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Abstract: Seismic characterization of landslides offers the potential for developing high-resolution
models on subsurface shear-wave velocity profile. However, seismic methods based on reflection
processing are challenging to apply in such scenarios as a consequence of the disturbance to the
often well-defined structural and stratigraphic layering by the landslide process itself. We evaluate
the use of alternative seismic characterization methods based on elastic full waveform inversion
(E-FWI) to probe the subsurface of a landslide complex in Majes, southern Peru, where recent agri-
cultural development and irrigation activities have altered the hydrology and groundwater table
and are thought to have contributed to increased regional landslide activities that present continuing
sustainability community development challenges. We apply E-FWI to a 2D near-surface seismic
data set for the purpose of better understanding the subsurface in the vicinity of a recent landslide
location. We use seismic first-arrival travel-time tomography to generate the inputs required for
E-FWI to generate the final high-resolution 2D compressional- and shear-wave (P- and S-wave)
velocity models. At distances greater than 140 m from the cliff, the inverted models show a predomi-
nantly vertically stratified velocity structure with a low-velocity near-surface layer between 5–15 m
depth. At distances closer than 140 m from the cliff, though, the models exhibit significantly reduced
shear-wave velocities, stronger heterogeneity, and localized shorter wavelength structure in the top
20 m. These observations are consistent with those expected for a recent landslide complex; however,
follow-on geotechnical analysis is required to confirm these assertions. Overall, the E-FWI seismic
approach may be helpful for future landslide characterization projects and, when augmented with
additional geophysical and geotechnical analyses, may allow for improved understanding of the
hydrogeophysical properties associated with suspected ground-water-driven landslide activity.

Keywords: landslide; tomography; seismic characterization; elastic full waveform inversion

1. Introduction

Mass wasting events such as landslides are pervasive natural hazards involving large
movements of soil and rocks that can occur even in the presence of minor topography [1,2].
The social and economic costs of such events are significant, killing and injuring thou-
sands of people each year and destroying infrastructure such as railways, highways, and
tunnels [3,4]. Most landslides are triggered by rainfall or earthquakes [5,6]; However, an
increasing number of cases are induced due to anthropogenic construction [7], mining [8],
irrigation [9], and agricultural reclamation activities [10]. While characterizing sites prone
to failure is an important geotechnical and engineering geology research area, site investiga-
tions on former landslides are not straightforward considering the disruption of structural
and stratigraphic lithology imparted by the mass wasting activity.
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Geophysical investigation methods provide a cost-effective solution for characterizing
the subsurface structure of mass wasting events such as large-scale slumps or landslides.
Since the early work of Bogoslovsky and Ogilvy [11] various geophysical techniques
including seismic, electrical resistivity, and borehole analyses have been shown to be
successful at site characterization before invasive site diagnosis (e.g., [12]). However, the
cost of geophysical site characterization could be high due to the extensive volume of
geomaterials involved in mass wasting events and the often challenging topography and
complex structures induced thereby [13].

The recent development of computation resources, portable sensors such as nodal
seismometers and distributed acoustic sensing (DAS) that facilitate rapid deployment, and
2D and 3D geophysical imaging and inversion algorithms position geophysical investiga-
tions as an attractive characterization tool, as shown in the increasing number of successful
geophysical landslide investigations. Jongmans et al. [14] apply electrical and seismic
tomography to check the rock quality and to detect instability of the slope along railway
bedding. Pazzi et al. [15] show that ambient seismic wavefield measurements can be
sensitive to landslides and be used to (re)construct landslide geometries. Stucchi et al. [16]
present a horizontal-shear (SH)-wave depth-migrated image that profiles small slip sur-
faces that delineating minor landslides at shallow depths. Flamme et al. [17] present an
integrated hydrological and geophysical study using electromagnetic and seismic surveys
to provide insights into irrigation and landslide management.

Perhaps surprisingly to more general practitioners, seismic reflection methods are
infrequently used to investigate landslides largely because the associated earth processes
usually destroy established stratigraphy [18–20], which makes it challenging to record
coherent reflection events in seismic data and therefore use such arrivals to both estimate
the often complex velocity models and to construct interpretable seismic images. Addi-
tionally, acquiring high-resolution seismic data requires high signal-to-noise ratios and
sufficiently broadband source energy, which can be challenging to realize with seismically
heterogeneous and attenuative near-surface earth models. Still, seismic methods have the
advantage of producing properties such as compressional- and shear-wave (P- and S-wave)
velocities that directly depend on the mechanical properties important for geotechnical
slope stability analysis [21,22].

