the increase in SPI value. If the SPI value falls
between 2 and 6, the Shapley value will be greater than 0 and the landslide risk will be
elevated. Finally, the total rainfall is monotonic with the predicted results. If the total
rainfall exceeds 1500 mm, then the Shapley value will be greater than 0, and landslide risk
will be increased. The above analysis results of individual factors are in high agreement
with the objective characteristics of landslides in this study area. Therefore, the dependence
plots of a single factor based on the initial data can clearly show the complexity between
factors and landslides and the interval and sensitivity of factors that affect the occurrence
of landslides.
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Figure 20. Single-factor dependence plots of the main factors based on the XGBoost-Initial model.
(a) Slope; (b) SPI; (c) TWI; (d) mineral point density; (e) elevation; (f) plane curvature; (g) MNDWI;
(h) NDVI; (i) total rainfall.

The dependence plot of the top nine factors in the importance ranking in the XGBoost-
CF model is shown in Figure 21. Compared with the XGBoost-Initial model, the most
obvious difference is that the scattering of the sample Shapley values does not have interval
continuity; the scale value of the sample present on the horizontal axis is equal to the CF
value of each secondary classification interval of the factor, and for the same factor data,
the Shapley values of the samples of the secondary classification are scattered vertically
along the vertical axis. The factor scatter’s Shapley value increases as the CF value of the
factor increases, showing a positive relationship with the prediction results.

According to the dependence relationship between the factors based on CF value and
the outcome of the prediction, the inconsistency between the influence degree of the factors
obtained by SHAP and the statistical results calculated by the CF model can be observed.
For example, as the factor CF value increases, the dispersion interval of the Shapley value
for the slope factor also increases. Additionally, when the CF value of the slope is greater
than 0, all the Shapley values of the samples are greater than 0. Thus, the factor positively
affects landslides. However, in the case where the slope’s CF value equals −0.622, the
Shapley value of certain samples exceeds 0, contradicting the statistical significance of the
CF model. Likewise, when the CF value for the elevation factor surpasses 0, the Shapley
values of all samples are greater than 0 as well. However, when the CF value is −0.034, it
implies that the Shapley value of the samples in the secondary classification range of the
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corresponding factor is positive, indicating that the factor also encourages the occurrence
of landslides.
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(i) total rainfall.

The statistical significance of the CF model will not be fully considered when using
the XGBoost algorithm combined with the CF data of the factors for landslide susceptibility
prediction. Instead, the optimization aims to enhance the prediction performance of the
sample by optimizing the degree of influence of the CF values on the prediction results
in a global manner. Therefore, a priori statistical results of the influence of the factors on
landslides obtained using the conditional probability model and the impact of the factors
on the predicted results obtained using the ML method possess a notable discrepancy. The
coupled model is beyond the capabilities of a basic superposition calculation to analyze.

From the analysis results of the single-factor dependence of XGBoost-Initial and
XGBoost-CF models, the influence of individual factors on landslide susceptibility pre-
diction results can be more comprehensively explained by considering both the initial
data of factors and the factor data processed by the conditional probability model, taking
into account their characteristics together. It is evident that this approach yields a clearer
understanding of the prediction of landslide susceptibility.

Landslide phenomena arise from the combined effect of various factors. Therefore, it
is important to investigate the relationship of how a factor interacts with another factor
to influence the prediction results of landslide susceptibility once the extent of influence
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of a single factor regarding the outcome forecast has been analyzed. Figure 22 shows the
double-dependence plot of the slope factor with the remaining main influencing factors in
the XGBoost-Initial model.
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The points in the figure indicate the Shapley values for every factor in all samples.
Except for slope, the horizontal coordinates represent the range of values for the factors that
exert the greatest impact on landslides. The vertical coordinates indicate the corresponding
Shapley values for each sample. The color analyzes the distribution of the slope factor in
the process of other factor changes. Throughout the dataset, landslide-prone samples with
higher slope values are overwhelmingly samples with larger Shapley values in the other
factors. This suggests a strong positive interaction between slope and other factors that can



Sustainability 2023, 15, 13563 35 of 49

promote landslides. For example, for areas with SPI values at [2,6], the presence of larger
slope values and Shapley values greater than 0 in the samples indicates a higher likelihood
of landslides. Most sample points have larger slope values in the region where mineral
point density is greater than 0, contributing to landslides. When the amount of rainfall
surpasses 1500 mm, the majority of samples showing positive Shapley values tend to be
found in regions characterized by steeper slopes. This demonstrates that the occurrence of
landslides can either be enhanced or inhibited by the interaction between the factors and
slope, which confirms that slope is the main influence of landslides in the region.

