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Abstract: Landslide-generated waves occur as a result of the intrusion of landslides such as mud
flows and debris flows into bodies of water such as lakes and reservoirs. The objective of this study
was to determine how the momentum is transferred from the sliding mass to the body of water
on the basis of theoretical analysis and physical model experiments. Considering the viscoplastic
idealization of natural landslides, the theoretical model was established based on the momentum
and mass conservation of a two-phase flow in a control volume. To close the theoretical equations,
slide thickness and velocity passing through the left boundary of the control volume were estimated
by lubrication theory, and the interaction forces between the slide phase and water phase, including
hydrostatic force and drag force, were given by semiempirical equations fitted with experimental
data obtained using the particle image velocimetry (PIV) technique. The near-field velocity fields
of both the sliding mass and the body of water, as well as the air–water–slide interfaces, were
determined from the experiments. The theoretical model was validated by comparing the theoretical
and experimental data of the slide thickness and slide velocity, as well as the momentum variations
of the two phases in the control volume.

Keywords: momentum transfer; landslide-generated waves; PIV; viscoplastic material; interaction
force; Carbopol

1. Introduction

Landslides such as avalanches, debris flows, mud flows, glacier calving, and rockfalls
are common in mountainous regions. When these masses intrude the surrounded bodies
of water such as mountain lakes, reservoirs, rivers, and oceans, they can generate large
impulse waves (also called landslide-generated waves or landslide tsunamis) that can have
devastating effects. The problem of landslide-generated waves has attracted considerable
attention in recent decades. Many of the physical insights into this phenomena have
come from laboratory scale-down experiments [1–3] and to a lesser extent from theoretical
models [4,5], numerical simulations [6–8], and field data surveys [9–11].

Laboratory experiments not only make it possible to shed light on the physical pro-
cesses that govern the wave generation, but they also allow us to quantify how waves’ fea-
tures such as amplitude and height depend on the initial conditions of the incoming sliding
mass. In most earlier studies, these quantitative analyses combined dimensional analysis
and nonlinear regression techniques [12–15]. The studies have occasionally involved a
scale analysis of the governing equations [16–18]. For both of the two above-mentioned ap-
proaches, the modeling of the wave characteristics has mostly relied on empirical equations
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in the form of power functions of several selected dimensionless parameters that pertained
to the momentum flux of the incoming sliding mass.

However, the physical mechanism governing the slide–water interaction lacks under-
standing. Zitti et al. (2016) studied how mass and momentum were exchanged between the
incoming sliding material flow and the outgoing impulse wave by using a control volume
surrounding the impact zone [5]. By scaling the mass and momentum balance equations,
they obtained dimensionless numbers that could subsequently be used for correlating wave
features with initial parameters. Miller et al. (2017) and Franz et al. (2021) discussed the
effects of momentum transfer on wave features and landslide deposit by experiments and
numerical simulations, respectively [19,20]. Mulligan (2017) provided a simplified theoreti-
cal expression based on the momentum flux of the sliding mass on impact [3]. Kim et al.
(2020) established a theoretical expression for the hydrostatic pressure and Coulomb-type
friction force in their numerical work [21].

Even though a series attempts have been performed to understand the physics behind
the impacting process, the experimental support for discovering the internal dynamics of
the slide–water interaction is lacking. The laboratory challenge is to measure the internal
velocities of the sliding mass and the water body during the impacting process. Using
the PIV technique, previous studies have measured the near-field velocity field of the
body of water during the intrusion of a landslide [22]. However, the velocity field of
the submerged slide material has been lacking until now, due to the difficulty of finding
a slide material that is transparent and that can easily be traced in PIV measurements.
Previous studies commonly approximated the velocity of the sliding mass by its frontal
velocity passing through the shoreline. It was logical to assume that the block slide passed
through the shoreline at a constant velocity. Yet, for other sliding masses, which behave
similarly to a long and thin train of material, the velocity at the shoreline was found to vary
with time [23].

The choice of material used for the landslide is a problem that needs to be considered
in all experimental studies. Blocks and granular materials have been routinely used for
mimicking landslides at the laboratory scale [24–26]. To investigate the rheology of gravity-
driven flows such as mud flows, debris flows, and avalanches, in addition to granular flows,
scientists have developed an analogy with yield stress fluids, whose rheological behaviors
can be described by viscoplastic models such as the Bingham model and Herschel–Bulkley
model [27–29]. Following the viscoplastic idealizations of natural landslides, we introduced
a viscoplastic material called Carbopol, which is one of the best-suited materials for the
Herschel–Bulkley model, into experiments of landslide-generated waves [30–32]. One
advantage of Carbopol is that it is transparent and can be easily seeded with tracing
particles without changing the rheological properties so that its internal velocity can be
measured using the PIV technique.

