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Abstract: This study aims to investigate the use of Fenton reagents for the efficient hydrolysis of
starch, an industrial by-product obtained from the potato processing industry. A full factorial design
experiment (FFD) was conducted and a statistical model was developed for simulating the hydrolysis
process. The most important factors were the hydrolysis temperature and the amount of H2O2

followed by the interaction of FeSO4·7H2O and temperature. At maximum levels of FeSO4·7H2O
(1.00 g/L), H2O2 (0.51 g/L), and temperature (70.0 ◦C), a 99.5% hydrolysis yield was achieved, with
a carbohydrate content of 28.65 g/L. Furthermore, analysis of hydrolysis kinetics demonstrated
that an increased concentration of FeSO4·7H2O results in a decelerated rate of starch hydrolysis.
Moreover, biodegradability tests were carried out to estimate the methane production potential from
the produced hydrolysates. The specific methanogenic activity (SMA) was reached at 0.669 ± 0.014 g
CH4-COD g−1 VSS day−1 proving the effectiveness of the hydrolysis process and highlighting the
potential of industrial starch for bioenergy production. A preliminary cost analysis showed that
a small investment for utilizing the starch in an existing wastewater treatment facility of a potato
processing company becomes profitable before the end of the 3rd year, obtaining a net present value
(NPV) 37.5% higher than that of the current utilization scenario.

Keywords: starch hydrolysis; waste valorization; biomethane production; anaerobic digestion; potato
processing industry; Fenton reagents

1. Introduction

The food processing and manufacturing stage of the food supply chain is responsible
for generating a significant amount of waste on a global scale. In the European Union alone,
approximately 30.5 Mtons of food waste were produced by food companies [1]. This waste
not only causes economic losses to companies, but also environmental problems, since
the production/extraction of the raw materials, their transport to the factory, and their
processing, involved high environmental burdens. On top of that, food industries have
to manage and treat the produced waste, adding extra costs and environmental impacts
associated with their production processes. Nevertheless, food manufacturing waste due to
the fact that is produced in large and homogeneous amounts offers substantial opportunities
for recovery and production of added value materials, biofuels and biochemicals through
various biochemical, physicochemical and thermal processing pathways [2].

Potato processing companies have attracted a lot of attention in recent years, as one
ton of processed potato can lead to the production of around 0.16 tons of solid waste [3].
This waste is generated during the washing, frying, peeling and/or blanching of potato.
High water consumption creates large amounts of wastewater with a high starch content
and high chemical oxygen demand (COD) values of up to 10 g/L O2 [4]. Starch has to
be separated from the wastewater stream prior to it reaching the treatment unit, as due
to its chemical characteristics, it can cause severe operational problems in the company’s
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wastewater treatment plant [5]. Furthermore, some reports indicate that the process of
treating starch sludge in anaerobic digestion may result in the accumulation of volatile
fatty acids (VFAs), leading to a decrease in pH levels [6]. Akbay et al. [7] investigated
the production of biogas from starch sludge and its co-digestion with other organic waste.
The authors observed that as the proportion of starch sludge in the mixture increased,
the production of biogas decreased. Once the starch is recovered from the wastewater,
it can be directly used as animal feed. However, the economic benefits are minimal.
Instead, alternative utilization routes can be explored in order to maximize the added
value of the starch by-product. This by-product from the potato processing industry can
be initially hydrolyzed into easily biodegradable molecules, and then fed as a substrate
into various bioprocesses. The high organic content of the hydrolysates can improve
bioenergy production. Yokoi et al. [8] investigated the biohydrogen production from starch-
manufacturing wastes using different cultures of microorganisms. The authors obtained
a high hydrogen yield of 7.2 mol H2 mol−1 glucose when the medium contained sweet
potato starch. In addition, Khongkliang et al. [9] studied the production of gaseous biofuels
using anaerobic digestion from various concentrations and origins of starch. They achieved
impressive biofuel yields ranging from 250.3 to 310.5 L-biomethane/kg COD and 48.2 to
81.5 L-H2/kg COD. Moreover, Lu et al. [10] who investigated the methane production in an
up-flow anaerobic sludge blanket (UASB) reactor by feeding it treated starch wastewater,
obtained a methane yield of 0.33 L CH4/g CODremoved when the organic loading rate (OLR)
and hydraulic retention time (HRT) were 4 g/L-day and 6 h, respectively. Furthermore,
starchy wastes, usually after appropriate pretreatment, can be used for the production of
various biochemicals such as bioethanol and biobutanol [11,12].

Starch is a biopolymer and consists of glucose homopolymers, amylose and amy-
lopectin. It is a widely used material in the food industry as well as in industries that
produce paper, textiles, bioethanol, bio-plastics and pharmaceutical products, since it is
considered a cheap energy source [13]. Prior to most of its industrial applications, a pretreat-
ment step is required due to its physicochemical characteristics, such as low solubility and
digestibility, poor thermal properties and high viscosity [14]. It is reported that the various
physicochemical properties depend on the botanical origin of the starch [15]. Among other
starch feedstocks, potato starch displays unique properties due to: (1) its anionic character,
which allows its combination with other materials promoting bioplastics production, (2) the
amount of organically bound phosphorous that it contains [16] and (3) the large size of
starch granules [17]. Different techniques have been proposed for its pretreatment based
on physical, chemical or enzymatic conversions. All these techniques aim to break the
polymer chains of starch down into smaller fragments [18]. While enzymatic hydrolysis is
not considered an economical method [15], chemical degradation using strong acids can be
hazardous and may inhibit the biological processes that follow. For this reason, alternative
methods have been developed for starch modification, including thermal treatments and
environmentally friendly chemicals such as ozone [19].

The oxidation process of starch, which involves the transformation of hydroxyl groups
of starch, to carbonyl and carboxyl groups, has been thoroughly explained in previous
studies [20]. It has also been mentioned that the structural properties of hydrolyzed starch
depend on various parameters, including the structure of the starch granule, reaction time,
temperature, and the type of oxidants used [21]. Some of the most commonly applied
oxidants for the chemical modification of starch include sulfuric acid, sodium hypochlorite,
ozone, periodate, permanganate, bromine, and hydrogen peroxide [13,18]. H2O2 is the
most widely studied reagent among the options mentioned due to its affordability and
environmentally friendly nature, as it breaks down into water and oxygen [22].

