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Abstract: The construction industry has high accident and fatality rates owing to time and cost
pressures as well as hazardous working environments caused by heavy construction equipment
and temporary structures. Thus, safety management at construction sites is essential, and extensive
investments are made in management and technology to reduce accidents. This study aims to improve
the accuracy of object recognition and classification that is the foundation of the automatic detection
of safety risk factors at construction sites, using YOLO v5, which has been acknowledged in several
studies for its high performance, and the recently released YOLO v8. Images were collected through
web crawling and labeled into three classes to form the dataset. Based on this dataset, accuracy was
improved by changing epochs, optimizers, and hyperparameter conditions. In each YOLO version,
the highest accuracy is achieved by the extra-large model, with mAP50 test accuracies of 94.1% in
v5 and 95.1% in v8. This study could be further expanded for application in various management
tools at construction sites to improve the work process, quality control, and progress management
in addition to safety management through the collection of more image data and automation for
accuracy improvement.
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1. Introduction
1.1. Purpose of Study

The number of accidents at industrial sites is steadily increasing [1]. In addition
to causing irreparable damage to the individual(s) involved, an accident can also cause
reputational damage to the organization and may result in significant time and financial
losses for the organization in the aftermath of the accident [2]. Therefore, continuous safety
management efforts to prevent accidents are necessary in all industries. Meanwhile, the
construction industry has the highest number of occupational accidents and fatalities in
South Korea. The accident rate per thousand people increased from 7.3% in 2014 to 12.6%
in 2021, with construction fatalities accounting for 50.4% of all industrial accidents [3].
Hence, safety management at construction sites is a top priority, and its significance has
been recognized by various stakeholders, including the government and enterprises. Many
safety management efforts are continually being implemented, with related studies being
actively conducted [4].

Owing to rapid advancements in artificial intelligence (AI) technology, AI is being
applied extensively in various industrial fields [5]. Although the adoption of AI in the
construction industry is slower than that in other industries, AI has been introduced into
areas such as bidding, design, construction, safety, and maintenance [6,7]. Among the
various AI technologies, computer vision using deep learning has been experimentally
applied to construction safety management.

Object detection AI technology, which recognizes and classifies objects, offers signif-
icant versatility as it can serve as the basis for image and video processing technology
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and can be used in place of human vision for many purposes throughout the construction
process [7]. Several attempts have been made to apply object detection AI to on-site safety
management by automating risk factor recognition. However, even with only 2–3 classifica-
tion target classes, the object detection accuracy still requires improvement compared to
that reported by studies in other fields [8–15].

This study aims to improve object recognition and classification accuracy using two
You Only Look Once (YOLO) versions, namely YOLO v5, which has been acknowledged
in several studies for its effectiveness in object detection, and YOLO v8, which is the
most recent version. In this method, contents related to the accuracy and the learning
environment settings in YOLO are also reviewed. In addition, the results of the accuracy
improvement of the two versions are compared. This study with the improved accuracy
and related technologies presented could contribute to the introduction and expansion of
AI technologies in construction fields.

1.2. Research Methods and Procedure

This study comprises the following steps, as outlined in the remainder of the paper:

(i) Previous studies using object detection AI technology are reviewed. The object type
to be classified and the deep learning model to be applied are selected.

(ii) Background theories related to object detection AI technology are investigated.
(iii) Construction-safety-related image data are collected through web crawling and la-

beled to create a dataset for training, validation, and testing.
(iv) The dataset is applied to the two selected YOLO versions. Training and validation are

repeatedly conducted while changing the main settings and hyperparameter values
to improve the object detection accuracy.

(v) The highest accuracy for each YOLO version is identified, and the results are compared.

2. Literature Review

Various computer vision studies have been conducted to improve safety at construc-
tion sites. Fang et al. (2018) [8] propose a method that utilizes a convolutional neural
network (CNN), which is a widely used deep learning model for image feature identifica-
tion, to identify workers and excavators with a 93% mean average precision (mAP). Kim
(2019) [9] classifies the safety risk factors at a construction site that must be managed by
law into four types and proposes a management system structure using computer vision.
Cho et al. (2021) [11] present an object detection and tracking method based on CCTV
footage to assist in safety management tasks. This study applies a self-developed instance
segmentation library with three classes: workers (C1), concrete mixer trucks (C2), and
dump trucks (C3). An mAP of 79.2% is achieved, with 74% for C1, 84% for C2, and 80%
for C3.

Lee and Kim (2020) [16] analyze the performance of various CNN-based object detec-
tion models, including YOLO and region-based CNN (R-CNN). The results suggest that
YOLO is faster and more accurate than other models and that it enables real-time object
detection with higher reliability in real-world applications. Nath et al. (2020) [10] propose
a model that detects workers and personal protective equipment (PPE) using a YOLO v3
model for construction safety management. The wearing of PPE by workers is identified
with a 72.3% mAP. Kang et al. (2021) [12] present a vision-based deep learning platform
architecture that applies YOLO v3 to support real-time construction site management, such
as safety management. In the application example, heavy construction equipment and
workers are identified with accuracies of 84.7% and 81.1%, respectively.