This work examines how seismic data waveforms other than P-wave reflection events
may offer high-resolution constraints for which seismic techniques are typically known.
In addition to the more standard P-wave first-arrival refractions, we use lower-frequency
(2–20 Hz) seismic waveforms typically dominated by direct and scattered surface-wave
arrivals. Given the selected band of seismic data, herein we apply the following sequence
of seismic inversion methods to develop high-resolution subsurface constraints: (1) first-
arrival seismic refraction tomography (SRT) for P-wave velocity model estimation; and
(2) low-frequency elastic full-wavefield inversion (E-FWI) to estimate the near-surface
P- and S-wave velocity profiles.

We evaluate the proposed seismic inversion sequence in the context of investigating an
area of active slumping and high landslide risk in the Majes region of southern Peru. The
project team acquired a high-resolution near-surface 2D seismic line at an area interpreted to
be at high risk for future landslide activity. For seismic data acquired on the mass wasting
complex, the surface-wave arrivals are clearly affected by slower and heterogeneous velocity
structures that generate strong differential moveouts and significant backscattering from
suspected sub-vertical lateral discontinuities. Thus, this near-surface seismic data set offers an
arguably challenging test of the combined SRT and E-FWI seismic characterization approach.

The paper begins with an overview of the geological and hydrological conditions in
the Majes area. We review the near-surface geology as well as provide a brief history of irri-
gation and recent landslide activity. After presenting the 2D seismic data acquisition at the
field site, we discuss our implementation of P-wave refraction SRT for developing starting
models for the ensuing E-FWI analysis. We then present our E-FWI results, show compar-
isons between forward simulated and field data, and present our geological interpretations.
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We conclude with discussions on the prospective improvement in surface-wave elastic
time-reverse imaging strategies, the potential implications for future landslide analyses,
and the importance of follow-on geotechnical analysis.

2. Majes Geology and Hydrology

The Majes I region is situated 60 km west of the regional capital Arequipa in an
arid, high-altitude desert environment (see inset of Figure 1) and is one of Peru’s largest
agricultural developments. While meteoric water supply is limited by an average annual
rainfall of 17 mm per year [23], snow melt from the Andes Mountains rising to the east
provides a significant water source for agricultural irrigation and development through
both the adjoining deeply incised Siguas River valley as well as a system of purpose-built
irrigation aqueducts.

Figure 1. Satellite map of Majes I survey line 1B-C survey line with surrounding features of interest
discussed in this work. The Majes 1B-C survey line is indicated in the lower left with an orange line.
The location of the Pampa de Majes (Majes I) agricultural development in southern Peru can be seen
in the inset at the top left.

The Majes I irrigation project has significantly contributed to the overall local food
supply and created jobs; however, it also has affected the local hydrology and groundwater
table and is suspected of contributing to a recent increase in landslide activities in the Siguas
River valley [24–26]. In particular, after the onset of the Majes-Siguas irrigation project in
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1983, initial water seepage was discovered in 1996 at the slope of the El Zarzal area. Shortly
after the appearance of another seepage zone in 2004, the first significant El Zarzal landslide
followed in 2005 (see highlighted magenta area in Figure 1) and failures have continued
to occur causing the affected area to rapidly retreat toward the GLORIA dairy facility,
agricultural fields, and Carretera Panamericana (Pan-American Highway) [17,27]. Thus,
there are concerns about the overall sustainability of current irrigation-based agricultural
strategy in the Majes region. Figure 1 presents a satellite image that shows the locations the
El Zarzal landslide, the Pan-American Highway, the GLORIA dairy factory, as well as the
particular Majes I 2D seismic survey line discussed below.

The near-surface geology at the Majes I site consists of poorly consolidated sediments
including conglomerates and ignimbritic tuff [27]. The uppermost Millo conglomerate
layer has an estimated thickness of 20–30 m and overlies a laterally discontinuous tuff layer
of variable thickness. The underlying upper and lower Moquegua formations respectively
have estimated thicknesses of 120 m and 80 m, with the upper Moquegua unit comprised
of sandstones and limestone gravels and the lower Moquegua containing sandstones
and clays. Water from agricultural irrigation likely percolates through the Millo unit and
consequently alters the groundwater table, thus potentially contributing to the recurring El
Zarzal landslide and potentially other recent events in the vicinity [25].