The objective of this study was to determine the momentum transfer mechanism
governing a landslide intruding a body of water. A theoretical model for viscoplastic
fluid interacting with the body of water was developed. We first revisited the governing
equations developed by Zitti et al. (2016) [5], which were based on the mass and momentum
conservations of a two-phase flow in a control volume. The slide thickness and velocity
at the left boundary of the control volume were given by the lubrication model and
kinematic wave model, respectively [33]. Then, using Carbopol as the slide material, we
provided a novel experimental method based on the PIV technique to measure the near-field
velocity fields of the sliding mass and the body of water simultaneously. The interaction
forces between the two phases, including drag force and hydrostatic force, were given by
semiempirical equations fitted using experimental data. Then, the momentum variations
of the two phases were analyzed.
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2. Theoretical Model
2.1. Physical Model

Figure 1 illustrates the two-dimensional physical model of a landslide moving down a
slope and intruding a body of water. The whole process can be divided into three stages:
in the first stage, the slide is at rest in the container box, and then it starts moving; in the
second stage, it moves down the slope and reaches the shoreline; in the third stage, it enters
the body of water and generates waves. We considered a slope with an inclination of θ
entering into a horizontal flume filled with water. The still water depth is denoted by h0,
the free water surface is denoted by η, and the water density is denoted by ρw. A slide mass,
with a volume of VI and a density of ρs, is released at a distance of ls from the shoreline.
The slide’s initial shape is idealized as a trapezoid with a height of s0 and length of l0, with
the top surface parallel to the free water surface. The volume of the immersed slide is
denote by Vs. The wave created by the incursion of the sliding mass is mainly evaluated by
its height h and amplitude a.

gates

ls

l0

sg

(a)
Vi

y

l

l

s
y

x

(b)

control volume V

x
Vs(t)

h(t)

(c)

a(t)

Vf (t)

Figure 1. Sketch of the physical model: (a) still landslide, (b) moving sliding mass on the slope,
(c) landslide entering water.

2.2. Momentum Conservation of Two Phase Flow in a Control Volume

Following Zitti et al. (2016) [5], we first considered the mass and momentum balance
equations in a control volume V. As shown in Figure 1c, the control volume V consists of
three phases: the slide phase, water phase, and air phase. Mass and momentum balance
equations with the fixed volume V for each phase can be written in an integral form:

d
dt

∫
Vm

αiρidVm =
d
dt

∫
V

αiρidV +
∫

S
αiρi(ui · n)dS = 0 (1)

d
dt

∫
Vm

αiρiuidVm =
d
dt

∫
V

αiρiuidV +
∫

S
αiρiui(ui · n)dS = F (2)

where the subscript i = s, f refers to the slide or fluid phase, Vm is the material volume, αi
is the fraction of the volume occupied by phase i, ρi denotes the density of each phase,
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and ui denoted the velocity. F is the interaction force between the two phases (Fs = −F f ).
We did not enter the interaction between the air phase and other two phases in this study.
The mass conservation Equation (1) implies the following for the slide phase:

ρs
dVs

dt
− ρsBs0(ls, t)u0(ls, t) = 0 (3)

For the water phase, the following is defined:

ρ f
dVf

dt
+ ρ f ū f ,r(h0 + ηr)B = 0 (4)

where ρs and ρ f denote the slide density and water density, respectively; Vs and Vf represent
the volume of the slide and water in the control volume, respectively; s0 and u0 denote
the thickness and velocity of the slide entering the shoreline (left boundary of the control
volume), respectively; t is time, B is the flume width, ls is the slope length, h0 is the still
water depth, and ηr and ηl are the water surface perturbation at the right boundary and
left boundary, respectively; ū f ,r denotes the depth average velocity of the water at the
right boundary.