Based on Figure 23, in the XGBoost-CF model, if a factor’s CF value is above 0, the
CF value of the slope for the sample, which has a Shapley value greater than 0, tends to be
significant rather than being 0. It can be seen that slope and other main influencing factors
also have a positive mutual effect with landslide prediction. As with the single dependence
of the XGBoost-CF model, the horizontal axis is not sorted by the order of the classification
intervals but by the CF values corresponding to the different classification intervals of
the factors from smallest to largest. After analysis, as the CF values of the main factors
affecting the slope increase, the number of samples with CF values greater than 0 for the
slope gradually increases. The findings indicate that the mutual effect of the slope and each
factor significantly affects the accuracy of prediction of landslide susceptibility. Moreover,
the efficacy of the conditional probability model in improving the model’s performance
is demonstrated.
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5. Discussion
5.1. Features and Advantages of SHAP

When using the ML method to predict landslide susceptibility, the metrics can only
account for a portion of the outcomes that the model forecasts, such as accuracy, precision
rate, and recall rate. The model’s performance may fluctuate when various environmental
factors change in the dimensions of time and space. Therefore, it is critical to understand
how the model based on the ML method can make some decisions by modeling. To ensure
the reliability, fairness, and transparency in the landslide susceptibility prediction model,
the model’s explanation should include three aspects:

1. An understanding of whether each feature’s influence on the model’s final decision-
making result is positive or negative along with the explanations for the res-
pective influence.

2. An ability to find the feature interactions in the model and analyze how the interac-
tions between features affect the prediction results of the landslide susceptibility model.

3. A local decision evaluation of the typical sample data in the model besides the global
interpretation of the model.

The above is of great significance in explaining how the adjustment factors of the input
model affect landslide susceptibility.

The traditional feature importance-ranking method can reflect the importance of each
feature to landslide development locally and intuitively and illustrate which character-
istics exert a considerable influence on the final model. Still, it cannot clearly show how
the features affect the outcome of the forecast. One of the key benefits of the Shapley
value is its ability to accurately represent the impact of each feature on every sample.
It shows the positive and negative impact of features on the target. As shown in Fig-
ure 24, taking XGBoost-Initial and XGBoost-CF models as examples, the ranking results
of landslide susceptibility importance obtained by using three characteristic importance
calculation methods (weight, gain, and cover) attached to XGBoost are different and have
significant differences. However, using the SHAP method based on Mean (|Tree SHAP|)
can effectively avoid this phenomenon and has a high degree of attribution consistency
(see Figure 25).

It can be seen that, given the complexity of the landslide phenomenon, there are
unique advantages to analyzing the decision-making results of landslide susceptibility by
using the SHAP interpretable method of ML model: (1) In addition to addressing the issue
of multicollinearity, SHAP also takes into account the impact of individual variables and
the combined effect of variables on the prediction outcomes. (2) SHAP not only contains
more feature information than the traditional feature importance-ranking method but also
fully ensures the consistency of global features and local samples.
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Figure 24. Global feature importance calculation in XGBoost. (a) XGBoost-Initial model (im 
portance_type = “weight”); (b) XGBoost-CF model (importance_type = “weight”); (c) XGBoost-Initial 
model (importance_type = “cover”); (d) XGBoost- CF model (importance_type = “cover”); (e) XGBoost-
Initial model (importance_type = “gain”); (f) XGBoost- CF model (importance_type = “gain”). 
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Figure 25. SHAP-based global feature importance calculation (top 20). (a) XGBoost-Initial model; 
(b) XGBoost-CF model. 

