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Abstract: Under the background of large-scale PV (photovoltaic) integration, generating typical
operation scenarios of power systems is of great significance for studying system planning operation
and electricity markets. Since the uncertainty of PV output and system load is driven by weather
factors to some extent, using PV output, system load, and weather data can allow constructing
scenarios more accurately. In this study, we used a TimeGAN (time-series generative adversarial
network) based on LSTM (long short-term memory) to generate PV output, system load, and weather
data. After classifying the generated data using the k-means algorithm, we associated PV output
scenarios and load scenarios using the FP-growth algorithm (an association rule mining algorithm),
which effectively generated typical scenarios with weather correlations. In this case study, it can be
seen that TimeGAN, unlike other GANs, could capture the temporal features of time-series data and
performed better than the other examined GANs. The finally generated typical scenario sets also
showed interpretable weather correlations.

Keywords: deep learning; generative adversarial networks (GAN); time series; photovoltaic (PV);
scenario generation; k-means; clustering; FP-growth; association rule

1. Introduction

With the intensification of energy and environmental issues, the human society has
begun to transform the energy structure towards sustainability, which has led to the inte-
gration of a large amount of renewable energy and new types of loads into distribution
networks [1]. These changes pose new challenges to the operation and dispatch of power
systems. The current related research mainly focuses on aspects like robust optimization [2],
stochastic optimization [3], and distributionally robust optimization [4]. Stochastic opti-
mization relies heavily on a fixed probability distribution. In the solution process, it often
requires the use of finite discrete scenarios to approximate the probability model. In other
words, stochastic optimization formulates strategies based on a set of typical operating
scenarios; so, the generation of typical operating scenarios is a critical issue for stochastic
optimization [5]. To scientifically plan the operation of power systems including those for
new energy generation like photovoltaics, an accurate scenario analysis is a prerequisite.
Since photovoltaic power generation is highly influenced by environmental factors, its
stochastic and fluctuating characteristics introduce high uncertainty into the system [6].
The load scenarios are also diverse [6], not only closely related to people’s production and
life cycles, but also constrained by factors such as temperature, humidity, precipitation,
and holidays. These factors lead to diverse PV and load scenarios with a large amount of
conflicts and overlaps, making it critical to accurately construct typical operating scenarios
of a power system, which plays an important role in the planning, operation, and economics
of high photovoltaic penetration distribution networks. However, there has been limited
research in the field of scenario generation on utilizing weather factors to correlate PV
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output and load, despite the real-world impact of weather on PV and load [7]. Therefore, it
is imperative to conduct studies in this area.

Currently, the common scenario generation methods mainly include statistical meth-
ods and deep learning methods. The statistical methods consist of probabilistic modeling
methods like Markov chains [8], Gaussian processes [9], autoregressive moving average
models [10], and copula functions [11], as well as scenario clustering methods [12]. In the
above methods, probabilistic modeling methods regard scenario data as random processes,
essentially fitting the joint probability density distribution of the random process through
probability models but rely heavily on prior knowledge and reveal limitations in the face of
increasingly high-dimensional data [13]. The scenario clustering methods only cluster PV
and load data and are unable to accurately describe the characteristics of PV output and
load data, which makes it difficult to ensure the accuracy and diversity of the generated
operational scenarios. The deep learning methods include variational autoencoders [14],
generative adversarial networks (GANs) [15], and deep belief networks [16]. In theory,
the deep learning methods can approximate arbitrary functions and effectively fit high-
dimensional functional relationships in data. Scenario generation relies critically on fitting
the training data; so, deep learning techniques have been widely applied and studied.
In recent years, GANs have been extensively researched by scholars. In related research,
convolutional neural networks (CNNs) were utilized in the generator and discriminator of
GANs in [17,18]. One of these two studies constructed a conditional generative adversarial
network (CGAN) with load factors as the condition, but only included a single load type.
The other optimized the network structure for day-ahead scenario generation by using
ReLU activation functions in the output layers of the generator and discriminator and
removing the normalization layers and achieved good performance. References [19,20]
introduced gradient penalties and the Wasserstein distance, effectively improving model
generalization, slow convergence, and difficulty in convergence, but convergence issues
may still exist under certain specific inputs. Reference [21] used a CGAN based on deep
convolution (DCCGAN) to learn data from existing renewable energy power stations near
a new plant, generating better scenario data for the new plant compared to CGAN, but
the deep convolutional neural network structure required parameter initialization tuning
based on the dataset size.