The momentum conservation Equation (2) for the slide phase in x direction can be
expressed as follows:

ρs
dVsūs

dt
− ρsBsu2

0 cos θ = −FD,x + FP,x (5)

and in the y direction can be written as follows:

ρs
dVsv̄s

dt
− ρsBsu0(ls, t)2 sin2 θ/ cos θ = −FD,y + FP,y − ρsVsg (6)

For the water phase, the momentum conservation in the x direction is as follows:

ρ f
dVf ū f

dt
+ ρ f ū2

f ,r(h + ηr)B = FD,x −
1
2

ρ f gB
[
(h + ηr)

2 − (h + ηl)
2
]

(7)

and in the y direction is as follows:

ρ f
dVf v̄ f

dt
= FD,y (8)

On the left hand side of Equation (5), the first term reflects the change rate of the slide’s
momentum in the control volume, and the second term represents the momentum flux
across the left boundary of the control volume. The right-hand sides of Equations (5)–(8)
reveal that two mechanisms are at play in the momentum change and transfer to the
fluid phase: the momentum imparted by the slide phase through the drag force and the
pressure the force difference. For the momentum balance equation of the slide phase in
the y direction (Equation (6)), the hydrostatic force was assumed to be balanced with the
gravity force, as the density of the slide material used in the experimtheents was close to
that of water. For the momentum balance of the water phase in x direction (Equation (7)),
the hydrostatic force applied to the water by the submerged slide was considered to be
balanced with the hydrostatic force at the right boundary.

The hydrostatic force FP can be written in an integral form:

FP =
∫

As
−ρ f ghs f ndAs (9)
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where As denotes the area of the slide–water interface, hs f is the vertical distance between
the slide–water interface and the free water surface, and n denotes the normal vector. We
approximate the drag force FD by the following:

FD =
1
2

Cdρ f A f

(
ūs − ū f

)
| ūs − ū f | (10)

where A f is the effective cross-sectional area of the slide–water interface, Cd is the drag
coefficient (we take Cd = 0.5), and ūs and ū f are idealized by the mean velocity of the
slide phase and water phase in the control volume, respectively. Here, A f , ūs, and ū f are
unknown and given by experimental data.

Equations (3)–(8) form a system of six coupled equations that describe the interplay
between the slide phase and water phases. The dependence variables include ūs, v̄s, ū f , v̄ f ,
Vs, and Vf . Here, we focused on how the momentum was transferred during the interaction.
As experiments have shown, the wave generation mainly relies on the momentum transfer
in the horizontal direction; Equations (5) and (7) (momentum balance equations for the
two phases in the x direction in the defined control volume) are relatively interesting with
regard to the overall dynamics. Therefore, Equations (5) and (7) are solved to determine
the time variation of the momentum of the two phases in a control volume. The closure
equations and boundary conditions of the proposed model will be presented in Section 2.3.
The interacting forces, including drag force and hydrostatic force, will be discussed on
the basis of the experimental data in Section 4.1. The equations were solved using a finite
difference method and programmed using MATLAB 2021.

2.3. Boundary Conditions

For the left boundary of the control volume, the time variation of the slide thickness
s0(t) and the depth average velocity ū0(t) entering the control volume should be given. For
the right boundary, the outgoing velocity of the fluid ū f ,r and the free surface perturbation
ηr must be calculated. Here, we assume that the flow depth averaged velocity is related
to the free surface perturbation ū f = C η

h0+η , with C =
√

g(h0 + η). We assume that the
outgoing velocity is close to the volume-averaged velocity (ū f ,r = ū f ). The closure equation
is then

ū f ,r = η

√
g

h0 + η
(11)

and, thus, the free water surface perturbation is

ηr =
1

2g

(
ū2

f ,r + u f

√
ū2

f + 4gh0

)
(12)

The left boundary of the control volume s0(t) and ū0(t) can be given based on the
lubrication theory. We consider that the rheological behavior of the sliding mass follows
the Herschel–Bulkley law. For a simple shear flow, this law implies that there is motion
only when the shear stress τ exceeds a threshold called the yield stress τc:

µγ̇n =

{
τ − τc τ > τc
0 τ ≤ τc

(13)

where γ̇ is the shear rate, µ is the consistency, and n is a power law index that reflects shear
thinning (or shear thickening for the materials n > 1).