In comparison with other native starches, potato starch has the best accessibility to
oxidants due to the structure of its granules [23]. In starch oxidation, metal ions such as
Cu2+, Fe2+ and Zn2+ could act as catalysts. Pietrzyk et al. [24], found that using ferrous ions
in acidic conditions during potato starch oxidation with H2O2, can increase the amount of
carboxyl and aldehyde groups and decrease the phosphorus and amylose levels. Chemical
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oxidation using iron ions and hydrogen peroxide is an easy-to-apply catalytic oxidation
process, which produces hydroxyl radicals with high oxidation potential that can hydrolyze
starch into smaller fragments, called dextrins. The modified starch solution produced by
the oxidation process displays improved rheological properties. Dang et al. [25], who
investigated potato starch oxidation using an electro-Fenton system in the presence of
ferrous ions, found that oxidized starch showed good thermal stability, which is important
for starch-based biomaterials applications.

Summarizing, chemical oxidation of starch using Fenton reagents is an ideal pretreat-
ment for bioenergy production through anaerobic digestion [26]. It is an environmentally
friendly process, as no hazardous chemicals are involved that are usually associated with
traditional chemical hydrolysis processes [27]. Instead, only ferrous sulfate and hydrogen
peroxide can be used, highlighting the sustainable nature of the approach since they are
added in appropriate amounts. After the reaction, various forms of iron oxides could be
present in starch hydrolysates. It has been reported that iron oxides improve methane
production during anaerobic digestion by promoting direct interspecies electron transfer
(DIET) among anaerobic microorganisms [28]. In addition, the iron in the substrate can
undergo a reaction with the sulfide produced during anaerobic digestion, leading to the
formation of ferrous iron as either FeS or FeS2. This reaction helps to mitigate the detri-
mental effects of sulfide on methanogenesis [29] and improves the stability of anaerobic
granular sludge [30]. Although some studies have investigated the hydrolysis of starch
using Fenton reagents, there has been no significant research on optimizing hydrolysis con-
ditions to produce a hydrolysate that can effectively be utilized as a substrate for methane
production. Moreover, while the utilization of Fenton reagents for oxidation is considered
both environmentally friendly and highly efficient as a pretreatment method, it cannot be
classified as a cost-effective process [31]. Therefore, it is essential to identify the optimal
conditions so as to achieve the lowest possible hydrolysis cost while maximizing economic
benefits through the production of biomethane.

This study examines an efficient and environmentally friendly method of starch
hydrolysis, derived as a byproduct from a potato processing company, and investigates
the effects of temperature, ferrous sulfate and hydrogen peroxide concentrations on starch
oxidation. The conditions for the process were optimized using a full factorial design
experiment (FFD) and the effectiveness of the starch hydrolysis was evaluated via specific
methanogenic activity (SMA) tests. Furthermore, a kinetic study was conducted to estimate
the kinetic constants of starch hydrolysis using Fenton reagents. Finally, a preliminary cost
analysis was implemented to identify the economic benefits of this utilization pathway
compared to the existing scenario.

2. Materials and Methods
2.1. Materials

Industrially derived starch was obtained from the potato processing company Tasty
Foods SA, located in the northern suburbs area of Athens, Greece. Approximately 10 kg
of starch were transferred to the Organic Chemical Technology Laboratory at NTUA
and stored at 4 ◦C for further use. Anaerobic granular sludge used as inoculum for
the methanogenic activity tests was collected from the UASB reactor operating at the
wastewater treatment facilities of the company that provided us with the industrial starch.
All chemicals were purchased from Merck unless it is stated otherwise.

2.2. Hydrolysis of Starch

In each experiment, 31 g of starch (dry weight) was suspended in 1 L of deionized H2O
and placed on a magnetic stirrer for stirring and heating. The initial portion of the starch
was selected according to preliminary experiments. Once the temperature of the solution
reached the desired value, which was subject to statistical optimization, Fenton’s reagents,
namely FeSO4·7H2O and H2O2 50% (w/w), were added at various initial concentrations
indicated by the experimental design. The addition of the oxidation chemicals to the
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aqueous solution initiated the hydrolysis process, which lasted for three hours under
continuous stirring at 200 rpm. The concentration of total organic carbon (TOC), as well as
the total carbohydrate content in the soluble part of the solution, were chosen as the means
to measure the efficiency of the starch hydrolysis. During the hydrolysis process, samples
were collected every 20 min and centrifuged at 6000 rpm for 15 min. Liquid supernatants
were stored in the fridge for further analysis, while residual solids were dried and weighed.

The efficiency of the hydrolysis process was measured using Equation (1):

% starch hydrolysis yield =
TOCinitial − TOCfinal

TOCinitial
100% (1)

where TOCinitial is the initial TOC, which refers to the TOC of the industrial starch before
hydrolysis, and TOCfinal refers to the liquid supernatant at the end of the hydrolysis process.

2.3. Experimental Design

The most important operational parameters, namely FeSO4·7H2O concentration, H2O2
concentration, and hydrolysis temperature, were subject to statistical optimization by
performing a 23 FFD. The optimization parameter ranges were selected taking into account
preliminary experiments (results not shown), the cost of Fenton reagents and previous
studies on similar systems [5]. The levels and the value ranges used in the FFD are
presented in Table 1. Every experimental trial lasted for 3 h. The eight trials of the FFD
were complemented with four runs at the center point (Level 0) for statistical purposes.
The output variables were the % starch hydrolysis yield, calculated by Equation (1), and
the amount of total carbohydrates (g/L) in the suspension. Both of them were simulated
by using Equation (2):

Υi = β0 + β1X1 + β2X2 + β3X3 + β1β2X1X2 + β1β3X1X3 + β2β3X2X3 + β1β2β3X1X2X3 (2)

where Yi corresponds to the predicted response (Y1 = % hydrolysis yield, Y2 = g of total
carbohydrates/L of starch solution), β0 is the interception parameter, β1, β2 and β3 are the
linear effect parameters, X1, X2 and X3 are the coded variables and β1β2, β1β3, β2β3 and
β1β2β3 are the linear interaction effect coefficients [32].

Table 1. Ranges of the three factors for the factorial experiment.