With increasing integration scales of PV power, the distribution networks face opera-
tional scenarios involving both PV and load, with coupling relationships among PV output,
meteorological data, and load and mutual influence between data, large data volumes, and
high dimensions, imposing high requirements on the generation model. This requires a
GAN model that can generate data highly consistent with the original time-series character-
istics and solve the current difficulties in GAN training and sensitivity to parameters. The
aforementioned methods have their own limitations. Introducing Wasserstein distance or
using a CNN-based CGAN in GANs may allow the generated data to capture the overall
feature distribution of the original data. However, this remain insufficient to grasp the
intricate internal details within time-series data. Therefore, it is imperative to employ data
generation algorithms that can comprehensively reflect both the overall statistics and the
internal structures of the data.

A good time series generation model should generate sequences that conform to
the original relationships between variables. In other words, for a time series X1:t =
(X1, . . . , Xt) (T is the length of the nth time series), besides capturing the overall feature
distribution, the model should also accurately capture the complex latent relationships
p (Xt|X1:t−1 ) between time steps like autoregressive models [22]. The classical GANs
consist of a generator and a discriminator, each with a loss function, the generator aiming to
minimize the loss, and the discriminator to maximize it. The model essentially leverages the
confrontation between generator and discriminator to achieve convergence after training,
generating new data conforming to the original data distribution. A study [22] pointed
out that time-series data should contain static features and temporal features, while classi-
cal GANs focus on describing the overall probability distribution of time series without
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learning the conditional probability distribution at each time step. TimeGAN combines
autoregressive models and GANs [22]. In addition to the unsupervised confrontation loss
between real and generated sequences of the traditional GANs, it also introduces super-
vised loss using the original data; training both losses enables the generated sequences to
fully reconstruct the static and temporal features of time-series data.

This paper proposes a method to generate typical operation scenarios of power systems
with photovoltaic integration based on weather factors. The novelty of this work lies in
utilizing TimeGAN to capture temporal features of time-series data and incorporating
weather factors to establish associations between PV, load, and weather scenarios. The
objectives were to (1). accurately generate PV, load, and weather data scenarios reflecting
both static and temporal characteristics via TimeGAN; (2). discover association rules
between PV, load, and weather factors through data mining; (3). match PV and load
scenarios based on weather conditions to construct typical operating scenarios. The specific
process of the method is introduced here. Firstly, the TimeGAN model was trained with
historical PV output data and load data containing weather information to learn the
distributions of the original sequences and generate sufficient time-series data. Then, the k-
means algorithm was used to cluster the generated data and obtain classifications of PV and
load scenarios with weather information separately. Furthermore, the FP-growth algorithm
was utilized to mine frequent items from the PV and weather data to obtain association rules
for PV scenarios under different confidence levels. Based on the weather factors in these
association rules, the load scenarios were matched with the PV scenarios to generate typical
PV–load operational scenarios for different confidence levels. Finally, the accuracy of the
generated data was evaluated by comparing with the original data and the data generated
by TimeGAN. Case results demonstrated that the TimeGAN model used in this paper can
precisely and effectively generate time-series data compared to the Wasserstein generative
adversarial network with gradient penalty (WGAN-GP), WGAN, DCCGAN, and GAN.
And the proposed typical scenario generation method can successfully generate typical
scenarios and discover association rules between PV output scenarios and load scenarios.

Here, we define the data collected from 0 to 23 h in a day as one scenario. From
the collection of multi-source data to the generation of typical scenarios with weather
correlations, the whole system consisted of five modules: (1) generation of PV dataset and
load dataset with weather data; (2) time-series data augmentation; (3) scenario classification;
(4) weather association rules mining for PV scenarios; (5) correlation of PV and load
scenarios based on weather factors. The system framework is formally presented in
Figure 1.
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The structure of this article is organized as follows:
Section 1 first introduces the background of renewable energy integration and the

resulting challenges in power system operation and planning. It then analyzes the signifi-
cance of generating typical operating scenarios for optimization and economics studies; the
current research methods and their limitations are reviewed. The proposed method and
innovations are outlined at the end.

Section 2 elaborates the detailed process and algorithms utilized in this work. It starts
with the TimeGAN model, explains its architecture, objectives, and training process. Then
k-means clustering and the FP-growth association rule mining algorithms are presented;
evaluation metrics consisting of Wasserstein distance, MMD, ACF, and PACF are also
introduced.

Section 3 presents the experimental case study results. Data visualization using t-SNE
verifies the similarity between generated and original data distributions. TimeGAN is
evaluated and compared with other GAN models. Typical scenario generation results
are provided, with weather correlations interpreted. The generated scenarios are verified
against historical data.