It can be seen that, given the complexity of the landslide phenomenon, there are 
unique advantages to analyzing the decision-making results of landslide susceptibility by 
using the SHAP interpretable method of ML model: (1) In addition to addressing the issue 
of multicollinearity, SHAP also takes into account the impact of individual variables and 
the combined effect of variables on the prediction outcomes. (2) SHAP not only contains 

Figure 24. Global feature importance calculation in XGBoost. (a) XGBoost-Initial model
(im portance_type = “weight”); (b) XGBoost-CF model (importance_type = “weight”);
(c) XGBoost-Initial model (importance_type = “cover”); (d) XGBoost- CF model
(importance_type = “cover”); (e) XGBoost-Initial model (importance_type = “gain”); (f) XGBoost-
CF model (importance_type = “gain”).
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Figure 24. Global feature importance calculation in XGBoost. (a) XGBoost-Initial model (im 
portance_type = “weight”); (b) XGBoost-CF model (importance_type = “weight”); (c) XGBoost-Initial 
model (importance_type = “cover”); (d) XGBoost- CF model (importance_type = “cover”); (e) XGBoost-
Initial model (importance_type = “gain”); (f) XGBoost- CF model (importance_type = “gain”). 
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Figure 25. SHAP-based global feature importance calculation (top 20). (a) XGBoost-Initial model; 
(b) XGBoost-CF model. 
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It is important to note that this study exclusively utilizes SHAP to elucidate how
various RF and XGBoost models, constructed with different types of factor data, generate
predictions of landslide susceptibility. In doing so, it does not provide an objective explana-
tion based on realistic principles. The RF and XGBoost models are developed using specific
sample data, and thus any modification to the factors or samples may lead to alterations
in the final decision regarding landslide susceptibility. Consequently, SHAP cannot be
regarded as a straightforward causal model. To ensure that the explanatory results of the
landslide susceptibility model closely align with objective reality, it is crucial to select a
model with outstanding performance and ensure the accuracy of the sample data as well
as the completeness of the adjustment factors.

5.2. Local Interpretation of Typical Samples

SHAP can explain the landslide prediction by landslide adjustment factors in the
global dimension and analyze the influence of different factors in a single sample on
landslide prediction to the local extent [40,41]. SHAP can visualize the contribution of
factors to the n-th sample, find the explanation of the prediction results of a specific sample,
and expose the model’s decision-making process for this sample. This study uses the local
interpretation function of samples based on SHAP to analyze the contribution of factors to
landslide and non-landslide samples. The study area utilized the RF-Initial, XGBoost-Initial,
RF-CF, and XGBoost-CF models to interpret and analyze the locality of two representative
landslide samples and two non-landslide samples.

For Case 1 (Figure 26), the predicted values of the four models are 1.00, 1.02, 1.00, and
1.00, respectively, and the prediction results of all models are more accurate and judged to
be landslides. Topographic factors such as slope, SPI, and elevation positively contribute
to landslides, and their corresponding Shapley value sums are more significant than 0.4.
Although total rainfall, MNDWI, and soil type also contribute positively to this landslide,
the degree of contribution is more minor, and their Shapley values are all around 0.01. The
analysis results are consistent with the objective facts.
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For Case 2 (Figure 27), the four models made predictions with values of 1.00, 0.96, 0.99,
and 1.00, respectively. The RF-CF and XGBoost-CF models were the most precise in assess-
ing the occurrence of landslides. Alongside topographic factors like slope, SPI, elevation,
and TWI, mineral point density also plays a notable role in causing landslides, as reflected
by Shapley values of 0.1 and 0.15. Moreover, the lower vegetation cover (NDVI = 0.117)
allows landslides to develop. The Shapley value was in the interval of [0.02, 0.05]. Thus, it
can be seen that the human mining and engineering behavior disrupts the state of equilib-
rium of the original stresses within the slope’s rock formation, destabilizing the rock and
soil and leading to the landslide phenomenon. Therefore, slope is the primary condition
factor of this landslide, and mineral point density is the main trigger factor. The analysis
results are consistent with the objective facts.
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For the typical non-landslide Case 1 (Figure 28), the predicted values of the four
models were 0.23, 0.18, 0.38, and 0.01, respectively, and the XGBoost-CF model has the
most accurate judgment result, and the judgment result is non-landslide. Although slope
positively impacts landslides, TWI, SPI, MNDWI, soil texture, and road density are not
conducive to landslides. The projected outcomes align with the objective facts.
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image of non-landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF;
(e) XGBoost-CF.
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In the case of non-landslide Case 2 (as shown in Figure 29), the four models had
prediction values of 0.74, 0.64, 0.17, and 0.00, respectively. It is worth noting that the
RF-Initial and RF-CF models made incorrect predictions, indicating a landslide occurrence.
The XGBoost-CF model had the most accurate judgment result, and the judgment result
was non-landslide, which was consistent with the objective facts.
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image of non-landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF;
(e) XGBoost-CF.