For a steady uniform flow of viscoplastic fluid over an inclined surface, indepen-
dent of the constitutive equation, the shear stress distribution throughout the depth is
τ(ŷ) = ρg(s− ŷ) sin θ, where s denotes the flow depth, and g is the gravitational accel-
eration. The no-slip condition is assumed for the streamwise velocity component u at
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the bottom (i.e., u(0) = 0). The integration of the constitutive equation provides the
cross-stream velocity profile:

u(ŷ) =
nA

n + 1

{ (
Y1+1/n

0 − (Y0 − ŷ)1−1/n
)

ŷ < Y0

Y1+1/n
0 ŷ ≥ Y0

(14)

where Y0 = s− sc, A =
(

ρg sin θ
µ

)1/n
, and sc = τc/(ρg sin θ). A further integration leads to

the depth average velocity:

ū =
nA

(n + 1)(2n + 1)
s(n + 1) + nsc

s
Y1+1/n

0 (15)

For the slight nonuniform consideration, with the assumption of negligible iner-
tia, the downstream projection of the momentum balance equation reads as follows:
0 = ρg sin θ − ∂p

∂x̂ + ∂τ
ŷ ; the pressure is found to be hydrostatic to the following leading

order: p = ρg(s− ŷ) cos θ. The streamwise velocity component is given by the momentum
balance equation:

∂τ

ŷ
+ ρg sin θ = ρg cos θ

s
x̂

(16)

By substituting τ from the constitutive Equation (13) into Equation (16) and integrating
it, the velocity profile can be given:

u(ŷ) =
nK

n + 1

(
tan θ − s

x̂

)1/n
{ (

Y1+1/n
0 − (Y0 − ŷ)1+1/n

)
ŷ < Y0

Y1+1/n
0 ŷ ≥ Y0

(17)

with K = ρa sin θ/k, and Y0 = max(0, s − τc/(ρg cos θ(tan θ − ∂xs)), which denotes the
yield surface. A further integration leads to the depth average velocity:

ū =
nK

(n + 1)(2n + 1)

(
tan θ − ∂s

∂x̂

)1/n s(n + 1) + nsc

s
Y1+1/n

0 (18)

To capture the time evolution of the frontal position and flow depth, three models
of increasing complexity were commonly studied: the kinematic wave model, advection
diffusion model, and one-layer Saint-Venant equations. The results indicated that the
simplest kinematic wave model had the best agreement with the experimental data [28].
Therefore, here, the kinematic wave model was selected to evaluate the time variation of
the slide thickness at the left boundary of the control volume.

Within the frame of the kinematic wave approximation, the flow is assumed to be
locally uniform. The variations in the depth-averaged velocity are then dictated by the flow
depth alone, ū = ū(s), which is given by Equation (15). The bulk mass balance ∂s

∂t̂ +
∂sū
x̂ = 0

provides the governing equation for s:

∂s
∂t̂

+ f ′(s)
∂s
∂x̂

= 0 (19)

with f ′(s) = As(s − sc)1/n, and A =
(

ρg sin θ
µ

)1/n
. The hyperbolic nonlinear advection

equation can be solved easily using the method of characteristics. Equation (19) can be put
into a so-called characteristic form ds

dt̂ = 0 along the characteristic curve dx̂
dt̂ = f ′(s). These

initial characteristic curves are straight lines whose slopes are dictated by the initial depth:

x̂ = f ′(s0(x̂0))t̂ + x̂0 (20)
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where s0(x̂0) is the initial value of s at x̂0. We considered the following initial condition,
a volume VI (per unit width) of the fluid, to be contained in a reservoir of length l0.
The flume inclination is θ. The fluid is at rest with the following initial depth profile:

s(x̂, 0) = s0(x̂) = sg + (x̂− l0) tan θ (21)

with sg being the depth at the lock gate, while sg = VI/l0 + 1
2 l0 tan θ. s0(x̂0) is given

by Equation (21). As s = s0 along the characteristic curve, and by eliminating x̂0 using
Equation (21), an implicit equation for s can be obtained:

x̂ = As(s− sc)
1/n t̂ + (s− sg) cot θ + l0 (22)

As illustrated in Figure 1, the time adjustment between the (x, y) coordinate and (x̂, ŷ)
coordinate is t = t̂− t0, where t exhibits the time since the slide enters the left boundary,
and t0 denotes the time taken from the initial position to the shoreline. t0 can be obtained
from Equation (21).