Finally, Section 4 concludes this work, summarizes the main contributions, and dis-
cusses aspects that can be improved in future research.

2. Materials and Methods

Here, we present the proposed method. All the algorithms utilized, starting from data
input, are introduced first. Then, the evaluation metrics corresponding to the characteristics
of the algorithms are described.

2.1. TimeGAN Network

In PV-integrated power systems, the time-series data directly constituting operational
scenarios can be divided into two types, i.e., PV output and load, each containing different
static and temporal features. For PV, the output sizes in different regions and environ-
ments are distinct static features, while seasonal, weather, and time factors constitute
influencing temporal features. The load is closely related to geographical location and
people’s living habits and economic levels, which are static features, and varies with time,
workdays/holidays, and weather changes, which are temporal influencing factors.

To fully capture the static and temporal features of time-series data, TimeGAN learns
the conditional probability distribution at each time step in addition to the overall proba-
bility distribution captured by the classical GAN contest structure. Compared to merely
differentiating between real and generated data, the original input data contain more ex-
ploitable information. Therefore, TimeGAN incorporates the original data as supervision
to train on supervised loss and learn the pointwise conditional probability distribution.
Meanwhile, deep LSTM networks are utilized to construct the entire TimeGAN model.

The data used to train TimeGAN are time-series data. Let there be N time series in
total. To represent the static and temporal features of the original data, M denotes the set of
all vectors in the temporal feature space, and S denotes the set of all vectors in the static
feature space. To indicate the pointwise relationships between time steps in the temporal
features, M1:Wn is used (W is the length of the nth time series), and the joint distribution
of instances in M and S is denoted as p→ (S, M1:Wn) , which leads to the training set
D = ∑N

n=1 (Sn, Mn,1:Wn). The goal of TimeGAN is to learn a distribution p through the
training set D that best approximates the true joint distribution p.

2.1.1. Objectives

As described above, TimeGAN aims to best approximate the distribution p through
two objectives. The first one is global, corresponding to the static features of the data:(

min
p

)
D(p(S, M1:Wn)‖p(S, M1:Wn) ) (1)
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where D denotes the distance between the two distributions. The second one is local,
corresponding to the step-wise temporal features:(

min
p

)
D(p(Mt|S, M1:Wn−1 )‖p(Mt|S, M1:Wn−1 ) ) (2)

2.1.2. TimeGAN Architecture

TimeGAN consists of four components: a generator, a discriminator, an embedding
function, and a recovery function; its architecture is shown in Figure 2.
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The introduction of embedding and recovery functions is based on the fact that high-
dimensional, complex time dynamics are often driven by lower-dimensional, simpler
key influencing factors. Therefore, the embedding and recovery functions provide a low-
dimensional latent space for the network to learn critical influencing factors.

The objective of the embedding function is to reduce the dimensionality of the original
time series to improve the learning efficiency of the model. The embedding function
implements the processing of static and temporal features recursively. For the static
features, it projects them into a low-dimensional space. For the temporal features, it mines
the relationships between time steps and projects into a low-dimensional space [22]:

hS = eS (s) (3)

ht = em (hS, ht−1, Mt) (4)

where eS and em represent the processing of static and temporal features by the embedding
function, respectively, hS denotes the low-dimensional static feature after dimensionality
reduction by the embedding function, ht denotes the low-dimensional temporal feature at
time t after reduction, Mt represents the high-dimensional temporal feature at time t.

The recovery function aims to reconstruct the original high-dimensional vectors from
the low-dimensional ones after dimensionality reduction, with the process [22]:

∼
S = rS (hS) (5)
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∼
Mt = rM (ht) (6)

where rS and rM represent the processing of low-dimensional static and temporal features

by the recovery function, respectively.
∼
S denotes the reconstructed static feature,

∼
Mt

denotes the reconstructed temporal feature at time t.
The generator first randomly samples vectors from the known distribution of static

and temporal feature vector spaces as input into the low-dimensional latent space, with the
process [22]:

_
h S = gS (zS) (7)

_
h t = gM (

_
h S,

_
h t−1, zt) (8)

where gS and gM are the generation networks for static and temporal features, zS and zt are

the sampling from static and temporal feature vector spaces,
_
h S and

_
h t are the generated

static and temporal feature vector collections.
The outputs of the generator and embedding function after joint encoding are input

into the discriminator, which will judge real or fake data. The process is [22]:

∼
yS = dS (

∼
hS) (9)

∼
y t = dM (

←
u t,
→
u t) (10)

where
∼
yS and

∼
y t are the discrimination results for the static and temporal features of the

input data, dS and dM are the discrimination networks for static and temporal features,
using bidirectional recurrent networks with feedforward output layers,

←
u t,
→
u t are the

forward and backward hidden state sequences.