At the area of the current investigation, shown in Figure 2, recent water seepage is
visible in the steep Siguas valley walls located downslope of the 1B-C survey line (orange
dots in Figure 2). The elevation of the seepage suggests that the water table resides within
the Upper Moquegua formation, which is generally competent but may be prone to failure
when fully saturated [17]. Thus, the (hydro)geological parallelism with the recently time-
history of the El Zarzal landslide located only 2–3 km up the Siguas River valley suggest a
significantly elevated landslide risk at the field site location.

Figure 2. Satellite map of Majes I survey line 1B-C. Geophones are denoted as orange dots. The blue
tinted area depicts the steeper part of the cliff face on which post-irrigation groundwater seepage is
clearly visible approximately 150 m below the elevation of data acquisition surface. The Siguas River
valley can be observed on the extreme right of the image.

3. Seismic Data Acquisition

A 2D near-surface seismic line was acquired in June 2022 at the field location as part of
a larger multi-geophysics acquisition campaign. Figure 2 presents the acquisition geometry
overlain on the satellite map. We used a 96-channel Geometrics Geode system to acquire
seismic data with 14 Hz vertical-component geophones and a PEG-40 accelerated weight-
drop source; geophone and source intervals were set at 5 m and 10 m, respectively. The
start of the geophone line and shot points were located as close to the slope as possible
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while following reasonable safety protocols regarding slope stability (to the southeast of
Figure 2). The sampling rate for the recorded data was ∆t = 0.5 ms with a total recording
time of T = 1.0 s for each recorded shot gather.

Figure 3 presents two examples of 2–20 Hz bandpassed shot gathers in which direct
surface-wave energy clearly dominates. We note significant backscattered energy origi-
nating around 90 m offset as well as significantly slower direct surface-wave moveouts
between 0–90 m when compared to those between 90–320 m. Most other shot gathers show
consistent direct surface-wave slowdowns and clearly visible backscattered surface-wave
energy. Overall, these observations suggest the presence of a strong, laterally heterogeneous,
velocity structure.

Figure 3. Examples of 2–20 Hz bandpassed shot gathers excited at (a) 195 m and (b) 235 m. Both
panels exhibit a dominant direct surface wave that has backscattered energy originating at 90 m
distance and significantly slower propagation between 0–90 m. Other minor scattered surface-wave
events are also visible in both panels.

4. P-wave Seismic Refraction Tomography

P-wave travel-time SRT is a low-order though efficient method for generating smooth
subsurface velocity models based on a picked refraction travel-time data set. SRT algorithms
estimate velocity models by iteratively minimizing the difference between the observed
travel times and those forward modeled through a synthetic earth model using a ray-tracing
algorithm. The inversion step commonly involves solving a linearized inverse problem,
usually following a numerical optimization approach.
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The travel time ti(s, r) between a source s and a receiver r station (corresponding to
travel-time index i) along the raypath can be computed by the summation of the travel
times of the individual segments:

ti(r, s) =
n

∑
k=1

lk
vk

, (1)

where lk and vk are the path length and velocity of the kth segment between s and r, and n
is the number of segments in any given raypath.

Following Ronczka et al. [28], we formulate the linearized inverse problem to obtain
model parameters from travel times according to

J∆m = ∆d = d− f(m), (2)

where J is the Jacobian matrix of the travel times with respect to model parameters
(i.e., ∂ti/∂mj, where i is a ray index and j is grid node index); m is the array of veloc-
ity model parameters vi; f(m) is the forward modeling operator; and d is the array of
observed travel times ti(r, s) defined in Equation (1). Here, we use the shortest path
method [29] with secondary nodes [30], which computes the fastest travel-time path from a
source to a receiver across a specified mesh.

The seismic refraction tomography inverse problem can be solved by minimizing a
regularized (i.e., smoothness-constrained) L2-norm objective function Ett [28] defined here by

Ett = Ed + λEm = ‖W∆d‖2
2 + λ‖Cm‖2

2, (3)

where Ed is the weighted data misfit; Em is the model roughness; W is a diagonal weight
matrix based on the uncertainty of travel-time picks; λ is the regularization trade-off
parameter; and C is a derivative matrix used to calculate the model roughness. The
objective function in Equation (3) is minimized using a generalized Gauss-Newton method.