According to the results of the local interpretation of typical samples using four models,
the XGBoost-CF model of landslide susceptibility has the best prediction performance. The
role of the slope factor is always of utmost importance when predicting landslides on both a
global and local scale. Its contribution to the model is significantly higher than that of other
factors. Furthermore, when compared to the RF algorithm, the landslide susceptibility
model built with the XGBoost algorithm demonstrates greater accuracy in predicting
samples. Moreover, the interpretation of factors using XGBoost is more reasonable and
aligns better with objective facts.



Sustainability 2023, 15, 13563 42 of 49

5.3. Local Interpretation of Samples with Wrong Prediction

The XGBoost-CF model exhibited the highest prediction performance in this study,
with a single prediction error for both landslide and non-landslide samples. Therefore,
to analyze the prediction errors of the models, this study provides a local interpretation
and analysis of the samples with prediction errors in the XGBoost-CF model based on
four models, RF-Initial, XGBoost-Initial, RF-CF, and XGBoost-CF, in the two dimensions of
model and data type.

In Figures 30 and 31, the images of the prediction error can see for both the landslide
and non-landslide samples, as well as the local interpretation bar graphs, respectively. The
Shapley value of each feature is represented on the horizontal axis. The vertical axis shows
the factors that have the greatest influence on the prediction result of the sample, with
the top factor being the most influential and the bottom factor being the least influential.
The factor values of the sample are displayed on the left side. The color of the bar chart
in the figure indicates the direction of influence of the factors on the prediction results,
with red indicating a positive influence and blue indicating a negative influence. The
length of the bars represents the degree of influence. Different models based on different
decision mechanisms possess considerable differences in the interpretation of locality for
the same samples. Figure 30a reveals a landslide sample with inaccurate prediction. The
time series images clearly indicate that the sample exhibits evident signs of a landslide
and falls into the category of a typical landslide sample. However, as seen in Figure 30b–e,
the model mainly emphasizes the negative contribution of slope to landslide prediction.
Compared with the positive effects of individual factors, the negative effects of slope,
elevation, and other factors on landslide prediction are more significant, making the model
output deviate from reality. We try to analyze the reasons for the prediction errors and
conclude the following: Since the non-landslide samples in this study are mainly selected
in areas with lower slopes, the number of samples with slope values less than 15◦ is as high
as 197 out of 214 non-landslide samples, and the slope value of this landslide sample is
13.617◦. Considering the conclusion that slope is the most influential factor in predicting
landslides, this leads to an error in the model’s prediction of the given sample, classifying
it incorrectly as a non-landslide.