Training Losses

The goal of the embedding and recovery functions is to generate the low-dimensional
latent space and reconstruct the original high-dimensional feature space as precisely as
possible. Therefore, the first loss is introduced [22]:

Le−r = ES,M1:T∼p

[∥∥∥∥S−
∼
S
∥∥∥∥

2
+ ∑

t

∥∥∥∥Mt −
∼
Mt

∥∥∥∥
2

]
(11)

where S and Mt denote the static and temporal feature spaces,
∼
S and

∼
Mt are defined as

shown in Equations (5) and (6). For the generator and discriminator of the model, there is a
classical confrontation, with the second loss [22]:

Lg−d = ES,M1:T∼p

[
logyS + ∑

t
logyt

]
+ ES,M1;T∼p

[
log (1− yS) + ∑

t
(1− logyt)

]
(12)

where yS and yt are the discrimination results of the original data for static and temporal
features, yS and yt are the discrimination results for the generated data.

The introduction of loss Lg−d enables the model to focus on describing the overall prob-
ability distribution of time series without learning the conditional probability distribution
at each time step. Therefore, the third loss LS is introduced to achieve this [22]:

LS = ES,M1:T∼p

[
∑

t
‖ht − gM (hS, ht−1, zt)‖2

]
(13)
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2.1.3. TimeGAN Training

The training process of TimeGAN is illustrated using the PV dataset with weather information.
To begin with, Min–Max scaling was employed for data preprocessing to rescale the

raw training data into the range [0, 1]. The normalized dataset was thus obtained.
In the model training phase, the objectives of the embedding and recovery networks

are to provide a reversible feature-latent space mapping. LSTM networks are implemented
in the generator, discriminator, embedding network, and recovery network. The generative
network consists of num_layers of unidirectional LSTM layers, each LSTM layer having a
hidden dimension (hidden_dim), where hidden_dim denotes the size of the hidden layer
in the LSTM. The discriminator is composed of one bidirectional LSTM layer and one fully
connected layer. The embedding and recovery networks share an identical architecture
with the generator. The training iteration involves:

(1) Separately training the embedding and reconstruction networks, extracting batch_size
groups of (max_seq_len,4) data from the raw data for training at each iteration.

(2) Training the generator. At each iteration, batch_size groups of (max_seq_len,4) data
from both raw data and random noise are extracted for supervised training.

(3) Joint training, training the generator, discriminator, and embedding–recovery net-
works alternately. Batch_size groups of (max_seq_len,4) data from the raw data and
random noise are extracted at each iteration.

The above iterations persist until the predefined number of iterations is fulfilled.
In the model generation stage, Gaussian random noise is fed into the generative

network to produce generated samples of size (8760,4).

2.2. K-Means Clustering

The purpose of using clustering algorithms in this paper was to resolve complex
relationships between multi-variable objects. By clustering the data after dimensionality re-
duction, all factors in the PV–weather–load trio could be categorized to facilitate association
rule mining using the FP-growth algorithm.

It should be pointed out here that k-means was used for simplicity; if other clustering
algorithms with better performance were utilized, the final association rules and generated
typical scenario sets would be even better.

K-Means Algorithm

The k-means algorithm is an unsupervised clustering algorithm that can divide data
into a finite number of categories. For a dataset X = {x1, x2, . . . , xn} (xi is a j-dimensional
vector, xi =

{
xi1, xi2, . . . , xij

}
), k-means divides X into k classes, with each data point in

a class nearest to the cluster center of that class. In this paper, the k-means++ algorithm
initialization was adopted instead of k-means, which selected points with larger mutual
distances as initial cluster centers with higher probability compared to k-means. This
modification could effectively avoid the slow convergence issue of k-means.

2.3. PV–Load Association Rule Mining Based on FP-Growth

The FP-growth algorithm, as described in [23–25], is an association rule mining algo-
rithm that stores the data in a frequent pattern tree (FP-tree) structure composed of itemsets.
FP stands for frequent pattern, which refers to the frequent patterns stored in the tree as
paths. Let S = {s1, s2, . . . sn} represent the set of all distinct items in the dataset D. For any
transaction T, we have T ∈ S. The support count of an itemset X (X ⊆ S) is defined as the
total number of transactions N.