Kang et al. (2023) [15] classify workers into three classes based on their hard hat and
harness wearing status and analyze the differences in detection accuracy according to
distance and illumination using YOLO v3. The study secures image data with varying illu-
mination levels by changing the shooting time in a 7 m × 10 m experimental environment.
The mAP of the three classes according to distance is 87.6%. The highest accuracy is 94.4%
for the class of workers who wear hard hats at a 2 m distance, whereas the lowest accuracy
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is 83.2% for the class of workers who wear both hard hats and harnesses at a 10 m distance.
The accuracy increases slightly with illumination. Ferdous and Ahsan (2022) [17] apply the
YOLOX model to eight classes of 1699 images comprising 11,604 instances, resulting in a
test accuracy of 89.5% mAP.

Kim and Park (2021) [18] apply the publicly available Open Image Dataset and a
Kaggle dataset to YOLO v5 and identify the three classes of workers, hard hats, and
masks with a 91% mAP. Isa et al. (2022) [13] achieve the best results with YOLO v5
when default configuration options are applied to the YOLO v3, v4, and v5 models for
underwater object detection. A 97.7% mAP is achieved for an example dataset consisting
of six marine species classes (large fish, small fish, shrimp, crab, jellyfish, and starfish) after
adjusting the optimizer and learning rate of YOLO v5. Hayat and Morgado-Dias (2022) [19]
use 5000 photos from an open dataset and apply two classes to YOLO v5 to distinguish
between the worker’s head and helmet, achieving an accuracy of 92.4% for mAP. Alateeq
et al. (2023) [20] apply YOLO v5 to a publicly available dataset and self-collected images
and obtain an accuracy of mAP 83.7% for three classes consisting of workers and two types
of PPE and mAP 93.2% for seven types of heavy construction equipment.

Considering the results of previous works, this study defines three classes: heavy con-
struction equipment, workers, and PPE. Image data were collected through web crawling
to reflect various environmental conditions. The YOLO v5 model, which has achieved
the best results in image-based object identification in previous studies, and the recently
released v8 model are adopted. Through the process of improving the accuracy of object
recognition and classification, this study aims to enhance the insufficient accuracy present
in previous studies and compare the results between the two YOLO models.

3. Computer Vision Models
3.1. CNN

A CNN is a widely used deep learning method in image processing. A typical CNN
model consists of feature extraction and classification stages, as illustrated in Figure 1.
The convolution and pooling layers are connected for effective feature extraction, and the
results undergo a classification process to determine the type with the highest probability
through a fully connected layer [21].
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Figure 1. Concept of convolutional neural network.

CNNs can classify images with high accuracy. However, the computation increases
significantly during feature extraction, which comprises convolutions and pooling in a slid-
ing manner across the image. Moreover, there is a limit when identifying multiple objects
and the location of each object in one image [16]. Therefore, CNNs are not appropriate for
application to safety management at construction sites that may require real-time detection
of more than one object in a single image.

3.2. Object Detection Models

Several object detection models have been developed to overcome the disadvantages
of CNNs. In general, a bounding box is set around the area in which the target object
is expected to be located, as indicated in Figure 2, and the object in each bounding box
is identified as the type with the highest probability among several candidates. In this
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process, the setting of the bounding box is known as localization, and the identification of
the type of object inside the bounding box is known as classification. Object detection is the
application of both processes to identify multiple objects within a single image. Two object
detection methods are available: two-stage and one-stage methods [22].
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Figure 2. Example of object detection.

The two-stage method, which was proposed earlier than the one-stage method, per-
forms location identification using a CNN to identify candidate bounding boxes and
then applies another CNN to identify the object in each bounding box. This method has
evolved into R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN, with improvements
in detection speed and accuracy [23–26].

The one-stage method performs localization and classification simultaneously by
applying a CNN once. YOLO is the representative one-stage method. As illustrated
in Figure 3, an S × S grid is formed on the image, which creates S2 cells. A CNN is
applied to perform localization and classification for each cell, thereby generating many
candidate bounding boxes while assessing their confidence levels. Multiple objects and their
respective positions within a single image are identified by retaining only the bounding
boxes with the highest confidence for each object type while removing the remainder using
a technique known as non-maximum suppression [27].
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Figure 3. One-stage object detection concept in YOLO.

Since the first YOLO model was proposed by Redmon (2016) [27], the eighth version
has been released without a predominant responsible organization, through papers, reports,
or website code disclosure [28–35]. This study uses YOLO v5, which has frequently been
applied and discussed owing to its high performance [13,36], as well as the recently released
YOLO v8.

It must be noted that YOLO v8 was released during the early stages of writing this
paper and is still being upgraded on the website that publishes the code; therefore, it is
difficult to guarantee the stability of the results. However, we consider it meaningful to
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compare the stable v5, which has been previously released by the same institution, and the
latest v8, which is claimed to exhibit superior performance.