3. Experimental Method
3.1. Experimental Facilities

As shown in Figure 2, experiments were conducted in a two-part narrow flume.
The first part was a chute, 1.5 m long and 0.12 m wide, which could be tilted at angle
θ ranging from 30◦ to 50◦. The slide walls of the slope were made of PVC. The second
part was a water-filled, transparent, glass flume, 2.5 m long, 0.4 m deep, and 0.12 m wide.
The slide material was initially contained in a box located at the chute entrance and closed
by a locked gate. This gate could be opened in less than 0.1 s owing to two pneumatically
driven pistons. The distance from the gate to the shoreline ranged from 0.5 m to 1.0 m. Once
released, the slide material accelerated energetically under gravity and reached velocities as
high as 2.5 m/s. In addition, PIV system was built to record the slide–water interaction and
the wave generation, which consisted of a laser, four lenses, and two high-speed cameras.
As shown in Figure 2a, two high-speed cameras were placed in front of the shoreline with
their optical axes perpendicular to the side wall. A black and white camera with a frequency
of 400 fps and a resolution of 1280 × 1024 pixels was used to record the motion of water.
A color camera with the same frequency and a resolution of 600 × 800 pixels was used to
record the motion of sliding mass. As shown in Figure 2b,c, the laser beam first passed
a circular lens (I) with a focus length of d = 90 mm; then, it passed a laser line generator
lens (II) with a divergence angle of 30◦ and became a laser sheet; afterwards, the laser sheet
passed through a rectangular lens (III) with a focus length of d = 200 mm in the vertical
direction and an oblong lens (IV) with a focus length of d = 1.5 m in the horizontal direction.
The flume illuminated by the laser sheet is shown in Figure 2e.

Figure 3 displays the principle of the PIV system. The particle-seeded flow was
illuminated in a target area with a light sheet, and the velocity vectors were derived from
subsections of the target area by measuring the movement of seeding particles between
two image frames.

3.2. Slide Material

As for the slide material, a viscoplastic material called Carbopol was used. See Figure 4a,b
for the photos of the transparent and colored Carbopol, respectively. Its rheological behavior
depends on its concentration and can be described using the Herschel–Bulkley model (see
Equation (13)). Here, we used Carbopol with a concentration of 2.5%, with the rheological
parameters being τc = 74 Pa, µ = 29.1 Pa·sn, and n = 0.364. See details of the material
properties in our previous studies [30,34]. The water body was seeded by polyamide-
seeding particles with a diameter of 50 µm, and Carbopol was seeded by fluorescent-
seeding particles with a diameter of 20 µm. See [35] for details of the fluorescent-seeding
particles technique. Figure 4c,d display the photos of seeded Carbopol and water recorded
by PIV system.
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cameras laser 

(a) 

(d) (c) profile view: 

top view: 

I II III IV 

I II III IV 
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III 
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(e) 

Figure 2. (a) Design of the experimental system, (b) position of the lens and laser, (c) optical design,
(d) photo of the experimental set up, and (e) the flume illuminated by laser sheet.

Figure 3. The principle of the PIV system.

Figure 4. Photos of the (a) transparent Carbopol, (b) colored Carbopol, (c) seeded Carbpol recorded
by PIV, and (d) seeded water recorded by PIV system.
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3.3. Image Processing

The initial settings of each experiment included the slide volume Vi, initial slide length
l0, initial slide height s0, slope length ls, still water depth h0 and slope angle θ , which were
been recorded before the slide material was released. We mainly determined two sources
information from the PIV experiments: the interface between the slide and water phase and
the velocity fields of the two phases. We first detected the areas with seeding particles from
the raw images and eliminated the pixels outside of the recognized area. Then, the time
variation of the slide–water surface and the free water surface could be obtained. Figure 5
illustrates the evolution of free water surface and slide water interface of an example test
whose initial settings were ls = 0.85 m, α = π/4, mI = 4.0 kg, and h0 = 0.2 m.

(a) (b)

Figure 5. Evolution of (a) free water surface and (b) slide water interface from t = 0.1 s to 1.0 s.

The velocity field was determined using a toolbox in MATLAB 2021 named MatPIV.
We used a 32 × 32 pixel interrogation window and a 50% overlap between adjacent
windows. To remove the spurious velocity vectors, a range validation filter was used,
and all the velocity vectors larger than 3 m/s were discarded. Using a moving average
validation filter, the velocity vectors that deviated by 15% from the average value of their
surroundings 3 × 3 vectors fields were substituted by interpolation. The velocity vectors
were converted into the velocities by calibrating the physical size of a pixel in an image. See
details of the processing procedure in our previous work [36]. Figures 6 and 7 display the
velocity fields of the submerged Carbopol and water body at the first 0.6 s for the example
test. We selected one representative image for each ∆t = 0.1 s.