Level FeSO4·7H2O (g/L) H2O2 (g/L) Temperature (◦C)

−1 0.60 0.329 60
0 0.80 0.419 65
1 1.00 0.509 70

The optimization parameters were obtained by linear regression, minimizing the
difference between predicted and experimental values. All 12 runs were performed ran-
domly to reduce the systematic error. The coefficients in the FFD were estimated by Matlab
software (R2014b).

2.4. Biomethane Production from Starch Hydrolysates

The produced hydrolysates were tested as feedstock in small anaerobic reactors for
their ability to produce biomethane with the selected anaerobic sludge. For the biological
degradation of the hydrolysates, five batch reactors based on Hungate’s Serum Bottle
Technique [33] were set up and used to determine the sludge activity and consequently
the biodegradability of the hydrolyzed starch. Each reactor was a serum bottle sealed
with a screw-cap, with a total volume of 500 mL. To capture the metabolic CO2, the top of
each serum bottle was connected to a calibrated cylinder filled with 1N NaOH solution
and a phenanthroline indicator [33]. The reactor was inoculated with 100 mL of anaerobic
granular sludge and filled up to 450 mL with water. Then, each reactor was charged with
50 mg of acetic acid three times to achieve the maximum activity of sludge [34]. After that,
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an amount of starch hydrolysates was added to obtain 50 mg COD. Each reactor was placed
in a water bath which was set at 35 ◦C and 200 rpm. Methane production was measured
using the liquid displacement technique. A high-resolution camera connected to a computer
was placed in front of the apparatus in order to record the amount of methane produced
at regular time intervals. Four different hydrolysate solutions, generated from the FFD,
as well as 50 mg COD of the initial starch, were used as substrates in the small anaerobic
reactors experiment. All experiments were conducted in triplicate. Each experiment lasted
for 4 days and the calculation of SMA was based on the slope of cumulative gas production
versus time plots.

2.5. Analytical Procedures

Chemical analyses were performed in accordance with Standard Methods (1989) [35],
as follows: (1) total solids, volatile solids and suspended solids, sections 2540 B., 2540 E.
and 2540 D., respectively; (2) pH, section 4500-H+, and (3) chemical oxygen demand,
section 5220 C. The initial TOC in solid starch and dissolved organic carbon in each
starch solution were measured by a TOC analyzer (Shimadzu, SSM-5000A, Shimadzu,
TOC-L), which oxidizes with ultraviolet/persulfate oxidation and analyzes the CO2 with
the non-dispersive infrared analysis (NDIR) method. In addition, the amount of total
carbohydrates was measured according to the Anthrone test method [36] using a UV–Vis
spectrophotometer (Jasco V-530) and compared with a glucose calibration curve.

2.6. Cost Analysis

The cost analysis was performed for a hypothetical potato processing company, which
produces 1000 tons of starch annually as by-product of operating 8000 h/year. These
assumptions lead to a starch production rate of 125 kg/h. The plant already possesses the
facilities to treat its liquid waste generated from the use of water throughout its processing
stages. These facilities contain, initially, an anaerobic digestion process followed by an
aerobic treatment [37]. It was assumed that one ton of starch produced as a by-product in a
potato processing company requires 13.2 tons of potatoes and generates approximately 49.3
tons of liquid waste. The generation of liquid waste as well as the mass balances of a potato
processing plant have been described previously in [37]. Detailed cost calculations for
capital expenditure (CAPEX), operational expenditure (OPEX) and profitability indicators
are demonstrated below as well as in SI.

2.6.1. Calculation of CAPEX

The cost of equipment was calculated by using the empirical Equation (3) for closed
vessels mounted with agitation and mantle [38].

Co
p($@2007) = exp(10.211 + 0.51 ln(V)) (3)

where Co
p is the free-on-broad (fob) purchase cost of the hydrolysis reactor, which is a closed

vessel with agitation and mantle, and V is the total volume of the reactor calculated using
Equation (4) with a safety factor of 1.20.

V = Q
(

m3

h

)
HRT(h)1.20 (4)

where Q is the volumetric flowrate and HRT is the hydraulic retention time. Both of them
are derived from the selected experimental runs.

The updating to today’s prices was conducted by using the Chemical Engineering
Plant Cost Index (CEPCI) as indicated in Equation (5):

Cp($@2020) =
CEPCI2020

CEPCI2007
Co

p$@2007 (5)
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where 2007 was the year Co
p was calculated, while CEPCI2007 and CEPCI2020 are equal to

525.4 and 596.2, respectively.
Finally, the Fixed Capital Investment (FCI) was calculated by using the Langmuir

factor equal to 5 [39].

2.6.2. Calculation of OPEX

The Total Production Cost (TPC) was calculated by using Equation (6) [39].

TPC (€/y) = 1.23 (CRM + CUT + CWT) + 2.73 COL + 0.18FCI (6)

where CRM is the cost of Raw Materials

CUT is the cost of utilities
CWT is the cost of waste treatment
COL is the cost of labor

2.6.3. Profitability Indicators

The investment for introducing a hydrolysis reactor into an existing wastewater facility
of a potato industry was evaluated by calculating two profitability indicators net present
value (NPV) and payback period (PBP) by using Equations (7) and (8), respectively [40].

NPV = −FCI + Pr
((1 + i)n − 1

)
(i(1 + i)n) (7)

PBP =
Pr

FCI
(8)

where: Pr is the annual net profit (€/y), i is the interest rate equal to 10% and n is the period
of the investment set at 15 years.

As revenues, the reduction in the plant’s utilities costs due to the decrease in natural
gas consumption was considered. The latter is being substituted by the biogas produced
from the starch hydrolysates fed into the anaerobic digester. The production of biomethane
from 1 ton of starch was taken from the experimental results. Moreover, we have considered
that 1 m3 of biomethane provides 10 kW of energy heat [41]. The profitability of the new
investment is then compared with an existing utilization pathway, which uses the starch as
animal feed at a price of 90 €/ton [42].