We use the open-source pyGIMLi refraction travel-time tomography software [31] with
the Python-based Refrapy GUI wrapper [32] for both picking P-wave first-arrival refraction
travel times and solving the inverse problem. The pyGIMLi framework has been successfully
applied in recent geophysical investigations [33]. We input our P-wave first-arrival picks
from 16 gathers separated by a 30 m shot interval into the pyGIMLi SRT package. We use a
starting model with initial values of Vmin = 0.5 km/s at the surface and linearly increasing
to Vmax = 1.2 km/s at the 70 m model base. We set allowable velocity bounds at 0.3 km/s
and 2.0 km/s, and use a λ = 1000 to bias the inversion toward a smoother model rather than
over-fit the somewhat noisy P-wave refraction travel-time picks.

Figure 4 presents the estimated P-wave velocity model with a calculated relative RMS
error of 5.6% after 20 iterations. The model exhibits significantly slower P-wave velocities
in the top 15 m between 0 m and 130 m horizontal distance than in regions more distal from
the cliff. However, because of the limited resolution afforded by SRT, we use these results
as a starting model for the ensuing E-FWI analysis rather than a final interpretation model.

Figure 4. First-arrival P-wave travel-time tomography results, where the steep topography and
Siguas River valley are located to the left of 0 m. Note the significantly slower P-wave velocity values
between 0–130 m horizontal distance in the top 20 m.
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5. Elastic Full Waveform Inversion

Full waveform inversion (FWI) is a commonly applied method to recover a sub-
surface velocity model by setting up an optimization problem based on the “goodness
of fit” between forward-modeled synthetic data and observed field seismograms [34].
Because FWI has the potential for producing higher-resolution models than ray-based
tomography [35,36], we expect to build a more detailed and higher-resolution velocity
model after applying FWI. However, because we use surface-wave data in our FWI analy-
sis, it is necessary to undertake an (isotropic) elastic FWI (E-FWI) analysis that enables us
to forward model waveforms of this type.

We forward model seismic data by solving the 2D Cartesian isotropic elastic wave
equation in a displacement-stress formulation. This involves iteratively solving two first-
order system of equations: the conservation of linear momentum,

ρ
∂2ui
∂t2 =

∂σij

∂xj
+ fi, (4)

and the isotropic Hooke’s Law of elasticity,

ρ
∂σxx

∂t
= (λ + 2µ)

∂ux

∂x
+ λ

∂uz

∂z
+ sxx, (5)

ρ
∂σxz

∂t
= µ

(
∂ux

∂x
+

∂uz

∂z

)
+ sxz, (6)

ρ
∂σzz

∂t
= λ

∂ux

∂x
+ (λ + 2µ)

∂uz

∂z
+ szz, (7)

where ρ, λ, and µ are the density and two isotropic Lamé parameters; ui represents particle
displacement components; σij is the stress tensor; and fi and sij are the force density and
stress source terms, respectively.

We set up the numerical simulation grid with the spatial and temporal sampling
intervals of ∆x = ∆z = 1.0 m and ∆t = 5× 10−5 s, respectively. We enforce the free-surface
boundary condition on the top face and apply a ten-point perfectly matched layer (PML)
boundary condition [37] to the left, right and bottom model boundary regions. The overall
model dimension is 350 m × 72 m excluding the PML regions.

We formulate the E-FWI problem to minimize the commonly used L2 norm data
misfit [34,38,39] here represented by

E =
1
2 ∑

NS

∑
NR

∫ T

0
‖∆d(s, r, t)‖2 dt, (8)

where for E-FWI we define ∆d = dobs − dmod as the data residual vector representing
the difference between the observed and forward modeled data; and NS and NR are the
number of source and receiver points, respectively. To estimate the velocity model that
minimizes the objective function in Equation (8), we apply the adjoint-state method to
define the gradient with respect to the model parameters

δm′(X) =
∂E
∂m

= ∑
NS

∫ T

0
∑
NR

[
∂u
∂m

]∗
δu†

i dt, (9)

where
[

∂u
∂m

]∗
is the Fréchet derivative; and δu†

i is the adjoint wavefield variable recon-
structed by injecting and backpropagating information in data residual vector ∆d. It is
possible to estimate the gradient with respect to the target S-wave velocity model parameter
using the Fréchet derivative, as has been demonstrated in classical work on 2D elastic
scattered wavefield inversion [34,40,41].