The velocity fields, we estimated the average velocity and momentum of the two phases
in a selected area. The average velocity of the material (i.e., slide or water) in a selected
area can be calculated by the average velocity of the interrogation windows in the area.
The momentum can be calculated by integrating the velocity at each interrogation window.
The mean velocity of the material in a selected area can be calculated by the following:

(ū, v̄) =
1
r

r

∑
i=1

(∆ui, ∆vi) (23)

where ū and v̄ refer to the mean velocity of the material in a selected area in the horizontal
and vertical direction, respectively, ∆ui and ∆vi are the velocity of the ith interrogation
window, i counts the number of interrogation windows, and r refers to the number of
interrogation windows contained in the selected area. The material mass in a selected area
can be expressed as follows:

mS =
∫

S
ρbdS = ρb

r

∑
i=1

∆S (24)
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where S is the area of the selected area, ∆S is the area of an interrogation window, b is the
slope width, and ρ refers to the density of the material. The momentum of the material in a
selected area can be written as follows:

P = (Px, Py) =
∫

S
mSūSdS = mS

r

∑
i=1

(∆ui, ∆vi) (25)

where P is the momentum of the material, and Px and Py denote the momentum in the
horizontal and vertical direction, respectively.

(a) (b)

(c) (d)

(e) (f )

Figure 6. Time variation of velocity field of the submerged landslide: (a) t = 0.1 s, (b) t = 0.2 s,
(c) t = 0.3 s, (d) t = 0.4 s, (e) t = 0.5 s, and (f) t = 0.6 s.

(a) (b)

(c) (d)

(e) (f )

Figure 7. Time variation of velocity field of the water body in the control volume: (a) t = 0.1 s,
(b) t = 0.2 s, (c) t = 0.3 s, (d) t = 0.4 s, (e) t = 0.5 s, and (f) t = 0.6 s.
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4. Momentum Transfer between the Sliding Mass and the Water Body

This section displays how the momentum is transferred from the slide phase to the
water phase by analyzing the interaction forces engaged in stopping the motion of the slide
phase and the momentum variations of the two phases in the observation window.

4.1. Interaction Forces

As analyzed in Section 2, the forces governing the momentum transfer mechanism
between the sliding phase and water phase consist of two parts: one is the hydrostatic force
FP, the other is the drag force FD.

4.1.1. Hydrostatic Force

The hydrostatic force FP can be experimentally determined from the records of the
slide–water interface and free water surface (Figure 5). Due to the complexity of the slide–
water interface’s evolution, it is difficult to presume a theoretical expression for FP directly.
The strategy was to determine the force experimentally and then make a mathematical
approximation based on the experimental data. An observation window with a length of 0.6
m was selected, which corresponds to the control volume V in the theoretical model. Four
representative experiments were selected as examples to display the general tendencies of
the results. Table 1 shows the initial parameters of the four selected experiments.

Table 1. Initial parameters of the selected tests, which served as examples.

Test Number ls [m] α [-] mI [kg] h0 [m]

Test 32 1.05 π/4 3.0 0.2
Test 40 0.95 π/4 3.5 0.2
Test 42 0.85 π/4 4.0 0.2
Test 46 0.85 π/4 4.5 0.2

Figure 8 shows the time variation of the hydrostatic force FP acting on the submerged
slide material for the four selected experiments. The horizontal projection of the hydrostatic
force FP is denoted by Fp,x, and the vertical projection of FP is denoted by Fp,y. At the
very beginning, both Fp,x and Fp,y increased quickly. Then, Fp,x and Fp,y began to decrease,
with the submerged slide starting to stop and the leading wave starting to decay. After the
slide had stopped, Fp,x and Fp,y were finally balanced with the gravity and the anchorage
force provided by the slope.

Figure 8. Time variation of the hydrostatic force FP acting on the slide phase: (a) horizontal projection
Fp,x and (b) vertical projection Fp,y.