3. Results and Discussion
3.1. Hydrolysis Yield Results

The TOC of the industrial starch was equal to 0.441 g/g starch, and hence, the total
TOC in the initial starch suspension prior to hydrolysis was 13.67 g/L. The results of the 23

FFD and model predictions are shown in Table 2 where X1, X2, and X3 correspond to the
input parameters FeSO4·7H2O, H2O2, and temperature, respectively. The starch hydrolysis
yields range between 22.4 and 99.5%. The highest starch hydrolysis yield is 99.5% in the
8th run, where all the parameters are at the upper level. High efficiency also occurred in the
4th run (89.5%) were all parameters are at +1 level apart from FeSO4·7H2O concentration,
which is at the −1 level. The lowest efficiency takes place in the 1st run (27.2%), where
all parameters are at the low level. It is observed that the pH values after the hydrolysis
process remained low in all the experiments. The optimum pH should not be higher than
four, in order to avoid the production of iron as Fe(OH)3 or decomposition of H2O2 into O2
and H2O [43]. Moreover, a pH value lower than two could decrease Fe2+ regeneration [44].
The main effect plots of low and high levels of FeSO4·7H2O, H2O2 and temperature are
shown in Figure 1, while Figure 2 illustrates the interaction plots for the starch hydrolysis
yield %. In Figure 1, the slope of each plot indicates the importance of each factor on the
response variable. It is observed that temperature and hydrogen peroxide have a positive
effect on starch hydrolysis, while the effect of ferrous sulfate is less important. Crossed
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lines in the interaction plots indicate the significance of the interaction among the factors.
It can be seen that the most significant interactions are those between ferrous sulfate and
hydrogen peroxide.

Table 2. Experimental and predicted results of starch hydrolysis yield % and total carbohydrates of
the 23 full factorial design.

Run X1 X2 X3
pH after

Oxidation
Experimental

Hydrolysis Yield %
Predicted

Hydrolysis Yield %
Experimental Total
Carbohydrates (g/L)

Predicted Total
Carbohydrates (g/L)

1 −1 −1 −1 2.82 ± 0.02 27.19 ± 0.61 28.55 4.30 ± 0.12 5.34
2 −1 −1 1 3.02 ± 0.02 71.32 ± 0.73 72.68 12.23 ± 0.41 13.27
3 −1 1 −1 2.90 ± 0.05 58.86 ± 0.38 60.22 8.36 ± 0.32 9.40
4 −1 1 1 2.66 ± 0.03 89.46 ± 0.87 90.82 24.96 ± 0.31 26.00
5 1 −1 −1 2.83 ± 0.01 30.43 ± 0.25 31.79 9.46 ± 0.27 10.50
6 1 −1 1 2.68 ± 0.02 80.90 ± 0.53 82.26 20.87 ± 0.48 21.91
7 1 1 −1 2.99 ± 0.06 45.81 ± 0.26 47.17 14.12 ± 0.11 15.16
8 1 1 1 2.59 ± 0.02 99.50 ± 0.77 100.86 28.65 ± 0.47 29.69
9 0 0 0 2.75 ± 0.03 65.84 ± 0.34 64.29 17.83 ± 0.21 16.41

10 0 0 0 2.98 ± 0.02 67.92 ± 0.48 64.29 18.99 ± 0.34 16.41
11 0 0 0 2.78 ± 0.01 66.56 ± 0.31 64.29 18.72 ± 0.29 16.41
12 0 0 0 2.76 ± 0.01 67.73 ± 0.28 64.29 18.45 ± 0.46 16.41
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Y1 = 64.292 + 1.226 X1 + 10.474 X2 + 22.361 X3 − 1.979 X1X2 + 3.679 X1X3 − 1.289 X2X3 + 2.094 X1X2X3

where X1, X2, X3 correspond to FeSO4·7H2O, H2O2 and temperature, respectively.
The significance of the model was indicated by the F-test and the p-value of the model,

which is much less than 0.05. In Table 3 the parameter values are illustrated together
with their t-ratio values and the ANOVA results. The importance of the parameters was
assessed by the student’s t-distribution. Analysis of variance shows that temperature and
concentration of hydrogen peroxide are the most significant factors for starch hydrolysis,
followed by the interaction of ferrous sulfate concentration and temperature. Temperature
seems to play an important positive role on starch hydrolysis. Several studies suggest the
heat pretreatment of starch at a temperature below the gelatinization temperature of the
starch [45,46]. Pietrzyk et al. [47] who investigated the oxidation of potato starch with
hydrogen peroxide found out that the presence of a metal catalyst during the oxidation
process can produce a starch with high water solubility at 80 ◦C. Figure 3 illustrates the
correlation between the experimental and predicted values of the hydrolysis yield % where
R2 is 0.991 and confirms the strong predictive capability of the model.

Table 3. ANOVA results and parameter values of the 23 FFD for the starch hydrolysis yield.

Source DF Sum of Squares Mean Square F Ratio p > F

Model 7 5077.776 725.397 61.369 <0.0007
Error 4 47.281 11.820

Lack Of Fit 1 44.362 14.415 45.612 0.0066
Pure Error 3 2.918 2.624
Total Error 4 47.281 0.973

Parameter Estimates Estimate Std Error t Ratio Prob>|t|

β0 64.292 0.992 64.78 <0.0001
β1 1.226 1.216 1.01 0.3701
β2 10.474 1.216 8.62 0.0010
β3 22.361 1.216 18.40 <0.0001

β1β2 −1.979 1.216 −1.63 0.1789
β1β3 3.679 1.216 3.03 0.0389
β2β3 −1.289 1.216 −1.06 0.3488

β1β2β3 2.094 1.216 1.72 0.1601
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The response surface plots between the output variable (% hydrolysis yield) and the
three optimization parameters are shown in Figure 4. Figure 4A illustrates the interactions
of X1 and X2, Figure 4B illustrates the interactions of X1 and X3 and Figure 4C illustrates
the interactions of X2 and X3. From Figure 4, it becomes obvious that high levels of
optimization parameters lead to high hydrolysis yields. In all the response surface plots,
the third parameter was kept constant at level 1. The developed model can be used as a
groundwork to build more advanced models based on machine learning. These models are
able to be steadily fed with new input/output data and continuously evolved to accurately
predict the targeted responses. This is particularly significant as there is a growing interest
in using artificial intelligence technologies within circular bioeconomy and biorefinery
systems [48].
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3.2. Production of Total Carbohydrates during the Hydrolysis Process

After the hydrolysis process, various types of carbohydrates are contained in the
starch solution, which can be directly used in many microbial processes such as anaerobic
digestion. The analysis of total carbohydrates is sufficient to control starch hydrolysis, since
after hydrolysis, in addition to sugar monomers, dextrins or oligomers are also considered
as oxidation products. Therefore, apart from the hydrolysis yield, we have also measured
as an output variable the total carbohydrates in g/L and results (both experimental and
model predictions) are shown in Table 2.