We use a velocity-density (Vp, Vs, ρ) E-FWI parameterization shown by Köhn et al. [42]
to provide more accurate inversion results with fewer artifacts than Lamé (λ, µ, ρ) or seismic



Sustainability 2023, 15, 13574 8 of 15

impedance (Ip, Is, ρ) formulations. We then use the estimated S-wave gradient at each itera-
tion to update the S-wave velocity model VS following the steepest-descent formulation,

VS
(k+1) = VS

(k) − α
∂E(k)

∂VS
= VS

(k) − α∆VS
(k), (10)

where α is the calculated step length using parabolic fitting method [43,44]; the (k) super-
scripts indicate iteration number; and ∆VS

(k) is the estimated gradient vector.

2D E-FWI on Majes I Field Data

We now apply the above E-FWI framework to reconstruct a high-resolution S-wave
velocity model for the Majes I 1B-C data set. The Majes 1B-C seismic survey line is one
of many acquired in the Majes I region. This line starts at the steepening cliff face and
ends at 1B along a dirt road within the agricultural fields. We initially updated the S-wave
velocity model parameter with a global optimization approach that used all frequencies
simultaneously in the 2–20 Hz range; however, we observed that the data-difference
misfit function suffered from local-minima issues [34,45] and converged more poorly than
expected. To mitigate this local minima problem, we adopted a multiscale approach [46]
by which we increased the maximum frequency of the data sequentially in frequency
subsets between 2–20 Hz (i.e., covering the dominant surface-wave frequency band). After
conducting a number of tests, we split the inversion process into the four frequency sub-
bands: 2–7 Hz, 2–12 Hz, 2–17 Hz, and 2–20 Hz.

We used a first-derivative Gaussian wavelet with a center frequency of 20 Hz bandpassed
between 2–20 Hz as our source wavelet, which enabled a good match of the modeled frequency
content to that of the dominant field-data frequency band. To improve the phase matching
between the observed and modeled waveforms, we applied a source-wavelet correction filter
estimated through linearly damped least-squares optimization [47]. This source-estimation
approach approximated a wavelet appropriate for each frequency sub-band.

To build an isotropic E-FWI starting model, we use a smoothed version of the
P-wave velocity model obtained from P-wave first-arrival travel-time SRT (Figure 5) and
then approximate the S-wave velocity model (not shown) by assuming a Poisson solid
(i.e., VS = VP/

√
3). We hold the homogeneous density model constant during the inversion

due to a lack of a priori information on this parameter.

Figure 5. The starting VP velocity model generated from P-wave first arrival travel-time SRT. Note
that the starting VS model is given by a Poisson solid approximation (i.e., VS = VP/

√
3).

To illustrate the convergence of E-FWI, Figure 6 presents the relative errors of models
with iterations. As shown in Figure 6, the E-FWI analysis has converged by approximately
45 iterations. Due to the multiscale approach, the error curve exhibits a staircase-like
structure, which is caused by the loss decreasing quickly at the beginning of each frequency
sub-band discussed above.

We first show synthetic data generated through from the final estimated E-FWI model
as a grayscale image in Figure 7 and overlay the observed data in wiggle-plot format. This
representation facilitates comparison between the observed and forward modeled synthetic
data, and is a visual representation of the differences that the E-FWI framework aims to
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minimize through model updating. Figure 7a,b respectively present overlay plots of shot
gathers acquired at 215 m and 255 m. Both panels show coherent waveforms as direct and
backscattered surface waves at locations throughout the panels.

Figure 6. Normalized objective function for E-FWI iteration. Note that the step-like discontinuities
represent points where the inversion algorithm progressed to the next frequency sub-band for
E-FWI analysis.

Figure 7. Overlay of forward-model data (gray scale) and observed seismic waveforms (wiggle-trace
plot) for shot gathers located at (a) 215 m and (b) 255 m horizontal distance.

Figure 8a presents the resulting estimated VS model from the E-FWI inversion, which
has been updated significantly from the initial tomographic model. At distances greater
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than 130 m, we observe that the estimated VS model exhibits largely vertically dominant
model structure. Moving downward from the surface, we interpret a 6–8 m thick layer
with average VS velocity of 0.55 km/s overlying a 6–8 m thick layer with average VS
velocity of 0.35 km/s; these two layers likely are associated with the Millo formation.
At approximately 16–18 m depth, we note a significant VS increase to about 0.70 km/s,
which may be associated with a tuff layer and/or the upper Moquegua formations. Using
these observation, we divide the estimated VS model into layers by black dashed lines,
representing the potential interfaces between the interpreted layers (see Figure 8b).