Assume an association rule X → Y (X ⊆ S, Y ⊆ S) is formed. The parameters of the
FP-growth algorithm are defined as:

(1) Support, for an itemset X, refers to the probability of X occurring in the total
transactions, as shown in Equation (14):

support(X) = P(X) (14)
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For a rule X → Y , it refers to the probability of X∪Y occurring in the total transactions,
as shown in Equation (15):

support(X → Y) = P(X ∪Y) (15)

In FP-growth, a minimum support is set to filter out infrequent itemsets. For exam-
ple, if the minimum support is 0.05, only itemsets appearing in at least 5% of the total
transactions are retained as frequent itemsets.

(2) Confidence refers to the probability of itemset Y occurring given that itemset X has
occurred in the total transactions, as shown in Equation (16):

con f idence(X → Y) = P(X|Y ) (16)

In FP-growth, a minimum confidence is set so that rules with confidence no less than
the minimum will be retained. For example, if the minimum confidence is 0.7, rules with
confidence ≥ 0.7 will be kept.

In summary, association rules satisfying both minimum confidence and minimum
support are called strong association rules.

In this study, the FP-growth algorithm was utilized to mine frequent itemsets of PV
scenarios and discover association rules between weather scenarios and PV scenarios. To
construct typical operating scenarios of PV-integrated power systems with strong descrip-
tiveness and representativeness, typical load scenarios needed to be associated with PV
scenarios based on the clustering results. After mining frequent itemsets of PV scenarios
using FP-growth and deriving association rules, matching load scenarios with PV scenarios
finally yielded the typical operational scenarios. The algorithm flowchart is illustrated in
Figure 3.
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In this study, the generated PV output and weather data were first classified and
formatted into tables suitable as input for the FP-growth algorithm. Then, frequent itemset
mining was performed. With the obtained frequent itemsets, the load scenarios were
matched with the PV scenarios to acquire typical PV–load scenario sets under different
confidence levels.

3. Experimental Results and Related Discussion
3.1. Dataset

A case study was performed using full-year data from 2022, with an hourly collection
frequency and 8760 data groups. Each data group contained PV output, weather, and load
data values. The weather data included temperature, humidity, and precipitation data.

3.2. Data Preprocessing

After data cleaning, as neural network training requires data normalization, min–max
normalization was applied to scale all data between 0 and 1 using Equation (17):

x′ =
x− xmin

xmax − xmin
(17)

where x′ is the normalized data of the original data x, xmin and xmax are the minimum and
maximum values in the original data.

3.3. Parameter Settings

Here, we provide the parameter settings for the algorithms used in this study.

3.3.1. TimeGAN

The relevant parameters of TimeGAN are presented in Table 1.

Table 1. TimeGAN parameter setting.

Parameter Meaning Parameter Value

Number of Layers num_layer 3
Number of Hidden Units per Layer hidden_dim 24

Max Sequence Length of Data max_seq_len 24
Iterations iterations 25,000
Batch Size batch_size 128

Learning Rate learing_rate 0.001
1st Moment Decay Rate of Adam Optimizer β1 0.9
2nd Moment Decay Rate of Adam Optimizer β2 0.999

3.3.2. K-Means

The number of clusters k needed to be manually determined in k-means. The elbow
method [26] can be utilized for the selection, which is based on the sum of squared errors
(SSE), defined as:

SSE =
k

∑
i=1

∑
p∈Ci

|p−mi|2 (18)

where k is the number of clusters, Ci is the ith cluster, p is a sample point in Ci, mi is the
cluster center of Ci.

As k increases from 1, each cluster in the space will be divided more precisely, and
SSE will decrease rapidly. When k exceeds the true number of clusters, the increasing k
will no longer significantly decrease SSE, and the SSE–k curve will become flat, resembling
an elbow. The turning point of the curve indicates the true number of clusters k. The
result is shown in Figure 4a, and the 3D graph of the relevant clustering results is shown in
Figure 4b.
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According to Figure 4, the k-means clustering parameter k was set as 5.

3.3.3. FP-Growth

The FP-growth algorithm was utilized to mine the association rules from the classified
PV data with weather. The results served as the association data. FP-growth requires
setting a minimum confidence and support thresholds, which impact the mining results.
The parameter settings are shown in Table 2.

Table 2. FP-growth parameter setting.