As mentioned in Section 2, the transfer of momentum in the horizontal direction plays
a key role in wave formation, so we emphasized the horizontal projection of the hydrostatic
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force Fp,x. As shown in Figure 8, Fp,x approximately followed a parabola function that
increased quickly at the beginning and began to decrease after reaching the maximum
value. The axis of symmetry of the parabola curve in Figure 8 was defined as the acting
time ta, which can be approximated by the time taken from the front of the slide touching
the shoreline to the wave reaching its maximum height. Thus, Fp,x can be expressed as
follows:

Fp,x =

{
4Fpmx

t2
a

t(ta − t) 0 < t < ta

0 x > ta
(26)

where Fpmx is the maximum value of Fp,x. In this simplified equation, Fpmx and ta were
unknown. We then developed empirical equations for Fpmx and ta by regressing the
experimental data:

Fpmx = −25.412s0.480
0 u1.089

0 m0.387
E (27)

ta = 0.358s−0.051
0 u0.243

0 m0.003
E (28)

Here, the slide thickness s0 and the slide velocity u0 at impact, as well as the effective mass
mE, have been routinely used to estimate the wave characteristics. Figure 9 displays the
measured and predicted maximum hydrostatic force in the x direction of Fpmx and acting
time ta. The coefficient of determination R2 was 0.884 for Fpmx and 0.875 for ta, which
means the Fpmx and ta fit well with Equations (27) and (28).

Figure 9. The comparison of the measured and predicted (a) Fpmx and (b) ta.

4.1.2. Drag Force

The drag force FD mainly depends on the velocity difference between the slide material
and the body of water. It is also influenced by many other factors, including the shape
of the slide–water interface, the slide material’s deformability, etc. Equation (10) displays
the expression of FD. In the equation, the effective area of the slide–water interface A f ,
the velocity of the submerged slide material ūs, and the water velocity ū f are lacking.

As shown in Figure 10a,b, both the horizontal and vertical projections of the center of
mass of the submerged slide material decreased from t = 0.2 s, thus showing the deformation
of the submerged slide material. As the slide is deformable, the velocity at the frontal
area is different from the mean velocity of the slide. As a simplification, we estimated the
velocity of the two phases by their mean velocity in the control volume. Figure 10e,f show
the x and y projection of the mean velocity of the submerged slide, respectively.
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Figure 10. Time variation of the horizontal and vertical projections of the slide’s center of mass (a) cx

and (b) cy, the frontal area (c) Ax and (d) Ay, and the mean velocities of submerged mass (e) ūx and
(f) ūx.

Figure 10c,d show the time variatiosn of the horizontal and vertical projections of the
frontal area A f ,x and A f ,y. We assume that the x projection of the effective frontal area A f ,x
followed a parable function. Thus, A f ,x can be approximated by the following:

A f ,x =

{ A f xm

t2
a

(t− ta)2 + A f xm 0 < t < ta

A f xm x > ta
(29)

where A f xm denotes the maximum value of A f ,x. The empirical equation of A f ,x was
obtained by regression with experimental data using s0, u0, and mE:

A f xm = 0.038s0.985
0 u0.067

0 m0.098
E (30)

Figure 11 compares the A f xm measured from the experiments and estimated with
Equation (30). The coefficient of determination was R2 = 0.891.

The velocity of the submerged slide material ūs and the velocity of the water in the
control volume ū f were unknown parameters not only in the drag force equation, but
also in the momentum balance equations. The horizontal mean velocity of the submerged
slide ūs and the water in the control volume ū f could be solved along with the momentum
conservation equations.
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Figure 11. Comparison of the measured and predicted A f xm.

4.2. Momentum Variations of the Sliding Mass and Water Body in the Control Volume

Figure 12 illustrates the momentum variations of the two phases in the observation
window for the four selected tests. See Table 1 for the parameters of these four tests. For the
momentum of both the slide phase ps and the water phase p f , the momentum variations in
the horizontal directions ps,x and p f ,x were significantly larger than those in the vertical
directions ps,y and p f ,y.

Figure 12. Time variations of the momentum of the (a) slide phase ps and the (b) water phase p f in
the observation window.

The theoretical model, which combined the mass and momentum conservation of
two-phase flow in a control volume and used viscoplastic theory, has been introduced
in Section 2. To validate the expressions of the boundary conditions in the theoretical
model, we compared the the s0 and u0 obtained from theoretical approximations with the
experimental data. Taking Test 42 as an example, Figure 13a,b show the comparison of s0
and u0, respectively. The residual between the theoretical data and experimental data was
smaller than 10 % for both s0 and u0.
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Figure 13. Theoretical and experimental comparison of (a) s0 and (b) u0 with initial parameters
varied randomly in the range of 0.85 m < ls < 1.05 m, 0.15 m < sg < 0.40 m, 0.2 m < l0 < 0.4 m, and
60 Pa < τc < 90 Pa.