Figure 8. (a) The E-FWI estimated VS model and (b) associated overlain interpretations with units
demarcated by dotted lines. At distances beyond 130 m, the estimated model is mostly 1D with a
6–8 m layer with an average velocity of VS = 0.55 m/s overlaying a 6–8 m layer with a 0.35 km/s
velocity. The VS model shows significant differences at horizontal distances of 0.0–0.13 km. Within the
top 0.02 km, the estimated VS model is slower at 0.25–0.40 km/s, suggesting reduced shear modulus
values with potentially less compacted and poorly sorted conglomerate materials. The inverted VS

model between 0.07–0.13 km appears to have both stronger and shorter-wavelength heterogeneity.

Between 0 m and 130 m horizontal distance, though, the estimated VS model is signifi-
cantly different than that from 130 m to the end of the survey line. We observe significantly
slower VS values between 0.25 km/s and 0.40 km/s from the surface down to 20 m depth.
We note that careful consideration should be given to the challenges of geological and
geotechnical interpretations of geophysical imaging and inversion results. Here, we inter-
pret the lateral variability of the observed velocity changes (and associated reductions in
shear moduli) are consistent with what would be expected in a former large-scale slump
(or perhaps former historical landslide) complex zone characterized by less compacted
and more poorly sorted conglomerate materials. The character of the inverted VS model
between 0.075–0.10 km distance also appears to exhibit stronger and short-wavelength het-
erogeneity. At depths greater than 20 m, though, the VS values increase and approach those
observed at these depths elsewhere in the S-wave velocity section, suggesting a possible
base of suspected mass wasting activity. However, additional geotechnical investigation
would be required to confirm these interpretations and determine the underlying causes
and mechanisms that may have triggered the observed large-scale slumping (and perhaps
historical landslide) activity.

6. Discussion

This study illustrates that the combination of P-wave first-arrival SRT and E-FWI can pro-
vide valuable subsurface constraints for seismic characterization of mass wasting complexes.
However, it is important to recognize that this approach falls within in a spectrum of possible
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analyses that support subsurface characterization efforts and have their respective merits and
drawbacks. Here, we highlight five complementary, non-destructive seismic approaches able
to provide subsurface constraints on the S-wave velocity profile: (1) horizontal-vertical spectral
ratio (HVSR) [48]; (2) spectral analysis of surface waves (SASW) [49]; (3) multichannel analysis
of surface waves (MASW) [50]; (4) SH-wave seismic refraction tomography (SH-SRT) [51];
and (5) SRT+E-FWI presented herein.

1. HVSR uses ambient multicomponent seismic records to develop S-wave model con-
straint. While this approach requires a limited data set and is highly numerically efficient,
it also is generates low-resolution 1D constraints though pseudo 2D sections can be
estimated by interpolating the results of neighboring independent HVSR measurements.

2. SASW uses single-component data from multiple receivers to characterize shallow
S-wave profiles. While this approach also requires a limited data set and is highly
numerically efficient, it is limited to 1D (or pseudo-2D) analyses and suffers from
several limitations that arise due to seismic wavefields being comprised of more
wavefield phases than the fundamental Rayleigh mode.

3. MASW uses waveforms from a receiver array to address some of the issues arising in
SASW; however, this approach requires additional acquisition resources and provides
an spatially averaged 1D S-wave velocity profile beneath the array (though pseudo-2D
sections can be generated).

4. SH-SRT uses first-arrival energy generated by a SH-wave source and seismic data
acquired on shear geophones to estimate a 2D S-wave velocity profile of somewhat
low resolution. This approach requires additional acquisition resources, involves
picking arrivals, and involves higher computational requirements.

5. The SRT+FWI method reported herein uses geophone array data to develop a fully
2D high-resolution S-wave velocity model estimate. Compared to the four previous
methods, though, this approach is significantly more computationally challenging,
demands careful data preprocessing, requires reasonably accurate starting models,
and is not guaranteed to converge to the global minimum.