Parameter Meaning Parameter Value

Minimum
Confidence min_con 0.75

Minimum
Support min_sup 0.06

3.3.4. Summary of the Global System Parameters

For the readability of the article, we provide the summary of the global system param-
eters as shown in Table 3.
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Table 3. Global system parameters.

Algorithm Parameter Meaning Parameter Value

TimeGAN

Number of Layers num_layer 3
Number of Hidden Units per Layer hidden_dim 24

Max Sequence Length of Data max_seq_len 24
Iterations iterations 25,000
Batch Size batch_size 128

Learning Rate learing_rate 0.001
1st Moment Decay Rate of Adam Optimizer β1 0.9

2nd Moment Decay Rate of Adam
Optimizer β2 0.999

K-Means Optimal Number of Clusters k 5

FP-growth
Minimum

Confidence min_con 0.75

Minimum
Support min_sup 0.06

3.4. Discussion

Here, we proposed a method to generate typical operating scenarios for PV-integrated
power systems considering weather factors. The TimeGAN model was utilized in the
data generation stage to accurately capture static and temporal features of time series,
learning the original data distribution space and generate a large number of scenarios, as
demonstrated in Section 3.6 In addition, Section 3.7 shows the comparison of autocorrelation
and partial autocorrelation coefficients between the generated and the original data, proving
that the generated data learned the characteristics of the original data distribution both
globally and locally.

To highlight the advantages of the algorithm, the study compared TimeGAN with four
types of GANs. The comparison in Section 3.7 showed that whether evaluating each part
of the generated data independently using Wasserstein distance or assessing the overall
data using MMD, TimeGAN outperformed the other GANs. The excellent performance of
TimeGAN is attributable to:

(1) Explicitly encouraging the model to learn the conditional probability distribution
at each point of the time-series data, improving the probability distribution fitting
capability of scenario generation algorithms, enabling the generated data to fully
express the temporal characteristics of the original data.

(2) Adopting an LSTM network architecture, which effectively resolved gradient issues
during training and fully mined temporal information over longer time periods.

For generating typical scenarios, this paper first obtained scenario classifications
through clustering, then mined the association rules using the FP-growth algorithm as
described in Section 2.3, and finally correlated PV and load scenarios based on the objective
weather conditions in the association rules, effectively establishing relationships for the
PV–weather–load trio.

The results demonstrated that the proposed method could effectively generate typical
scenarios for PV-integrated power systems with interpretable weather correlations. The
main contributions and significance of this work are as follows:

(1) A deep learning model TimeGAN was leveraged to generate time-series data cap-
turing both static and temporal features of PV output, load, and weather data. This
solved the problem of classical GAN models, which are unable to learn temporal
relationships within time series.

(2) Weather factors were explicitly incorporated to establish associations between PV
scenarios, load scenarios, and weather scenarios. This enabled interpreting the under-
lying meteorological conditions behind the generated typical scenarios.
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(3) The proposed method reduced reliance on subjective prior knowledge during typical
scenario generation by mining objective association rules between PV, load., and
weather factors. This enhanced the diversity and representativeness of the generated
scenarios.

(4) The generated typical scenarios can better support the optimization and planning of
PV-integrated power systems by providing more accurate approximates of real-world
operating conditions.

3.5. Metrics

In light of the characteristics of TimeGAN and time-series data, we incrementally
validated the effectiveness of the generated data using four metrics. For static features,
Wasserstein distance and MMD distance (maximum mean discrepancy) were utilized. For
temporal features, ACF (autocorrelation coefficient) and PACF (partial autocorrelation
coefficient) were employed.

3.5.1. Wasserstein Distance

The Wasserstein distance, also known as the Earth mover’s distance (EMD), signifies
the minimum cost of transporting one distribution into another. As it can effectively
measure the distance between two distributions even without overlap, it has been widely
applied [27]. For two different distributions P1 and P2, the Wasserstein distance is defined as

W (µ, υ) =

(
in f

π∈Π (µ,υ)

∫
R×R
‖x− y‖

p
dπ (x, y)

) 1
p

(19)

where Π (µ, v) is the set of joint distributions π on R×R with marginal distributions µ and
v on Π (µ, v), and ‖x − y‖ is the distance between the elements x and y in π. The smaller
the Wasserstein distance, the closer the two distributions.

3.5.2. MMD Distance

MMD is used to measure differences between two distributions. For example, given
(x1, x2, . . . , xn) ∼ P (x) and (y1, y2, . . . , yn) ∼ Q (x), MMD is defined as

MMD(P, Q) = sup
‖ f ‖H≤1

EP[ f (x)]− Eq[ f (y)] (20)

where EP[ f (x)] and Eq[ f (y)] represent the expectation of the set of functions f (x) and
f (y) that maps x, y to higher order, and ‖ f ‖H ≤ 1 constrains the norm of the function f in
the reproducing Hilbert space to be less than or equal to 1.

