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Abstract: Understanding variations in drought characteristics is of great importance for water
resource planning and agriculture risk management. Despite increasing interest in exploring spa-
tiotemporal drought patterns, long-term drought event characteristics and their future changes
are unclear in major grain-producing areas in China. In this study, we applied Run theory, Sen’s
slope, the modified Mann–Kendall method, wavelet analysis, and three machine learning models to
systematically examine drought variation patterns, their future trends, and agricultural exposure
in Henan Province, China, from 1961 to 2019. The results indicated that the SPEI-12 showed a
significant increase at a rate of 0.0017/month during 1961–1999, but this has gradually changed to
a drying trend since the 21st century. Drought event characteristics shifted markedly during these
two periods, with drought duration and severity gradually shifting from east to west. The BO-LSTM
model performed better than the LSTM and BP models, indicating that the drought frequency, higher
drought duration, and drought peak would greatly increase 1.28–3.40-fold and cropland exposure is
predicted to increase 1.61-fold in the near future compared to the first two decades of the 21st century.
This finding not only helps developing meteorological drought predicting models, but also provides
the scientific groundwork for drought disaster prevention and mitigation in Henan Province.

Keywords: cropland exposure; drought event characteristics; drought prediction; Henan Province

1. Introduction

Droughts are the most frequent and longest lasting natural disasters worldwide, and
they have serious impacts on agriculture, water resources, ecology, and society [1], causing
global economic losses of USD 1.75 × 1012 from 1900 to 2019 [2]. In recent decades, the
frequency and severity of droughts have been increasing on both global and regional scales,
particularly in Europe [3], Africa [4], Asia [5], and southern Europe [6]. Under the climate
change scenario, drought frequency is projected to increase by more than 10% in China [7]
and 5–10-fold over most of continental Africa [8], with the incidence of extreme drought
increasing to 5% in Australia [9] and drought magnitude projected to increase by 3.2–32.9%
in the USA [10] before 2050. By the end of the 21st century, approximately 47% and 49% of
land worldwide is projected to experience increases in drought frequency and severity [11],
particularly in central Europe [12] and East Africa [13]. Therefore, it is crucial to gain a
better understanding of the regional spatiotemporal drought characteristics for developing
more reliable strategies to adapt to drought disasters.

Meteorological drought is related to the deficiency of precipitation over an extended
period of time, from which other types of droughts originate. It is often an early indicator
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of more impactful dry events, and has always been a hot topic of research interest [14,15].
Based on meteorological variables, several drought indices have been widely used to
monitor drought severity, such as the standardized precipitation index (SPI) [16], Palmer
Drought Severity Index (PDSI) [17], and Standardized Precipitation Evapotranspiration
Index (SPEI) [18]. The SPI can be applied at any spatial and temporal scale, but it considers
only precipitation variability and does not reflect changes in drought in the context of global
climate warming [19]. The PDSI is considered a landmark in the development of drought
indices [20], but has several deficiencies, including the strong influence of the calibration
period, limited spatial comparability, and subjectivity in relating drought conditions to
index values [21]. To address these limitations, the SPEI was proposed [21], which combines
the temperature sensitivity of the PDSI and the advantages of the SPI for multiscale and
spatial comparisons. The SPEI has been reported to be more suitable for analyzing drought
characteristics globally [22], in Europe [23], China [24], and other regions [25,26]. Despite
the extensive usage of the SPEI, there is still controversy regarding which equation should
be used to estimate potential evapotranspiration (PET) [27]. PET may be calculated using
several methods, of which the Thornthwaite [28] and Penman–Monteith [29] methods
are the most widely used. As the Thornthwaite method is based solely on temperature,
it tends to underestimate PET in arid and semiarid regions [30]. The Penman–Monteith
method is widely accepted as one of the most accurate means of calculating PET due to
its improved physical calculation process, and could provide better estimates of global
drought trends [19].