By knowing the governing equations, boundary conditions (i.e., s0, u0, ū f ,r, and ηr),
and force applied on the control volume (i.e., FD,x and FP,x), we can obtain the momentum
of the two phases in the control volume by solving Equations (3)–(7). Taking Test 42 as an
example, Figure 14a,b compare the experimental slide momentums in the x direction ps,x
and the water momentum in the x direction p f ,x with their theoretical data. The curves of
both ps,x and p f ,x fit well with the theoretical results before they reached their maximum
values (i.e., t < 0.2 s). The observed ps,x decreased much more sharply than the theoretical
curve after t = 0.2 s, and it had a slight rally from 0.4 to 0.6 s. From Figure 14c,d, it can be
seen that, with different initial parameters, all the curves followed similar tendencies. ps,x
increased during 0 < t < 0.2 s and then began decreasing. p f ,x increased until t = 0.4 s.

Figure 14. Comparison of (a) ps,x and (b) p f ,x obtained from experiments with the theoretical estimation
(Test 42). Theoretical estimations of (c) ps,x and (d) p f ,x with the initial settings 0.85 < ls < 1.05 m,
0.15 < sg < 0.40 m, 0.2 < l0 < 0.4 m, and 60 < τc < 90 Pa.

5. Discussions
5.1. Momentum Transfer and Temporal Wave Characteristics

In addition to the interaction forces and momentum variations, the time series data of
the wave amplitude and wave height were measured from experiments. Figures 12 and 15
show that the wave amplitude and height followed similar tendencies with respect to
the momentum variations of the submerged sliding mass. Both reached their maximum



Sustainability 2023, 15, 13940 16 of 18

values at approximately t = 0.15 s. This produces evidence that the time series data of
wave characteristics are particularly reliant on the momentum variation of the slide phase.
Further, if we look back at Figure 8, it is notable that the increasing stage of Fp,x(t) was
synchronous with the increasing stage of the wave amplitude a(t). Thus, it would be
interesting to provide insights into how the temporal wave characteristics depend on the
slide momentum flux passing through the shoreline.

Figure 15. Time variation of (a) wave amplitude a(t) and (b) wave height h(t).

5.2. Material and Nonmaterial Interfaces

During a landslide entering a body of water, the impulse wave is generated by the
momentum imparted by the sliding mass. In this study, we determined the momentum
variation of the slide phase and water phase in a control volume. As depicted in Figure 16,
two interfaces divided the fluid into three parts: the submerged sliding mass (part I),
the moving water body (part II), and the still water body (part III). The material interface
between the submerged sliding mass and the water body was a shock wave associated
with a density jump. Ahead of this interface, there was a nonmaterial interface, called
an acceleration wave, that set the water into motion. Contrary to the frontal shock wave,
the velocity and density fields were continuous. Further investigations of the momentum
variations according to these two interfaces, instead of assuming a control volume, would
be interesting.

Figure 16. The material and nonmaterial interfaces during the momentum transfer process.

6. Conclusions

The objective of this study was to determine the momentum transfer mechanism
during a landslide intruding a body of water. With this objective in mind, we provided an
analytical work based on momentum and mass conservation of the phase flow in a control
volume. For the unknown parts of the theoretical model, the slide thickness and velocity at
the shoreline were estimated based on a viscoplastic theory, and the interaction forces were
given by experimental data. Concluding remarks are as follows:

First, the momentum variations in the horizontal direction are significantly larger than
those in the vertical direction for both the slide phase and water phase. In addition, the wave
generation mainly depends on the momentum transfer from the slide phase to the water
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phase in the horizontal direction. The temporal wave amplitude and height are particularly
reliant on the momentum variation of the slide phase. In addition, the increasing stage of
hydrostatic force is synchronous with the increasing stage of wave amplitude.

Second, the experimental momentum curves of both the slide phase and water
phase fit well with the theoretical results before they reached their maximum values (i.e.,
t < 0.2 s). The observed slide momentum in the horizontal direction decreased much more
sharply than the theoretical curve after t = 0.2 s, and it had a slight rally from 0.4 to 0.6 s.
With different initial parameters, all the momentum varying curves in the horizontal direction
followed similar tendencies, that is, the slide momentum increased during 0 < t < 0.2 s and
then began decreasing, while the water momentum increased until t = 0.4 s.

Third, ahead of the slide–water interface, a nonmaterial interface that sets water
into motion was observed from the physical model experiments. That is, we uncovered
the interface between the still part and moving part of the water body.
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