3.5.3. ACF and PACF

ACF R (k) analyzes correlations between two segments of a time series lagged by
k and can evaluate whether the model captures the autocorrelations within the original
time-series observations. PACF ρ (k) examines correlations between two points lagged by
k and can determine if the model captures the independence between observations in the
original time series. They are defined as

R (k) =
E[(Xi − µ) (Xi+k − µ)]

E(Xi − µ)2 (21)

ρ (k) =
E
[
(Xi − ÊXi) (Xi−k − ÊXi−k)

]√
E(Xi − ÊXi)2

√
E(Xi−k − ÊXi−k)2

(22)

where Xi is the value at time i in the time series, k is the lag time, µ is the mean of the time
series, and ÊXi = E[Xi|Xi−1, . . . , Xi−k+1].
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3.6. Data Visualization

Since linear dimensionality reduction struggled to extract the nonlinear intrinsic
structures and patterns within the nonlinear data of weather, PV output, and power load,
nonlinear dimensionality reduction was utilized here for data visualization. Figure 5 shows
the comparison between the original data and the generated data embedded into a 2D
plane using the t-distributed stochastic neighbor embedding (t-SNE) algorithm.
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Figure 5. Visualization of t-SNE for generating data (iterations = 25,000).

From the comparison, it can be observed that the generated data remained similar to
the original data in both global structure and local features, with their 2D plane distributions
nearly overlapping.

3.7. Evaluation of TimeGAN-Generated Data

The Wasserstein distance was used to evaluate each part of the data generated by
the TimeGAN, WGAN-GP, WGAN, DCCGAN, and GAN models, with results shown in
Table 4.

Table 4. Quality evaluation of the Wasserstein distance.

Model Temperature
(◦C)

Humidity
(%)

Rainfall
(mm/h) PV (MW) Load (MW)

TimeGAN 2.70 13.6 0.079 0.008 0.017
WGAN-GP 3.86 14.7 0.048 0.014 0.026

WGAN 3.43 15.1 0.060 0.018 0.019
DCCGAN 4.02 16.4 0.091 0.016 0.037

GAN 4.86 18.0 0.112 0.019 0.036

The overall data were evaluated using the MMD distance, with results reported in
Table 5.

Using the PV data generated by the TimeGAN model as the evaluation object, the
original data were used for comparison; the ACF and PACF in lags from 0 to 10 h are shown
in Figure 6.
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Table 5. Quality evaluation of the MMD distance.

Model MMD

TimeGAN 0.5346
WGAN-GP 0.6616

WGAN 0.6934
DCCGAN 0.7364

GAN 0.8089
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Figure 6a shows that the ACF of the PV scenarios generated by TimeGAN and the
original PV scenarios basically overlapped, exhibiting positive autocorrelations within
0–5 h, which diminished as the lag increased, especially in the 1–2 h range. In contrast, the
ACF of the PV scenarios generated by other GANs showed significant differences compared
to the original PV scenarios. Figure 6b shows that the PACF of the PV scenarios generated
by TimeGAN matched those of the original PV scenarios, with extremely strong partial
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autocorrelations within 1 h lags, rapidly weakening beyond 1 h intervals. In comparison,
the PACF of the PV scenarios generated by the other examined GANS showed noticeable
differences compared to the original PV scenarios. The above analysis indicated that
the PV scenarios generated by the TimeGAN model highly conformed to the fluctuation
characteristics of the original PV data, fully capturing the temporal features of the original
time series, in contrast to the PV scenarios generated by the other examined GAN models.

3.8. Typical Scenario Generation

The k-means clustering parameter k was set as 5, and the generated PV data with
weather and load data with weather were clustered separately.

3.8.1. Rule Repository Generation

The FP-growth algorithm was utilized to mine the association rules from the classified
PV data with weather. The results served as the rule repository. FP-growth requires setting
a minimum confidence and support thresholds, which impact the mining results, as shown
in Table 6.

Table 6. Number of association rules under different parameters.

Minimum Confidence Minimum Support Number of Rules

0.75 0.06 30
0.7 0.05 35
0.8 0.07 26

0.75 0.04 38
0.85 0.06 21

In this case study, the minimum confidence was set as 0.75, and the minimum support
as 0.06, giving 30 rules. Partial results are shown in Table 7.