Drought events often exhibit distinct spatiotemporal heterogeneity at different spa-
tiotemporal scales [30]. It is particularly important to accurately determine the temporal
and spatial dynamic characteristics of drought to make precise predictions. The drought
prediction methods developed to date can be categorized as physical models [31] and
statistical models [32]. Statistical models utilize the computational capacity of machine
learning algorithms and mathematical equations; they can explain future trends in cli-
mate parameters with less model complexity, relative simplicity of experimentation and
evaluation, and lower computational cost and data requirements than physical models.
Neural network models are one of the most commonly used methods due to their flexibility
and strong capability to model complex patterns hidden in data [33,34]. Among various
neural network models, the back-propagation (BP) neural network is a widely used type
of neural network model which not only self-studies and self-optimizes using existing
information, but can also solve large-scale complex nonlinear problems. However, the
BP algorithm is an optimization method of local search. When training multilayer neural
networks, it may fall into a local extremum, thus causing the training to fail [35]. Long
short-term memory (LSTM) is an excellent variant of the recurrent neural network (RNN)
model, which not only possesses characteristics of the RNN model but effectively avoids
undesirable situations such as gradient explosion and disappearance, effectively utilizing
historical information and achieving the long-term prediction functions of time series [36].
However, the performance of LSTM models relies highly on the selection of hyperparame-
ters, such as the size of the hidden layer, the learning rate, and regularization parameters.
These selections often require experience and repetitive experimentation, leading to model
predictions that are time-consuming and overly dependent on prior knowledge [36,37].
Efficient hyperparameter optimization algorithms are critical to improve network perfor-
mance [38,39].

The major grain-producing areas producing 76% of China’s total grain production are
the mainstay of maintaining China’s food security [40]. The development of agriculture
in these regions has always been one of the most important heart issues in the process
of modernization of Chinese society. Henan Province, the core area for national major
grain-producing areas and the leading province in grain production in China, produced
65.42 million tons of grain, accounting for 9.58% of the total grain production in China [41].
However, drought is one of the most severe agricultural meteorological disasters, resulting
in approximately 9573.52 to 6010.06 million ha areas of accumulated drought damage and
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inundation from 1951 to 2009, respectively [42]. Therefore, systematically understanding
drought variation characteristics and cropland exposure is of great scientific and practical
value. Based on the SPEI, the primary objectives of this study are (1) to identify the long-
term drought trends, periodicity and drought event characterized using Sen’s slope, Morlet
wavelet analysis, and Run theory; (2) to compare the BP, LSTM, and BO-LSTM models
to identify the best predicting model and predict the spatiotemporal patterns of drought
for the next decade; and (3) to quantify the change process and conversion pattern of
cropland exposure to drought during different study periods. This work will provide a
scientific basis for regional water resource management and drought disaster prevention
and mitigation.

2. Dataset and Methods
2.1. Study Area

Henan Province is situated in central–eastern China, and covers an area of 167,000 km2,
accounting for 1.73% of the total area of China. The province is flat in the east and
mountainous in the west and extreme south, with plains, mountains, and hills accounting
for 56%, 26%, and 18% of the total area, respectively (Figure 1). The area has a continental
monsoon climate that extends from a subtropical zone in the south to a temperate zone
in the north, with four distinct seasons. The average temperature ranges from 12 ◦C to
16 ◦C [43], with an annual average rainfall of 533–1380 mm [44], nearly 70% of which occurs
in the wet season from June to September. Due to its superior natural environment and
rich climate resources, Henan Province has always been considered as one of the main
production bases in China [45].
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Figure 1. (a) Geographic location, (b) location of meteorological stations, and (c) spatial distribution
of cropland of the study area.

2.2. Data Sources

The meteorological data used to calculate the SPEI in this study were obtained from the
Resource and Environment Science and Data Center, Institute of Geographic Sciences and
Resources, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 3 March
2022). This dataset covers the period of 1961–2019 and includes total monthly precipitation,

https://www.resdc.cn/
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minimum and maximum temperatures, wind speed, and sunshine hours, as well as geo-
graphic information including altitude, latitude, and longitude. The data were preprocessed
for strict quality control as follows. First, meteorological stations with long-term missing or
unrecorded values were removed. The mean substitution method was applied, and rare
missing data were interpolated based on mean values of the neighboring months or years
for the corresponding period (missing data for the long term). Consequently, a total of
100 meteorological stations from 1961 to 2019 in Henan Province were included in the anal-
ysis. Secondly, as global warming was reported to have begun to weaken and even cease
since 2000 [46,47], to clarify whether Henan Province experienced a warming hiatus that
was synchronized with drought variation and to understand the possible characteristics
after the hiatus, the study period was divided into two periods: 1961–1999 and 2000–2019.
To determine the decadal drought features, decadal values were computed by averaging
the periods 1961–1969, 1970–1979, 1980–1989, 1990–1999, 2000–2009, and 2010–2019.