Total carbohydrates in all runs vary from 4.00 to 28.65 g/L. The highest amount of
carbohydrates was measured at the end of the 8th run, where FeSO4·7H2O and H2O2
concentrations are 1 g/L and 0.509 g/L, respectively, while temperature is equal to 70 ◦C.
On the contrary, low amounts of carbohydrates (4.3 g/L) are observed in the 1st run where
all the parameters are at their low −1 level. The main effect plots for total carbohydrates in
starch solution are shown in Figure 5. It is observed that all the parameters positively affect
the response. The interaction plots for total carbohydrates are presented in Figure 6 where
the most vital interaction is between hydrogen peroxide and temperature which, however,
remains in low interaction.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 21 
 

starch solution are shown in Figure 5. It is observed that all the parameters positively af-
fect the response. The interaction plots for total carbohydrates are presented in Figure 6 
where the most vital interaction is between hydrogen peroxide and temperature which, 
however, remains in low interaction. 

 
Figure 5. Main effects for total carbohydrates. 

 
Figure 6. Interaction effect plots for total carbohydrates. 

All parameters after statistical analysis are illustrated in Table 4. According to the F-
test, the F (7,4) was higher than the tabulated value of 0.05 level of significance, so the 
model is significant. Figure 7 shows the experimental and predicted values of total carbo-
hydrates where R2 is 0.951, while the prediction expression after regression analysis for 
total carbohydrates becomes: 

Y2 = 16.412 + 2.906X1 + 3.654X2 + 6.309X3 − 0.544X1X2 + 0.176X1X3 + 1.474X2X3 − 0.694X1X2X3 

Table 4. Analysis of variance for total carbohydrates. 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio p > F 

Model 7 516.611 73.802 10.997 0.018 
Error 4 26.844 6.711   

Lack of Fit 1 26.104 26.104 105.846 0.002 

Figure 5. Main effects for total carbohydrates.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 21 
 

starch solution are shown in Figure 5. It is observed that all the parameters positively af-
fect the response. The interaction plots for total carbohydrates are presented in Figure 6 
where the most vital interaction is between hydrogen peroxide and temperature which, 
however, remains in low interaction. 

 
Figure 5. Main effects for total carbohydrates. 

 
Figure 6. Interaction effect plots for total carbohydrates. 

All parameters after statistical analysis are illustrated in Table 4. According to the F-
test, the F (7,4) was higher than the tabulated value of 0.05 level of significance, so the 
model is significant. Figure 7 shows the experimental and predicted values of total carbo-
hydrates where R2 is 0.951, while the prediction expression after regression analysis for 
total carbohydrates becomes: 

Y2 = 16.412 + 2.906X1 + 3.654X2 + 6.309X3 − 0.544X1X2 + 0.176X1X3 + 1.474X2X3 − 0.694X1X2X3 

Table 4. Analysis of variance for total carbohydrates. 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio p > F 

Model 7 516.611 73.802 10.997 0.018 
Error 4 26.844 6.711   

Lack of Fit 1 26.104 26.104 105.846 0.002 

Figure 6. Interaction effect plots for total carbohydrates.

All parameters after statistical analysis are illustrated in Table 4. According to the
F-test, the F (7,4) was higher than the tabulated value of 0.05 level of significance, so
the model is significant. Figure 7 shows the experimental and predicted values of total
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carbohydrates where R2 is 0.951, while the prediction expression after regression analysis
for total carbohydrates becomes:

Y2 = 16.412 + 2.906X1 + 3.654X2 + 6.309X3 − 0.544X1X2 + 0.176X1X3 + 1.474X2X3 − 0.694X1X2X3

Table 4. Analysis of variance for total carbohydrates.

Source DF Sum of Squares Mean Square F Ratio p > F

Model 7 516.611 73.802 10.997 0.018
Error 4 26.844 6.711

Lack of Fit 1 26.104 26.104 105.846 0.002
Pure Error 3 0.740 0.247
Total Error 4 26.844

Parameter Estimates Estimate Std Error t Ratio Prob>|t|

β0 16.4120 0.748 21.950 <0.0001
β1 2.9063 0.916 3.170 0.0338
β2 3.6538 0.916 3.990 0.0163
β3 6.3088 0.916 6.890 0.0023

β1β2 −0.5440 0.916 −0.590 0.5847
β1β3 0.1760 0.916 0.190 0.8568
β2β3 1.4738 0.916 1.610 0.1829

β1β2β3 −0.6940 0.916 −0.760 0.4910
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3.3. Kinetic Study on Starch Hydrolysis with Fenton Oxidation

It is very important to investigate how each of the three factors affect the kinetics of
starch hydrolysis. Gaining knowledge about the point at which the reaction is complete, or
high hydrolysis yield is achieved, is crucial for avoiding wasting time, resources and utilities
in industry. After the FFD, a kinetic study was conducted to calculate the kinetic constants
of starch hydrolysis. Figure 8 illustrates the increase of the TOC (g/L) in starch solution
during the hydrolysis process for each of the eight runs of the factorial experiment as well
as for the average TOC of the four center points. It becomes obvious that after 120 min, the
TOC production rate decreases significantly in all runs. The maximum hydrolysis yield
% is observed at the 8th run where FeSO4·7H2O, H2O2 and temperature were 1.00 g/L,
0.509 g/L and 70 ◦C, respectively. However, during the 4th run, where hydrolysis yield
% was 89.46% and oxidation conditions were 0.60 g-FeSO4·7H2O/L, 0.509 g-H2O2/L and
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70 ◦C, the oxidation process was practically over at 60 min. The kinetic study confirms that
temperature is the most important factor for starch hydrolysis, since in the experimental
trials where temperature was at the high level of 70 ◦C, the TOC production rate was
elevated. Specifically, during the first 30 min, more than 42% of the initial starch was
hydrolyzed when the temperature was at its high level (runs 2, 4, 6 and 8), while the
hydrolysis yield was lower than 20% in the runs 1, 5 and 7 at the same hydrolysis time. In
the 3rd run, even if the temperature was at its low level, hydrolysis yield was 1.86 times
higher than 20%. This is mainly due to the high concentration of H2O2 that also plays an
important role in the hydrolysis process.
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Comparing the runs where the only difference was the addition of H2O2, it is clear
that a higher amount of hydrogen peroxide leads to faster starch hydrolysis. For instance,
during the 1st run where all factors were at a low level, the hydrolysis yield reached a low
value of 14.3% in the first half an hour, while at the same time the 3rd run (all factors at
low level except H2O2) had a substantially higher yield equal to 37.1%. In addition, the
hydrolysis yield of the 4th run (high level X2 and X3 and low level X1) reached 68.3% in
the first 30 min, while the yield of the 2nd run (low level X1 and X2 and high level X3) was
41.8% at the same time period. Similar observations were also collected from runs 5 (high
level X1 and low level X2 and X3) and 7 (high level X1 and X2 and low level X3). During the
latter, 19.5% of the initial starch was hydrolyzed during the first half an hour, in contrast
with the first one where the respective yield reached a minimum value of 9.2%.