4. Object Detection Accuracy

The prediction accuracy of a deep learning model is evaluated at each training step
based on the given dataset. The model learning level can be improved, and better prediction
can be achieved by updating the parameter values of the model to yield higher accuracy
than that of the current training step. In cases in which a specific index value (e.g., stock
price) or category (e.g., distinguishing between dogs and cats) is assessed, the accuracy
of the predicted value can be determined by comparing it to a single corresponding real
value [37]. On the other hand, in the object detection model, the average precision (AP)
is used to reflect both localization and classification. Key concepts related to AP include
the prediction status, intersection over union (IoU), precision, recall, and mAP. Padilla
et al. (2020) [38] provide detailed explanations and examples of these concepts, which are
summarized in the following sections.

4.1. IoU

Images that are used for learning in the object detection model contain ground-truth
bounding boxes, as illustrated in Figure 2. Predicted bounding boxes are generated during
the learning process. In the example shown in Figure 4, when a ground-truth bounding box
(green solid line) contains an object, as shown in (a), the location of the object is assumed
to be predicted as the box with the red dashed line, as shown in (b), and the confidence,
namely the probability of it being that object, is 80%. In this case, the union area of the two
boxes is shown in (c), and the intersection area is shown in (d). The intersection over union
(IoU) is the ratio of the intersection area to the union area.
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(d) intersection area.

An IoU threshold is set to determine whether the prediction is correct during the
learning process. For example, if the IoU is set to 0.5 in the example of detecting one type
of class, as shown in Figure 4, because the intersection area relative to the total union area
is 0.5 or greater, the object is considered to be detected correctly, which is referred to as a
true positive (TP). However, if the IoU is lower than the threshold of 0.5, as in the examples
shown in Figure 5, the object is considered to be detected incorrectly, which is referred to as
a false positive (FP). In Figure 5, the two boxes that are located outside the ground-truth
bounding box on the far right also correspond to FPs. The numbers indicated on the
predicted boxes in this figure are the confidence values. Thus, TP and FP are distinguished
based on the IoU, regardless of the probability of being that class. Meanwhile, as indicated
in Figure 5, the model fails to detect the actual existing object, which is known as a false
negative (FN). Therefore, three FNs and four FPs are identified in this example.
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4.2. Precision and Recall

In machine learning, the performance is generally evaluated using a single value for
classification or value prediction. In object detection, two metrics are used simultaneously:
precision and recall [39]. As shown in Equation (1), precision is the ratio of correctly
identified objects to the total number of objects that are identified as positive. As indicated
in Equation (2), recall is the ratio of correctly identified objects to the total number of
actual objects.

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Precision and recall have an inverse relationship. For example, if the model is trained
to achieve a high precision, the number of detected objects will decrease, resulting in a
lower recall. Conversely, if the model is trained to increase the recall, more objects will be
detected, which will decrease the precision. Therefore, a precision–recall (P–R) curve, which
simultaneously reflects the precision and recall values based on the detected confidence,
is applied in object detection. The area under the curve, which is obtained by applying
interpolation, is used as the accuracy metric known as AP [40].

When multiple classes are used, the mAP is calculated by averaging the AP values of
the classes. The mAP50 denotes the P–R curve applied with an IoU of 50%. The average
value applied with an IoU from 50% to 95% in 5% increments is denoted as mAP50–95.
As the IoU increases, the number of TPs decreases, whereas the number of FPs and FNs
increases, resulting in a lower mAP50–95 value than the mAP50 value.

5. Dataset Configuration

Three classes were used in this study: heavy construction equipment (Heavy), PPE,
and workers (Worker). Images for each class were collected through web crawling. The
images were automatically searched in both English and Korean and downloaded from
Google (www.google.com) and Naver (www.naver.com) using a Python-based code. The
following keywords were used for the three classes: (1) Heavy: bulldozer, excavator, grader,
tower crane, and heavy construction equipment; (2) PPE: hard hat, harness, and dust mask;
and (3) Worker: construction worker. Approximately 18,000 images were collected. Images
unrelated to the keywords and blurry or indistinguishable images were excluded, and
finally, a total of 4844 images were used in the study.

The Roboflow platform (https://roboflow.com) was employed for image preprocess-
ing. The researcher manually drew bounding boxes in the relevant areas of each image and
assigned the corresponding class. Among the 4844 images, 3391 (70%) were allocated to
the training, 727 (15%) to the validation, and 726 (15%) to the test datasets. Some images
contain multiple class types, resulting in a total of 10,181 instances being applied across
all classes, as indicated in Table 1. Figure 6 depicts the bounding boxes that are set in the
images with multiple classes in the training, validation, and test datasets. In this figure,
H, P, and W represent the Heavy, PPE, and Worker classes, respectively, and the number
following each initial indicates the number of instances for that class.

www.google.com
www.naver.com
https://roboflow.com
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Table 1. Number of instances per class in datasets.

Class Training Validation Test Total

Heavy 1546 341 325 2212
PPE 3966 809 839 5614

Worker 1645 350 360 2355
Sum 7157 1500 1524 10,181
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6. YOLO Model Implementation
6.1. YOLO Model

The YOLO model applied in this study is available in five different sizes, as listed in
Table 2: nano (N), small (S), medium (M), large (L), and extra-large (xL). The light models
have become heavier, whereas the heavy models have become lighter, from YOLO v5 to
v8. Heavier models comprise more layers and parameters and can achieve more precise
learning with sufficient data; however, they require longer computation times for both
training and prediction. The YOLO model tutorial provided by the developers recommends
the S and M models for mobile use and the L and xL models for cloud use [41]. More
specific differences between the two YOLO versions and detailed model architecture and
features can be found in the relevant websites and literature [35,42,43].