Thus, practitioners should carefully weigh the advantages and potential drawbacks
of the different seismic methods when looking to generate S-wave velocity constraints
on the near-surface geologic profile. Fortunately, there is a range of possibilities that can
be tailored to the technical requirements at hand, the availability of seismic acquisition
instrumentation, the availability of computing hardware and software, and the skill sets of
personnel involved in the seismic survey and ensuing analysis.

Potential Research Opportunities

Combining different geophysical techniques for studying large-scale slumping and
landslide environments is known to be useful for improved characterization [52]; thus, we
expect that integrating these results with other geophysical methods (e.g., DC resistivity)
would more effectively constrain hydrogeophysical factors such as saturation and vari-
ability in the water table depth [17] and could provide a more complete calibration and
thorough investigation of this large-scale slump (and perhaps historical landslide) complex.

Given the high-quality backscattered surface-wave arrivals, it may be possible to
develop an elastic time-reverse imaging algorithm that could generate images of the dis-
continuities generating the scattered surface-wave energy. Ideally, these seismic waveform
types could be used to directly detect former failure surfaces and/or other sub-vertical
velocity discontinuities associated with historical landslide activities. Moreover, detecting
sub-vertical model discontinuities could be useful for improved geotechnical understand-
ing of their contribution to future failures and the associated landslide risk.

Successfully applying near-surface geophysical methods on former landslides remains
generally challenging because these energetic events are affected by a variety of geologic,
topographic, geomorphologic, and hydrologic factors. While the deployment of additional
sensors would require extra effort under strongly variable topography, we expect that
multi-component geophones or an alternative sensing system such as DAS could improve
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upon the types of data and ensuing results present herein. Furthermore, DAS would enable
cost-effective solutions for survey design that could leverage the dense temporal and spatial
spacing to provide higher-resolution characterization of sub-vertical velocity heterogeneity.

While seismic inversion provides velocity models for estimating shear moduli, iden-
tifying the underlying causes and failure mechanisms of suspected landslides remains
challenging because mapping shear-modulus observations to actual soil strength is not a
straightforward task. There is a large body of geotechnical research into mapping landslide
vulnerability and investigating landslide mechanisms. For example, additional stabil-
ity analysis of the failure stage can reveal the failure mechanisms and the ensuing mass
movement, which can be used to classify landslide type (e.g., rotational or flow). Thus,
a supplemental follow-up study by geotechnical specialists is recommended for more a
complete characterization of this large-scale mass wasting complex.

Finally, we emphasize that the seismic methodology highlighted here is not limited to
landslide evaluation. Rather, there are a number of geotechnical areas of focus in which
such a methodology likely would apply. Important examples include periodic evaluation
of the internal structural health of mine tailings dams, analyzing the slope stability and
open-pit mines, and performing higher-resolution site characterization studies in advance
of developing civil infrastructure.

7. Conclusions

We present a two-step seismic inversion procedure for characterizing a suspected
recent landslide complex using a 2D near-surface seismic data set acquired at a field site
of high landslide potential in Majes, southern Peru. The observed seismic waveforms in
the 2–20-Hz frequency band are dominated by direct surface-wave arrivals, which carry
the imprint of significant lateral velocity variations and backscattered surface-wave energy
from numerous points along the transect.

We use first-arrival P-wave refraction travel-time picks to build a P-wave velocity
seismic refraction tomography (SRT) model and then employ this result in an elastic full-
waveform inversion (E-FWI) analysis to construct the final high-resolution models. We
show that the estimated S-wave velocity model is significantly updated using surface-
wave energy dominant in the 2–20 Hz frequency band. The resulting E-FWI S-wave
model exhibits characteristics consistent with former geologic studies at this site and
generate forward-modeled wavefields that achieve a sufficient waveform fit with field data
observations. At distances farther than 130 m from the cliff face, the inversion results reveal
an earth model dominated by a vertical velocity structure; however, at closer distances we
observe significantly slower S-wave values and isolated strong 2D velocity heterogeneity
in the top 20 m.

While these observations are consistent with those expected in a recent mass wasting
(and perhaps historical landslide) complex, we stress the need for follow-on geotechnical
analysis to confirm these assertions. Overall, we expect this combined seismic inversion
toolkit could be helpful for future (suspected) landslide characterization projects, though
perhaps augmented with complementary geophysical analyses (e.g., DC resistivity) more
sensitive to (hydro)geophysical properties associated with potentially groundwater-driven
landslide activity.
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