The comparison between the runs shows that their only difference was the amount
of ferrous sulfate (1st and 5th run, 2nd and 6th run, 3rd and 7th run, 4th and 8th run),
which reveals that the high ferrous sulfate concentration led to a slower starch hydrolysis,
as it is shown in Figure 8. These results are not only confirmed from the hydrolysis yield
during the initial part of the process, but also from the last 60 min (120 to 180 min). During
this time period, the increase in hydrolysis yield was varying from 1.6 to 3.9% in the runs
where ferrous sulfate concentration was at the low level, indicating that the hydrolysis
process had almost finished in the first 120 min. An exception is Run 2, where the yield of
hydrolysis is 6.2% during 120–180 min. In contrast, the increase in hydrolysis yield in the
runs with high ferrous sulfate concentration (5th, 6th, 7th and 8th run), was varying from
5.7 to 8.2% at the respective time (120–180 min), indicating that the hydrolysis was not over
during the first 2 h of the process.
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After applying several types of kinetic equations to experimental results using the
least square method, the second order kinetic model (Equation (9)) provided the best fit.

dCt

dt
= k(Ce − Ct)

2 (9)

where k is the hydrolysis rate constant (L/g min), Ce is the maximum TOC concentration
(g/L) in the soluble starch solution and Ct is the TOC concentration (g/L) at time t.

The linearization of Equation (9) leads to Equation (10):

t
ct

=
1

kce2 +
1
ce

t (10)

In Figure 9, the correlation of t/Ct with time is shown to have a linear behavior in all
runs, with R2 varying from 0.894 to 0.997, confirming the predictive capability of the second
kinetic order model. In Table 5, the hydrolysis rate constants of the 2nd order equation
together with Ce and R2 are illustrated. It becomes obvious that the kinetic rate constant
is affected by the conditions of oxidation with Fenton reagents, and more particularly,
when ferrous sulfate concentration is at the low level the reaction rate is higher (Runs 1 to
4). This could be explained by the fact that the high amount of ferrous sulfate can cause
premature polymerization of the starch surface due to the formation of Fe-starch complexes
that prevent hydroxyl radicals entering starch molecules [25,49].
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Table 5. Hydrolysis rate constants obtained from the 2nd kinetic order equation.

Runs Ce (g/L) k (L/g min) R2

1 4.246 9.162 10−3 0.974
2 10.040 8.621 10−3 0.991
3 7.831 9.719 10−3 0.991
4 12.804 9.298 10−3 0.997
5 4.721 4.197 10−3 0.894
6 12.531 2.757 10−3 0.961
7 7.179 3.583 10−3 0.944
8 14.993 2.856 10−3 0.978

Center point 9.597 4.831 10−3 0.967
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3.4. Biodegradability Tests

Anaerobic treatment of starch solution was carried out to examine the effect of Fenton
reagents on biodegradability of starch through methanogenic activity of anaerobic sludge.
The latter is defined as methane production rate kmax/g-VSS or g CH4-COD g−1 VSS day−1.
The granular sludge used as an inoculum had total suspended solids (TSS) levels of
117.40 ± 0.98 g/L, volatile suspended solids (VSS) levels of 40.04 ± 0.24 g/L, and a
moisture content of 88.26 ± 0.10%. Considering that the 8th run exhibited the highest
hydrolysis efficiency, it may be the sole candidate to be tested for methane production.
However, it is crucial to investigate if biodegradability of starch solution is affected by
the efficiency of hydrolysis. For this reason, the 1st and 9th runs, with the lowest and an
intermediate hydrolysis yield%, respectively, were also examined in biodegradability tests.
Moreover, the 5th run, where the hydrolysis yield % was low and the iron concentration
was the only variable of high level which was tested, not only to confirm the results from the
1st, but also suggest further investigating how the excess of iron could affect the methane
production. Subsequently, batch reactors were fed with 50 mg COD of the four pretreated
solutions from FFD and the initial starch. While the sludge portion was the same in all
reactors (100 mL), the amount of substrate in each reactor varied based on their COD
concentration. Consequently, the reactors fed with the 5th, 8th, 9th, and 1st run, and native
starch had different inoculum/substrate ratios based on volume: 7.4, 8.3, 27.2, 18.0, and
10.0, respectively. High inoculum to substrate ratios were applied to reduce digestion
time. In a study by Scaglione et al. [50], who examined the anaerobic biodegradability of
various organic substrates in short-term batch tests, an inoculum sludge ranging from 100
to 300 mL was used, while the substrate volume varied from 10 to 20 mL.

Methane production was measured at different time intervals and the maximum slope
of accumulated methane produced was used for SMA calculation. Since it is assumed
that the third feed with acetic acid had increased the sludge methanogenic activity, the
normalized values were calculated as a quotient of the quantity of methane produced from
the hydrolyzed starch feed divided by the volume of methane produced from acetic acid
feed in the same reactor.