Table 2. Comparison of number of layers and parameters for each YOLO model.

Category Version Nano Small Medium Large Extra Large

Layers v5 214 214 291 368 445
v8 225 256 295 365 365

Parameters v5 1.8 7 20.9 46.1 86.2
(million) v8 3 11.1 25.9 43.6 68.2

6.2. Key Hyperparameters

Approximately 30 user-configurable options are available for YOLO model train-
ing, and the training results vary with the option values. These options are known as
hyperparameters. The hyperparameters investigated in this study are described as follows.

6.2.1. Epoch

An epoch refers to a single pass of the entire training dataset for learning. If the number
of epochs is too small, underfitting occurs owing to insufficient learning. If the number of
epochs is too large, the time required for training increases accordingly, and overfitting
to the training data may occur, which will cause the test results with new, unused data to
deteriorate [44]. Therefore, an appropriate epoch value needs to be set to achieve sufficient
training while obtaining the best test results. However, this value cannot be known until
the dataset has been applied. Thus, the YOLO tutorial recommends an initial 300-epoch. If
overfitting occurs, the suggestion is to reduce the number of epochs; otherwise, increase it
to 600, 1200, and so forth, while evaluating the learning level to determine the appropriate
epoch value [41].
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6.2.2. Learning Rate

The learning rate (Lr) sets the adjustment ratio for improving the parameter values
based on the degree of loss in a single learning session. If this value is too high, the loss
increases with each learning iteration, which results in divergence with no learning. If the
value is too small, the learning proceeds too slowly. Therefore, an appropriate Lr should be
set according to the data characteristics [45]. In YOLO, the default initial Lr is 0.01; however,
the recommended initial Lr varies depending on the applied optimizer: 0.01 for stochastic
gradient descent (SGD, the default optimizer in YOLO) and 0.001 for Adam, AdamW, and
RMSProp.

6.2.3. Lr Scheduler

In deep learning, the initial Lr may no longer result in a loss improvement as the
number of epochs increases and training continues. This is because the initial Lr becomes
too large for the millions of parameters of the updated or loss-improved training model,
which leads to a state in which no further loss improvement can be achieved. In this
situation, although changes in some parameters can reduce the loss, changes in others
may be too large and increase the loss, resulting in a lower overall accuracy than that
of the previous epoch. To overcome this problem, various decaying methods have been
developed to adjust the Lr value as the epochs progress [46].

In YOLO, a linear method is applied by default; the final Lr (lrf) is set to reduce the Lr
by a fixed amount in each epoch so that the Lr in the final epoch becomes “initial Lr (lr0)”
× “final Lr (lrf)”. Thus, with the same lr0 and lrf settings, if the epoch value is relatively
large, the Lr decreases less in each epoch, and conversely, if the epoch value is relatively
small, the Lr decreases more in each epoch. In this manner, the accuracy of the learning
results is determined by the mutual influence of the epochs and the lr0 and lrf values. No
extant method can predict the results in advance because of variability depending on the
dataset; therefore, a considerable amount of time and effort is required to determine and
apply suitable values through many attempts [47].

6.2.4. Early Stop Patience

As the number of epochs increases for the training data, the accuracy of the training
data continues to improve; however, the accuracy of the validation data, which are not
considered in the learning (loss improvement) process, may not improve after a certain
epoch. In this case, the overall time required for deep learning can be significantly reduced
by applying the early stop condition [48]. The early stop patience is an integer that is set by
the user. The training stops if the accuracy of the validation data in each epoch does not
improve for consecutive times equal to this number. In YOLO, the default patience value
is 100 for v5 and 50 for v8. If the early stop condition is met during training, the weight
values of all parameters in the last epoch and the epoch with the best validation accuracy
are saved separately, which can be used for testing or prediction by applying other data.

6.2.5. Hyperparameter Settings

The hyperparameter values are set in the training function of YOLO. The user can set
a specific value directly as an argument. If no value is set, the default value of the function
is applied. The hyperparameter setting methods differ slightly between YOLO v5 and
v8. All hyperparameters of v8 and more than half of the hyperparameters of v5 are set
individually; however, the remaining values of v5 are set by a specific designated file that
contains various hyperparameter values including the learning rates of lr0 and lrf. In YOLO
v5, there are three default files: “hyp.scratch-low.yaml” (Hyp-low), “hyp.scratch-med.yaml”
(Hyp-med), and “hyp.scratch-high.yaml” (Hyp-high). Each file has a total of 29 variables,
23 of which have the same values in all three files. The variables with different values are
listed in Table 3. The tutorial provides a description of each variable as listed in Table 3. It
can be observed that Hyp-low and Hyp-med differ in five variables, whereas Hyp-med and
Hyp-high differ in only one variable. In YOLO v5, the Hyp-low file is applied by default;
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however, the user can enter another file name as an argument of the training function. Each
value can also be modified within the file. However, in YOLO v8, all parameters are set
individually as an argument in the training function without any file format. If training is
executed with the default option in v8, the same default values as those in the Hyp-low file
of v5 are applied.