On the other hand, for non-landslide samples with incorrect predictions in the XGBoost-
CF model, as can be seen in Figure 31a, the surface environment of the area where the
sample is located has remained unchanged in the time series and does not meet the con-
ditions for landslide occurrence. It belongs to a typical non-landslide sample. From the
output of the model, the RF-Initial and XGBoost-Initial models based on the initial data
of the factor predict this sample as a non-landslide sample, and the prediction results are
correct. Based on the factorial CF data, the RF-CF and XGBoost-CF models incorrectly
predicted this sample as a landslide sample. Analysis of the local interpretation of the
different models shows that, in the RF-Initial and XGBoost-Initial models, even though
factors such as TWI may have a positive effect on the occurrence of landslides, they are
far from being able to offset the significant negative impact of SPI and slope, ensuring the
stability of the sample properties. However, in the RF-CF and XGBoost-CF models, the
influence of slope on this sample changed from negative to positive, and the number of
factors that positively influenced the occurrence of landslides became larger. The combined
effect of all factors tends to predict the landslide of this sample positively, deviating from
the actual properties of the sample, and the prediction result is a landslide. The reason
for this phenomenon is that, when converting factor data using the certainty factor model,
the interval and number of secondary classifications will determine the reasonableness
and accuracy of the factor CF values, which will positively or negatively affect the model’s
performance. For example, because the secondary slope classification in this study was
not comprehensive enough, the non-landslide sample fell in the wrong interval. Hence,
the influence of the slope factor on this sample was biased in both direction and strength,
ultimately impacting the final decision of the model. However, when the model is built
by utilizing the factor data processed by the conditional probability model, the secondary
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classification of factors is served for for landslide samples, which cannot consider the
function of displaying the classification characteristics of complex non-landslide samples.
Therefore, this kind of error is inevitable.
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In summary, the landslide susceptibility model constructed by the XGBoost algorithm
based on factorial CF data has excellent prediction performance. However, it also inevitably
needs a better prediction for the sample data. After systematic analysis, to avoid the number
of prediction errors to the maximum extent, the researcher improves the pre-processing
process of data from two aspects: improving the rationality of non-landslide samples and
the precision of the secondary classification status of factors.
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5.4. Post-Programming
5.4.1. Exploration and Discussion

This paper specifically examines how the model’s internal decision-making process
operates using the interpretable approach of SHAP. It is found that models constructed by
different ML methods and factor data types have different decision-making mechanisms,
and the same factor contributes to varying models with different directions, strengths,
and interactions. The slope is the main factor that interacts with other factors to promote
landslide occurrence. The proposed explainable landslide susceptibility model can explain
the samples in local dimensions, which analyzes the causes of landslide occurrence and
improves the prediction errors.

The research results in this paper further explore and apply the existing SHAP (Shapley
Additive exPlanations) methodology, which adds significant value to the explanatory
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analysis of modeling susceptibility to landslides. The following is a discussion of how
the research results of this paper complement, confirm, or contradict the current state of
SHAP research:

1. Exploration of different factor data types: Current landslide susceptibility research
is mainly focused on exploring the interpretation of different ML models, whereas
this paper’s analysis introduces new dimensions in considering different factor data
types, which are different from the present condition of research. This paper presents
the initial effort to employ the SHAP method in elucidating landslide susceptibility
models utilizing various types of factor data. This investigation introduces a fresh
standpoint to clarify the impact of diverse factor data types on the decision-making
process within the model.

2. Interpretability advantage: The research in this paper confirms the advantage of the
SHAP method in interpreting landslide susceptibility models constructed based on
the ML method. The internal decision-making mechanism of the model is thoroughly
explained in this paper through the utilization of the SHAP method, which improves
the transparency and interpretability of the model. Since existing studies have empha-
sized the importance of the SHAP method in providing model explanations [35], this
is consistent with the current state of research.

3. Comparison and analysis of internal decision-making within models: The study in
this paper compared and analyzed the differences in internal decision making within
landslide susceptibility models constructed based on different types of factor data.
This point, to some extent, contradicts the status quo that current research mainly
focuses on exploring the interpretation of different ML models because the research in
this paper focusing on the effect of factor data types on the decision-making process
within the models is not limited to just selecting and interpreting the models.

In summary, this paper’s findings offer a fresh perspective on the interpretation of
landslide susceptibility models by adding to the existing body of research, confirming
the interpretability advantages of the SHAP method, and comparing and analyzing the
differences in model internal decision making across factor data types.

5.4.2. A Discussion of Feature Importance Assessment for Fused Decision Tree Models

The above study demonstrated the superior performance of five conditional probabil-
ity models for landslide susceptibility prediction. However, as another class of commonly
used machine learning methods, decision tree models have unique advantages in terms
of interpretability and feature importance assessment. Decision tree models can provide
intuitive decision paths that help us understand the prediction mechanism of the models
under different feature conditions. To deepen the understanding of the role of decision
tree models in landslide susceptibility prediction, we plan to introduce ranked feature
importance analysis in future research work. Ranked feature importance analysis is a pow-
erful tool to measure how much each feature affects the model performance. By randomly
rearranging the feature values, we can observe the extent to which the features affect the ac-
curacy of the predictions. Applying this method to our decision tree and other conditional
probability models allows for further comparison of their differences in feature importance.
This provides insights into how much attention different models pay to different features
and reveals the impact of interactions between features on prediction results.