Table 6 shows the methane production rate and the SMA calculated as g CH4-COD g−1

VSS day−1, after feeding with hydrolyzed starch solutions as well as native starch. An
increase in sludge activity is observed when the optimal conditions for hydrolysis are
used. The highest SMA is observed after feeding on the 8th run (all the parameters were
at the high level) where a hydrolysis yield of 99.5% was achieved. It has been reported
that the SMA after feeding with liquid sugar wastewater could reach 0.9 g CH4-COD g−1

VSS day−1, while SMA after feeding with maize starch wastewater and potato processing
wastewater was equal to 0.11 and 0.13 g CH4-COD g−1 VSS day−1, respectively [51].
On the contrary, the methanogenic activity was low when the 1st run was used as a
substrate. During hydrolysis of the latter, all the parameters except the temperature are
at the low level and the hydrolysis yield reaches 27.2%. The low methanogenic activity
observed after feeding with native starch and hydrolysate from the first run indicates that
the substrate is not readily available for methane production. Prior to methanogenesis,
anaerobic digestion steps such as hydrolysis and acidogenesis occur, causing a delay in the
activity of methanogenic bacteria. The total amount of methane produced after feeding
with substrates from the 9th, 8th and 5th runs approaches that of acetic acid at a rate of more
than 86%, with the maximum being the 8th run with 92.9%. These substrates have a higher
amount of iron compared to that of the 1st run and native starch. According to Yu et al. [52],
who studied the effect of trace elements on methane production in an anaerobic reactor
treating starch wastewater, found that in contrast to other trace elements, high doses
of iron can stimulate the SMA. The iron added during oxidation has a positive effect on
anaerobic digestion since it affects microbial activity, methanogenic performance and sludge
granulation [53]. In addition, Table 6 shows that when native starch is used as a substrate,
the amount of methane produced as well as the SMA are significantly low. The chemical
hydrolysis of the starch has broken down the macromolecules into smaller compounds,
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which are easily metabolized from anaerobic bacteria, contrary to the untreated starch
which hinders the methane production. In accordance with Lu et al. [10], the methanogenic
activity tests that were fed with starch yielded a low SMA, but when glucose was used
as substrate the SMA greatly increased. The methane yield from hydrolysates in Runs
5, 8, 1, and 9 can be conveniently obtained from Table 6 and is equal to 0.326 ± 0.018,
0.368 ± 0.022, 0.268 ± 0.011, and 0.354 ± 0.021 L-biomethane/g-COD, respectively. These
values were found to exceed the reported values in the literature for starch wastewaters
mentioned above [8]. In contrast, when native starch was used as feed, the methane yield
was significantly lower and equal to 0.184 ± 0.078 L-biomethane/g-COD. The methane
production graphs (see Supplementary Material Figures S1–S5) showed that when acetic
acid was used as feed, 50% of methane production was observed in the first 20–30 min in all
bioreactors, indicating the high methanogenic activity of the anaerobic sludge. This sludge
was already activated and even adapted to potato wastewaters since it was retrieved from
the wastewater facilities of the same company where native starch was derived. In addition,
as can be seen in Table 6, the total amount of methane produced after the 3rd feed with
acetic acid slightly exceeded the theoretical maximum amount (350 mL-CH4/g COD at
STP) due to the consecutive feeds. When granular anaerobic sludge is used as inoculum, it
has been reported that background methane is likely to be observed. This can occur due to
the breakdown of residual substrate, which remains within the granules and/or the natural
decomposition of microbial cells [54]. Furthermore, after feeding the hydrolyzed starch,
50% of methane production was observed in a shorter period of time than that of native
starch. Specifically, the 50% of methane production from the 1st, 5th, 8th and 9th runs was
observed at 14, 26, 15 and 31 h, respectively, contrary to the untreated starch where 50% of
methane was produced at 38 h.

Table 6. Methane production and SMA from different substrates.

Substrate Maximum Specific
Rate (mL CH4/min)

SMA (g CH4-COD g−1

VSS Day−1) mL CH4
mL CH4 (Acetic

Acid as Feed) Normalization %

Run 5th 0.375 ± 0.061 0.388 ± 0.063 16.3 ± 0.81 18.95 86.02
Run 8th 0.650 ± 0.139 0.669 ± 0.014 18.4 ± 1.21 19.80 92.93
Run 9th 0.416 ± 0.074 0.428 ± 0.076 17.7 ± 1.04 20.10 88.06
Run 1st 0.078 ± 0.016 0.080 ± 0.016 13.4 ± 0.53 18.80 71.28

Native starch 0.075 ± 0.004 0.077 ± 0.004 9.2 ± 0.40 19.05 48.29

Every experiment lasted for 4 days, since the methane production rate after this time
period was negligible. Considering that methane production, in most cases, stopped within
90 h, a test period of 4 days was considered sufficient for SMA tests. The duration of
the tests is influenced by factors such as the composition and COD concentration of the
substrate, the operating conditions of the reactor, and the activity of anaerobic bacteria [55].
However, several studies have reported that the duration of SMA tests typically ranges
from 2 to 7 days [50,56]. Ince et al. [55] investigated the SMA of anaerobic sludge taken
from various treatment plants using acetate as a substrate. The authors observed that the
anaerobic sludge derived from a bakery-yeast plant ceased producing methane after 28 h
when it was fed with 2 g/L acetate. Furthermore, the specific methanogenic activity of the
sludge obtained from a UASB reactor at an alcohol distillery was observed to decline to
zero within a time period of less than 60 h when exposed to feedings of 1, 2, 3, and 4 g of
acetate/L. Finally, it is worth mentioning that the maximum rate of methane production
after feeding the hydrolyzed starch solution was observed at the start of the anaerobic
digestion processes. The latter finding indicates the excellent biodegradability of the starch
hydrolysates, the significance of the hydrolysis process and the potential of utilizing this
industrial-derived by-product for energy generation through biomethane production.
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3.5. Plain Cost Analysis of Starch Hydrolysis and Biomethane Production

The industrial starch generated as a by-product in a potato processing plant showed
that it may become a critical source of energy in the form of biomethane after its pretreat-
ment. At this stage, it is crucial to implement an initial cost analysis on the optimum starch
hydrolysis conditions and the respective methane production from the hydrolyzed starch
to estimate the economic viability of a potential investment. The profitability of the new
investment is then compared with an existing utilization pathway, which is the use of
starch as animal feed at a price of 90 €/ton. Detailed calculations for CAPEX, OPEX and
profitability indicators are presented in the SI.