Table 3. Comparison of variable values in YOLO v5 hyperparameter files.

Variable Description Hyp-Low Hyp-Med HYP-High

lrf final learning rate 0.01 0.1 0.1
cls cls loss gain 0.5 0.3 0.3
obj obj loss gain 1 0.7 0.7

scale image scale 0.5 0.9 0.9
mixup image mixup 0 0.1 0.1

copy_paste segment copy-paste 0 0 0.1

6.3. YOLO Experimental Settings

In this study, YOLO v5 and v8 were initially trained under identical conditions, and
subsequently, the validation accuracy was improved by altering the learning environment
settings with the same procedure for each version. As numerous hyperparameter combina-
tions and other learning environment settings can determine the accuracy of the learning
results, the default values and those recommended in the tutorial were applied for the
initial training. The main settings and accuracy improvement procedure are illustrated in
Figure 7 and described as follows.
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The L and xL YOLO models are used to obtain higher accuracy through more refined
learning. The Lr scheduler is a linear method with LambdaLR of PyTorch, which is the
default for v5 and v8. For the early stop patience, 50 is selected from the default values of
100 in v5 and 50 in v8, considering the computer running time.

The optimizer initially applied is SGD, which is the default for v5 and v8. The learning
rate is set to the recommended value of 0.01. The hyperparameter file in v5 is the default
Hyp-low file, the condition of which is identical to the default in v8. The initial epoch value
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is set to 300, and it increases by 300 until no further improvement in accuracy is observed.
The accuracy is compared using both mAP50 and mAP50–95; if either value improves, the
epoch increase continues. Following this process, the setting conditions with the highest
accuracy for mAP50 and mAP50–95 in both v5 and v8 are identified, yielding a total of four
conditions (two for each YOLO version).

These identified conditions are further assessed by applying different optimizers.
Adam and AdamW are used in both versions, and RMSProp is additionally applied in
v8. The learning rates for the Adam, AdamW, and RMSProp optimizers are all set to the
recommended value of 0.001. The results of all optimizers including SGD are compared to
determine the best optimizers for mAP50 and mAP50–95 in each YOLO version.

Finally, the default Hyp-med and Hyp-high files in v5 are applied to the models with
the best optimizers. In v8, the same variable values as those applied in v5 are assigned
as parameters. In this manner, the best setting condition of the optimizer, epochs, and
hyperparameter file could be identified under the default and recommended environments.

The above procedure was determined through multiple preliminary experiments.
A more systematic approach and higher accuracy may be derived from other methods
because many possible combinations of learning condition settings exist.

7. Learning Results and Analysis

The results of the first training, which were mainly based on the default values
with epoch changes, are summarized in Table 4. Training was performed in a CUDA
environment using an NVIDIA 40 GB GPU on Google Colab Pro+. The batch size was
determined within the maximum range allowed by the memory, which is 32 only for the
xL in v5 that has the largest number of parameters as shown in Table 2 and 64 for the
remainder. Table 4 displays the best epoch value and computer running time for each
training according to the initial epochs; a larger best epoch in each YOLO model indicates
that more computing time was required.

Table 4. Experimental results when applying default options of YOLO v5 and v8.

YOLO version v5 v8

YOLO model Large Extra Large Large Extra Large
Batch size 64 32 64 64

Epochs (initial) 300 600 900 1200 300 600 900 1200 1500 300 600 900 1200 300 600 900 1200

Epochs (best) 174 173 180 214 212 239 169 241 292 169 319 293 210 259 347 200 153
Running time (hours) 1.8 1.8 1.9 2.2 3.3 3.6 2.8 3.7 4.3 2.0 3.4 3.2 2.4 3.8 5.1 4.0 2.6

Training
Precision 0.995 0.995 0.996 0.995 0.998 0.997 0.996 0.997 0.995 0.998 0.998 0.997 0.997 0.999 0.998 0.998 0.996

Recall 0.992 0.993 0.992 0.990 0.992 0.994 0.991 0.992 0.994 0.995 0.999 0.998 0.995 0.998 0.999 0.999 0.993
mAP50 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

mAP50–95 0.962 0.950 0.950 0.957 0.979 0.975 0.953 0.969 0.974 0.980 0.990 0.988 0.980 0.992 0.993 0.992 0.972

Validation

Precision 0.960 0.965 0.950 0.960 0.972 0.963 0.96 0.962 0.957 0.965 0.963 0.954 0.956 0.963 0.958 0.968 0.974
Recall 0.873 0.875 0.88 0.877 0.869 0.871 0.888 0.891 0.874 0.882 0.890 0.878 0.884 0.871 0.890 0.881 0.866
mAP50 0.925 0.931 0.930 0.928 0.927 0.926 0.935 * 0.930 0.930 0.943 0.942 0.943 0.939 0.938 0.945 * 0.944 0.943

mAP50–95 0.792 0.793 0.795 0.794 0.807 0.808 0.803 0.810 * 0.809 0.835 0.843 0.846 0.839 0.846 0.849 0.853 * 0.838