While the primary emphasis of this investigation was on five distinct models of
conditional probability, recognizing the feature importance scores of decision tree models is
crucial for model interpretation and understanding of prediction results. In future studies,
we plan to incorporate decision tree models into the framework of the current research to
comprehensively evaluate the performance of the different models in predicting landslide
susceptibility and to further investigate the influence of feature importance on decision
tree models.

In future research, the results of comparing the decision tree model with the five
conditional probability models mentioned above, in terms of ranking feature importance
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analysis, will be explored and integrated into the explanatory framework. By combining
the feature importance scores of the different models with their decision paths, a more
comprehensive explanation of the model’s prediction mechanism for landslide suscepti-
bility can be achieved. This will further enhance the comprehensiveness and explanatory
nature of the study and provide more accurate landslide management and prevention
recommendations to the regional authorities.

6. Conclusions

The objective of this study is to examine the variations among various types of factor
data in the decision-making process of the landslide susceptibility model built using the
integrated structure ML method. In this paper, we take 214 landslide samples from Cenxi as
an example and construct 12 different models for assessing landslide susceptibility utilizing
RF and XGBoost algorithms based on the initial factor data and five types of factor data
converted by conditional probability model, and find the model with the best performance
using multiple evaluation indices. In addition, we innovatively utilize a SHAP-based
interpretable model to evaluate and analyze the internal decision-making mechanisms of
models based on different types of factor data. The principal findings are as follows:

(1) The study successfully constructed 12 landslide susceptibility models, all of which
performed exceptionally well. Among these models, the XGBoost-CF model, created
using the XGBoost algorithm based on CF values, demonstrated superior stability
and reliability in evaluating landslide susceptibility in the study area. It achieved an
AUC value of 1, an accuracy value of 99.533, a kappa coefficient value of 0.991, and an
RMSE value of 0.0807. The results from the XGBoost-CF model indicated that 91.121%
of the landslides occurred within 24.959% of the high- and very-high-susceptibility
zones, while only 0.467% of the landslides were located in 44.891% of the low- and
very-low-susceptibility zones. This suggests that the model covers landslide risk areas
comprehensively and exhibits specificity in the identification of landslide samples,
thereby producing optimal zoning results.

(2) The utilization of SHAP as an interpretable approach enables a clear explanation of
the correlation between factors and the forecasted outcomes of landslide susceptibility.
The results demonstrate that landslide susceptibility models, which are constructed
using various machine learning techniques and different types of factor data, employ
diverse decision-making processes within the same study area. Specifically, the
impact direction and strength of a particular factor vary across different models, and
the interaction of the same factor has varying effects on the forecasted outcomes.
Moreover, the type of factor data plays a significant role in shaping the decision-
making process of the models. By taking into consideration the distinct characteristics
of different types of factor data, a more comprehensive understanding of how factors
influence the forecasted outcomes of landslide susceptibility can be attained.

(3) Using the interpretable method based on SHAP to analyze the factor importance and
factor interaction in different models, it can be determined that the main factor causing
landslides in this area is the slope, and it enhances the occurrence of landslides by
interacting with other factors.

(4) The explainable landslide susceptibility model proposed in this paper can explain
individual samples in the local dimension. It can not only explain and analyze the
causes of the occurrence of typical landslides but also be used to test whether the
selection of non-landslide samples is reasonable. Most importantly, by using this
function to explain and analyze samples with incorrect predictions locally, the causes
can be summarized and used to further improve the landslide susceptibility model.

In conclusion, in addition to different ML methods, the factor data type can seriously
affect the model’s decision results for individual samples. The reason for this analysis is
that different data types of the same factor contribute to the direction and strength of the
sample differently. It is evident that utilizing the factor data transformed by the conditional
probability model effectively enhances the prediction accuracy of the model. However, it is
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equally important to pay attention to the characteristics of the original factor data in order
to provide a comprehensive and clear explanation of how these factors impact the model’s
prediction results. The interpretable landslide susceptibility model proposed in this study,
based on various types of factor data, can offer substantial theoretical and technical support
to regional authorities responsible for managing and preventing landslide hazards.
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