Since there is an existing installation for treating the liquid waste coming from the
potato processing plant, the CAPEX of the new investment is related only to the hydrolysis
reactor. The generated starch is mixed with the required amount of Fenton reagents and
liquid waste to dilute the raw material and generate the conditions of Run 8. The hydraulic
retention time was set at 1 h and, therefore, we require a reaction tank of 5.04 m3 that
receives 125.0 kg of starch/h diluted with the plant’s liquid waste to reach a volumetric
flow of 4.03 m3/h. The FCI is estimated at EUR 306,202.53. The potato processing plant
consumes large amounts of water for washing the processed potatoes in the various
unit operations (potato washing, peeling, sorting, slicing, washing slices) as well as from
washing the equipment at the end of each day. Thus, these facilities generate, daily, vast
amounts of liquid waste [5].

Regarding the OPEX, the cost of Fenton reagents amounts to EUR 40,048.4/year by
considering a price of FeSO4·7H2O and H2O2 equal to EUR 0.40/kg and EUR 1.65/kg,
respectively [57]. The consumption of Fenton reagents was based on the hydrolysis in Run
8, which obtained a hydrolysis yield of more than 72% for an HRT of 1 h and a methane
potential rate of 18.4 mL/min. For the utilities cost, we accounted for the thermal heating
of the starch solution at from 25 ◦C to 70 ◦C and the required electricity for mixing. The
required thermal heating was calculated at 211.0 kW per h, assuming that 1 m3 requires
1000 kcal to increase 1 ◦C. This thermal heating corresponds to a cost of EUR 253,185.8/year,
since the cost of 1 kWh was taken as equal to EUR 0.15 [58]. The electricity cost of mixing
was estimated at EUR 6021.5/y taking into account the price of 1 kWh of electricity equal to
EUR 0.168 [59] and that 1 kW is required to agitate 1 m3 of liquid [60]. Based on the above
calculations, the TPC was estimated at EUR 423,200.84/year.

According to the experimental results, from one ton of hydrolyzed starch (conditions
of Run 8) 368 m3 of biomethane can be produced. The aforementioned yield, together with
the plant’s capacity, corresponds to revenues of EUR 552,000/year. Figure 10 illustrates
the cumulative cash flows for the two scenarios. After the 8th year, the investment in
the hydrolysis reactor becomes more attractive than the base case scenario. The NPV
(n = 15 years and i = 10%) and PBP for the starch hydrolysis investment were calculated at
EUR 505,785.4 and 2.4 years, respectively, while for the base case scenario the NPV is EUR
367,731.9, 37.5% lower than the starch hydrolysis scenario. Therefore, methane production
from starch hydrolysates is not only feasible but also economically viable for a potato
processing company. The proposed valorization route paves the way for the industry’s
energy independence and reducing the risk of any economic instability that may be caused
by fluctuations in the price of natural gas that Europe, as well as other parts of the world,
have experienced in the last two years.



Sustainability 2023, 15, 14860 17 of 20Sustainability 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 
Figure 10. The cumulative cash flows for the hydrolysis and the base case scenarios. 

4. Conclusions 
Chemical oxidation with Fenton’s reagents is an efficient process for starch hydroly-

sis. The highest hydrolysis yield (99.5%) and total amount of carbohydrates (28.65 g/L) 
were observed at the high level (+1) of the FFD. A statistical model was constructed for 
simulating the hydrolysis process, revealing high correlation between predicted and ex-
perimental values (R2 > 0.99). The most important factors were found to be the hydrolysis 
temperature and the amount of hydrogen peroxide, followed by the interaction of ferrous 
sulfate and temperature which was also statistically significant. Moreover, hydrolysis ki-
netic study was modeled by a second order kinetic model and the kinetic rate constants 
were estimated, revealing that high ferrous sulfate concentration leads to slower starch 
hydrolysis. Specific methanogenic activity tests showed that after chemical oxidation with 
Fenton reagents, the starch hydrolysates are easily biodegradable and capable of methane 
production. Finally, a preliminary cost analysis revealed that a small investment can be-
come profitable before the end of the third year, leading to an NPV 37.5% higher than the 
NPV of the base case scenario. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: Cumulative methane production from 50 mg COD of 9th run.; 
Figure S2: Cumulative methane production from 50 mg COD of 8th run.; Figure S3: Cumulative 
methane production from 50 mg COD of 1st run.; Figure S4: Cumulative methane production from 
50 mg COD of 5th run.; Figure S5 Cumulative methane production from 50 mg COD of native starch.; 
Figure S6: Linearization of 1st order kinetic model equation for the 12 runs of the FFD experiment.;  
Figure S7: Linearization of Michaelis—Menten model equation for the runs of the FFD experiment.;  
Equations (S1)–(S8): Cost Calculations.; Equations (S9)–(S12): Kinetic equations on starch hydroly-
sis.; Table S1: Hydrolysis rate constants obtained from the 1st kinetic order equation.; Table S2: Hy-
drolysis rate constants obtained from the Michaelis—Menten model equation. References [39,57–62] 
are cited in the Supplementary Materials. 

Author Contributions: Methodology, D.T.P. and K.P.; Writing – original draft, D.T.P.; Writing – 
review & editing, D.T.P. and A.A.V.; Supervision, A.A.V. and A.G.V. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme «Human Resources Development, Education and Life-
long Learning» in the context of the project “Strengthening Human Resources Research Potential 
via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).  

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable 

Figure 10. The cumulative cash flows for the hydrolysis and the base case scenarios.

4. Conclusions

Chemical oxidation with Fenton’s reagents is an efficient process for starch hydrolysis.
The highest hydrolysis yield (99.5%) and total amount of carbohydrates (28.65 g/L) were
observed at the high level (+1) of the FFD. A statistical model was constructed for simulating
the hydrolysis process, revealing high correlation between predicted and experimental
values (R2 > 0.99). The most important factors were found to be the hydrolysis temperature
and the amount of hydrogen peroxide, followed by the interaction of ferrous sulfate and
temperature which was also statistically significant. Moreover, hydrolysis kinetic study
was modeled by a second order kinetic model and the kinetic rate constants were estimated,
revealing that high ferrous sulfate concentration leads to slower starch hydrolysis. Specific
methanogenic activity tests showed that after chemical oxidation with Fenton reagents, the
starch hydrolysates are easily biodegradable and capable of methane production. Finally, a
preliminary cost analysis revealed that a small investment can become profitable before
the end of the third year, leading to an NPV 37.5% higher than the NPV of the base
case scenario.
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