Test

Precision 0.974 0.952 0.956 0.953 0.967 0.962 0.952 0.958 0.955 0.942 0.961 0.950 0.950 0.951 0.966 0.941 0.939
Recall 0.868 0.871 0.875 0.872 0.877 0.873 0.882 0.890 0.892 0.886 0.875 0.889 0.885 0.884 0.879 0.887 0.897
mAP50 0.923 0.925 0.920 0.925 0.923 0.922 0.930 0.929 0.935 0.933 0.944 0.941 0.943 0.942 0.945 0.936 0.939

mAP50–95 0.789 0.780 0.775 0.778 0.799 0.797 0.791 0.796 0.804 0.824 0.835 0.83 0.829 0.838 0.839 0.836 0.820

* Highest validation accuracy in each YOLO model.

The accuracy for each dataset is highest in the training dataset that was directly used
for learning, followed by the validation dataset that was used as the early stop criterion
during the training process, and lowest in the test dataset that was not considered at all
during the learning process. The less stringent mAP50 is higher than mAP50–95 in all cases.
Moreover, the computing time of the xL model is longer than that of the L model with the
same initial epochs in both YOLO versions; however, the accuracy is generally higher in
most cases. YOLO v8 required more computing time than v5 in most cases but yielded
higher accuracies in all cases.

A comparison of the validation results, which provides the accuracy indicators of the
model learning, reveals that the highest accuracy of the two YOLO versions was achieved
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when using the xL model. In v5, the highest mAP50 and mAP50–95 values were achieved
at 900 and 1200 epochs, respectively. In v8, the highest mAP50 and mAP50–95 values
were achieved at 600 and 900 epochs, respectively. These four conditions (two for each
version) were further applied to the other optimizers, and the results are presented in
Table 5. Although slightly better results are achieved for AdamW in v5, the results of the
other optimizers are lower than those of the default SGD in v8.

Table 5. Comparison of optimizers for best default options (extra-large model).

YOLO version v5 v8

Optimizer SGD Adam AdamW SGD Adam AdamW RMSProp
Epochs (initial) 900 1200 900 1200 900 1200 600 900 600 900 600 900 600 900

Epochs (best) 169 241 398 285 240 515 347 200 277 254 298 303 1 4
Running time (hours) 2.8 3.7 5.8 4.4 3.9 7.7 5.1 4.0 4.2 4.0 4.6 4.6 0.6 0.7

Training
Precision 0.996 0.997 0.977 0.972 0.997 0.998 0.998 0.998 0.990 0.993 0.998 0.998 0.011 0.005

Recall 0.991 0.992 0.958 0.953 0.991 0.990 0.999 0.999 0.991 0.982 0.998 0.999 0.245 0.530
mAP50 0.995 0.995 0.989 0.986 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.011 0.080

mAP50–95 0.953 0.969 0.871 0.849 0.965 0.985 0.993 0.992 0.969 0.959 0.991 0.991 0.004 0.026

Validation

Precision 0.960 0.962 0.933 0.917 0.958 0.967 0.958 0.968 0.954 0.953 0.965 0.954 0.012 0.005
Recall 0.888 0.891 0.866 0.873 0.870 0.857 0.890 0.881 0.872 0.869 0.878 0.876 0.247 0.538
mAP50 0.935 0.930 0.921 0.921 0.935 * 0.931 0.945 * 0.944 0.940 0.933 0.936 0.931 0.012 0.097

mAP50–95 0.803 0.810 0.752 0.743 0.811 0.812 * 0.849 0.853 * 0.823 0.820 0.837 0.832 0.004 0.033

Test

Precision 0.952 0.958 0.913 0.924 0.958 0.969 0.966 0.941 0.936 0.956 0.956 0.942 0.011 0.005
Recall 0.882 0.890 0.864 0.874 0.869 0.859 0.879 0.887 0.873 0.874 0.862 0.895 0.235 0.557
mAP50 0.930 0.929 0.919 0.924 0.926 0.927 0.945 0.936 0.934 0.937 0.935 0.937 0.011 0.081

mAP50–95 0.791 0.796 0.733 0.728 0.785 0.799 0.839 0.836 0.809 0.808 0.821 0.823 0.004 0.027

* Highest validation accuracy in each YOLO model.

Table 6 shows the results of reflecting the conditions of the Hyp-med and Hyp-high
files in the two models for each YOLO version: epochs of 900 and 1200 with AdamW in
v5 and epochs of 600 and 900 with SDG in v8. The results of Hyp-med and Hyp-high are
the same in both versions, likely because “copy_paste,” which is the only variable with a
different value among the 29 variables as described in Table 3, did not affect the learning.
Compared to the default Hyp-low, the accuracies of mAP50 and mAP50–95 improved in
v5, and only the mAP50 improved in v8.

Table 6. Comparison of hyperparameter file options for best optimizers.