Table 7. Partial association rules.

Confidence Weather Feature Type PV Scenarios Type

1 Temperature: 4, Rainfall: 4, Humidity: 2 PV: 4
0.95 Humidity: 3, Rainfall: 0, Temperature: 0 PV: 1

0.946 Humidity: 3, Temperature: 4 PV: 2
0.898 Humidity: 2, Rainfall: 0, Temperature: 2 PV: 0
0.829 Rainfall: 1, Humidity: 1 PV: 3

3.8.2. Typical Scenario Set Generation

Based on the weather factors in the rules from the previous section, the corresponding
PV scenarios were associated with the load scenarios to obtain typical PV–load scenarios
matched according to the association rules. An example matching the first rule in Table 7 is
shown in Figure 7, with same-color curves indicating scenarios with a similar trend.

Analyzing the three weather scenarios corresponding to PV and load in Figure 7,
the generated typical scenarios exhibited certain weather correlations. For example, the
green curves correspond to PV and load scenarios with similar weather variation trends,
representing high temperature and rainy weather. The red PV and load scenario weather
changes also exhibited similar trends, with high temperature transforming into rain. The
stacked typical load curves and PV curves of typical operational scenarios are shown in
Figure 8 with the original scenarios.
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Figure 7. Partial PV–load scenario matching results. (a) PV–load typical scenarios; (b) humidity 
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Figure 7. Partial PV–load scenario matching results. (a) PV–load typical scenarios; (b) humidity
curves corresponding to PV and load typical scenarios; (c) precipitation curves corresponding to PV
and load typical scenarios; (d) temperature curves corresponding to PV and load typical scenarios.
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To verify the validity of the generated scenarios, historical data were screened under
the weather conditions of the typical scenarios in Figure 8 to obtain corresponding historical
scenarios. The relationships between the typical scenarios and the historical scenarios in
Figure 8 are shown in Figure 9a,b.
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Figure 9. Superimposed typical scenarios and historical scenarios. (a) The overlaid scenario of the
green curve and the corresponding historical scenarios; (b) the overlaid scenario of the red curve and
the corresponding historical scenarios.

In Figure 9, it can be seen that the typical scenarios generated by the proposed method
were contained within the historical scenarios.

In the association rules selected in this section, the PV scenarios belonged to the fifth
class, and the associated load scenarios belonged to the second and fifth classes. This
showed that, compared to the traditional clustering for typical scenarios, the addition of
weather association rules enabled the proposed method to extract typical scenarios across
different classes, effectively ensuring the diversity of the generated scenarios. Moreover,
the weather association rules allowed the generation of typical scenario sets under the
meteorological conditions of different seasons or months based on statistical meteorological
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patterns, reducing the reliance on subjective prior knowledge for typical scenario generation
to some extent.

4. Conclusions and Prospects

In sustainability research promoting power energy transformation, typical scenarios
of power systems hold great significance, as they directly influence relevant decisions of
SO or DRO. GANs have been extensively applied in domains like transfer learning and
data augmentation in the power field, and numerous improved GAN algorithms have
been proposed to heighten data authenticity [17–21]. However, power system scenarios
are commonly time-series scenarios. Therefore, we propose adopting TimeGAN for data
augmentation, since the TimeGAN’s capability to excavate inherent temporal features of
time-series data makes it highly suitable for applications in sustainable power systems. For
example, in this study, TimeGAN enabled the generated scenarios to better resemble real-
world situations. Clustering categorized scenarios under identical features into the same
class, rendering the application of the FP-growth algorithm for association rule mining
viable. Ultimately, we obtained typical scenarios with interpretable weather traits that
better fit real-world temporal characteristics. Hence, we believe this holds substantial
significance for the sustainable development of PV-integrated energy systems.

We investigated scenario generation incorporating weather factors in power systems
utilizing the proposed framework consisting of TimeGAN, k-means algorithm, and FP-
growth algorithm. Experiments also demonstrated the interpretability of weather in the
generated typical scenarios. For future work, we have the following suggestions:

(1) Related research on Wasserstein distance could be introduced into TimeGAN.
(2) Building upon the weather factors, more impact factors such as holidays and electricity

prices could be integrated for scenario generation to further enhance the method’s
practical applicability.

(3) The FP-growth algorithm and its generated results are relatively abstract. Clearer
rule interpretations need to be further provided. Highly interpretable algorithms like
classification based on associations (CBA) could be utilized for generating explanatory
association rules.
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