YOLO version v5 v8

Optimizer SGD AdamW SGD

Epochs 900 1200 900 1200 900 900 1200 1200 600 900 600 600 900 900
Hyperparameter file low low low low med high med high low low med high med high

Epochs (best) 169 241 240 515 315 315 437 437 347 200 237 237 324 324
Running time (hours) 2.8 3.7 3.9 7.7 4.7 4.7 6.4 6.4 5.1 4.0 3.7 3.7 4.8 4.8

Training
Precision 0.996 0.997 0.997 0.998 0.995 0.995 0.996 0.996 0.998 0.998 0.995 0.995 0.997 0.997

Recall 0.991 0.992 0.991 0.990 0.991 0.991 0.990 0.990 0.999 0.999 0.992 0.992 0.994 0.994
mAP50 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

mAP50–95 0.953 0.969 0.965 0.985 0.959 0.959 0.965 0.965 0.993 0.992 0.975 0.975 0.981 0.981

Validation

Precision 0.960 0.962 0.958 0.967 0.961 0.961 0.952 0.952 0.958 0.968 0.974 0.974 0.959 0.959
Recall 0.888 0.891 0.870 0.857 0.900 0.900 0.900 0.900 0.890 0.881 0.881 0.881 0.894 0.894
mAP50 0.935 0.930 0.935 0.931 0.947 * 0.947 * 0.946 0.946 0.945 0.944 0.954 * 0.954 * 0.949 0.949

mAP50–95 0.803 0.810 0.811 0.812 0.823 0.823 0.826 * 0.826 * 0.849 0.853 * 0.851 0.851 0.852 0.852

Test

Precision 0.952 0.958 0.958 0.969 0.961 0.961 0.964 0.964 0.966 0.941 0.959 0.959 0.953 0.953
Recall 0.882 0.890 0.869 0.859 0.884 0.884 0.886 0.886 0.879 0.887 0.889 0.889 0.887 0.887
mAP50 0.930 0.929 0.926 0.927 0.941 0.941 0.938 0.938 0.945 0.936 0.951 0.951 0.948 0.948

mAP50–95 0.791 0.796 0.785 0.799 0.800 0.800 0.805 0.805 0.839 0.836 0.842 0.842 0.845 0.845

* Highest validation accuracy in each YOLO model.

Based on the applied dataset, the highest validation accuracies for mAP50 are 94.7%
with AdamW-xL-900-hyp_med in v5 and 95.4% with SGD-xL-600-hyp_med in v8, and
the highest accuracies for mAP50–95 are 82.6% with AdamW-xL-1200-hyp_med in v5 and
85.3% with SGD-xL-900-hyp_low in v8. According to the comparison of the two versions,
v8 yields higher accuracy than v5. Furthermore, the average of all validation results
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demonstrates that the mAP50 and mAP50–90 of v8 are 1.4% and 5.3% higher, respectively.
The average accuracies of all test data are 1.6% and 5.3% higher in mAP50 and mAP50–90,
respectively, for v8.

Figure 8 depicts the labeled images that were used in the training and the prediction
results of the validation and the test images with SGD-xL-600-hyp_med in v8, which
produced the best results for mAP50. Higher confidence results are obtained in simple
images with clear shapes, such as hard hats and safety suits, whereas lower confidence
results are obtained in images of partial shapes, such as heavy equipment or harnesses.
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8. Discussion

The accuracy improvement achieved by the proposed method on application to the
xL models of YOLO v5 and v8 to determine the optimal epoch number, optimizer, and
hyperparameter file condition is shown in Figure 9. Compared to the initial accuracy,
mAP50 improved by 2.2% and mAP50–95 by 2.4% in v5, and mAP50 improved by 1.7%
and mAP50–95 by 0.8% in v8. It can be seen that more improvement is obtained in v5,
which has a lower initial accuracy. Although the changed accuracy itself is not a significant
improvement, in learning based on the complicated images used in this study, the change
can be a meaningful improvement obtained by adjusting YOLO default conditions and
recommended options. In particular, compared to previous studies, the degree of the best
accuracy in this study is notable.

Although it is impossible to directly compare the results of this study with those of
previous studies due to the different datasets applied, a general comparison of the test
results between this study and major previous studies related to construction safety is
shown in Table 7. These previous studies provide mAP50 or precision and recall values as
test results. Shen et al. (2021) [49], who distinguished whether a worker is wearing a helmet
or not, which is a relatively simple condition, obtained the highest precision and recall
values. This study has the second-highest precision value. For the recall value, the cases of
applying Faster R-CNN and YOLO-EfficientNet in Lee et al. (2023) [50], who distinguish
the safety helmet, head, and hat, are followed by the result of this study.

In the case of mAP50, which is calculated by combining precision and recall, it can
be seen that recent YOLO models have generally higher accuracy values in detecting
construction-safety-related objects than the studies applying other models such as Single
Shot Multi-box Detector (SSD) and Faster R-CNN. Among the YOLO models, overall,
the newer the YOLO version and the clearer the difference in object shape, the higher
the accuracy. Raja (2023) [51], who reports the highest accuracy, presents the result of a
relatively easy learning environment owing to the distinct shape difference between helmets
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and human heads. Zhang et al. (2023) [52], who present the next highest accuracy, reflect
four classes but classify them by helmets and masks, which can also be easily compared.
The accuracy of this study is the third highest, but this can be considered a substantial
result considering the relative complexity of the image data considered. Meanwhile, most
current studies do not reflect sufficient types of classes needed for construction site safety
management, so future research should expand the scope to reflect more types of classes.
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Table 7. General comparison between test results of related studies.

Reference Model Precision Recall mAP50 Number of
Images

Number of
Classes Class Type

Wu et al.
(2019) [53] SSD - - 0.839 3714 5 four colored safety

helmets, none

Wang et al.
(2019) [54] Faster R-CNN - - 0.926 2410 6

dump truck, excavator,
loader, mixer truck,

roller, worker
Li et al.

(2020) [55] SSD-MobileNet 0.95 0.77 - 3261 2 safety helmet wearing

Nath et al.
(2020) [10] YOLO v3 - - 0.723 1372 4 worker with safety

helmet, vest, both, none
Shen et al.
(2021) [49]

a self-developed
model 0.962 0.962 - 18,800 2 safety helmet wearing

Cho et al.
(2021) [11]

a self-developed
model - - 0.792 2592 3 worker, concrete mixer

truck, dump truck

Han et al.
(2021) [56]

a self-developed
model based on

SSD
- - 0.881 3174 2 safety helmet wearing

Kang et al.
(2021) [12] YOLO v3 - - 0.829 896 2 heavy construction

equipment, worker

Ferdous and
Ahsan (2022)

[17]
YOLOX - - 0.898 1699 8

four colored safety
helmets, vest, safety
glass, worker body,

worker head
Kim and

Park (2021)
[18]

YOLO v5 - - 0.913 45,354 3 worker, safety helmet,
mask
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Table 7. Cont.

Reference Model Precision Recall mAP50 Number of
Images

Number of
Classes Class Type

Wang et al.
(2021) [57] YOLO v5 0.866 1330 6 four colored safety

helmets, person, vest
Hayat and
Morgado-

Dias (2022)
[19]

YOLO v5 - - 0.924 5000 2 safety helmet, worker
head

Alateeq et al.
(2023) [20] YOLO v5

0.906 0.767 0.831 826 3 worker, safety helmet,
vest

0.879 0.882 0.920 6338 7
bulldozer, dump truck,

excavator, grader, loader,
mobile crane, roller

Lee et al.
(2023) [50]

Faster R-CNN 0.849 0.935 0.918

21,568 3 safety helmet, head, hatYOLO v5 0.955 0.858 0.917
RetinaNet 0.264 0.138 0.201

YOLO-
EfficientNet 0.942 0.933 0.914

Lung et al.
(2023) [58] SSD 0.937 0.360 - 421 3

heavy construction
equipment, worker,

rebar
Raja (2023)

[51] YOLO v8 - - 0.956 5000 2 safety helmet, worker
head

Zhang et al.
(2023) [52]

Faster R-CNN - - 0.706

12,000 4
worker with safety
helmet, mask, both,

none

YOLO v5 - - 0.905
YOLO v4 - - 0.932

a self-developed
model based on

YOLO v4
- - 0.955

This study YOLO v5 0.961 0.884 0.941
4844 3

heavy construction
equipment, worker, PPEYOLO v8 0.959 0.889 0.951

9. Conclusions

Safety at construction sites is a top priority for project managers, and extensive invest-
ments have been made in management and technology to reduce accidents. However, the
construction industry has higher accident and fatality rates than other industries owing
to time and cost pressures as well as hazardous working environments. This study was
conducted as a preliminary attempt to apply computer vision technology, a subset of AI, to
reduce accidents at construction sites. The main research achievements are as follows:

(i) Images collected through web crawling are labeled by the researchers to construct a
dataset comprising 10,181 objects from 4844 images, including 2212 heavy equipment,
5614 PPE, and 2355 workers images.

(ii) A consistent process for improving the prediction accuracy through changes in the
epochs, optimizers, and hyperparameters is proposed by applying the constructed
dataset to YOLO v5 and v8.

(iii) The final validation and test accuracies obtained are sufficiently competitive com-
pared to those reported by previous studies that have applied computer vision in
construction safety management.

(iv) Based on the applied dataset, the results for both YOLO v5 and v8 consistently
demonstrate that the xL model, which is the heaviest, requires more computing time
than the L model but provides higher accuracy.

(v) When the same procedure is applied to v5, which has exhibited high accuracies in
various works, and the recently released v8, the results of v8 are superior based on
the dataset used in this study.
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This study preliminarily verified the feasibility of using computer vision at construc-
tion sites by setting three classes on the basis of the findings of similar prior studies. In
the future, additional images should be collected and accurately labeled to construct a
high-quality dataset that reflects various classes at construction sites. Moreover, higher-
performance automatic optimization methods should be developed for the accuracy im-
provement process, which requires extensive manual work to set the values, verify the
results, and change the codes. Advancements in these computer vision techniques can be
used for various sophisticated management tools at construction sites to improve the work
process, quality control, and progress management in addition to safety management, in
combination with BIM, robotics, drones, and other technologies.
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