2.3. Drought Trends and Periodicity

Due to its multiple advantages, we adopted the SPEI (based on the Penman-Monteith
model) as a drought index to determine the spatiotemporal variation in drought in Henan
Province. SPEI calculations were performed using the SPEI package (https://cran.r-project.
org/web/packages/SPEI/, accessed on 18 April 2022) in R (R Core Team, Vienna, Austria).
Generally, SPEI values for different time scales reflect anomalous water states at different
times, and the 12-month SPEI (SPEI-12) is useful for hydrological drought analysis [48].
Therefore, SPEI-12 was selected to depict long-term drought characteristics in this study
and dry/wet conditions were classified as in [49].

In this study, Sen’s slope and the modified Mann–Kendall (MMK) method were
applied to analyze the spatiotemporal trends of the SPEI. The MMK test is a non-parametric
test that avoids time series autocorrelation and is therefore more reliable for the detection
of secular trends in climate data. The Sen’s slope method is a non-parametric approach
that does not require the data to conform to a particular distribution, and may be useful
to estimate the magnitude of trends in terms of relative change [50]. Morlet wavelet
analysis was used to calculate drought periodicity [51]. To visualize the spatial patterns
of drought conditions and trends across the study region, drought event characteristics
were spatially interpolated using inverse distance weighting (IDW) in ArcGIS v10.4. This
method is relatively fast, easy to compute, straightforward to interpret, and shows better
interpolation accuracy [52]. The Mann–Kendall statistical test, Morlet wavelet, and MMK
were conducted in Matlab R2014 (The Mathworks, Natick, MA, USA), with a significance
level of 10%.

2.4. Drought Event Identification

To further investigate drought structure characteristics, drought event indices were
identified according to Run theory [53]. As described previously, drought events were
defined as periods from a month with SPEI < −1 to a month with SPEI > 0 [49] (Figure 2).
Drought events were characterized in terms of drought frequency (DF; ratio of drought
events number to study years), drought duration (DD; sum of consecutive months), drought
severity (DS; sum of absolute SPEI), drought intensity (DI; ratio of DS to DD), and drought
peak (DP; absolute minimum SPEI during the drought event). Then, the most severe
drought events were identified according to DS at the regional scale to investigate extreme
drought characteristics.

To quantify drought dynamic characteristics, we also calculated and compared the
mean drought duration (MDD), mean drought severity (MDS), mean drought intensity
(MDI), and maximum drought peak (DPmax) during different periods, as follows:

MDD =
∑N

i=1 DD
n

(1)

https://cran.r-project.org/web/packages/SPEI/
https://cran.r-project.org/web/packages/SPEI/
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MDS =
∑N

i=1 DS
n

(2)

MDI =
∑N

i=1 DS

∑N
i=1 DD

(3)

DPmax = max|DPi| i = 1, 2 . . . N (4)

where i is one drought event; N is the total number of drought events; and DD, DS, DI, and
DP are those for one drought event.
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2.5. Prediction Model

The Bayesian Optimization (BO) algorithm is a probability distribution optimization
algorithm that is used for the automatic tuning of machine learning hyperparameters. It
is mainly oriented toward solving complex black box problems with multimodality, non-
convexity, high dimensionality, and high evaluation costs [54]. To deal with the difficulty
of hyperparameter selection in the LSTM model, we applied the BO–LSTM modeling
method in this study. First, the data were split into 70% training and 30% testing sets and
normalized using the mapminmax function. Next, an objective function was created for
optimization and the BO parameter ranges were set as follows: NumOfUnits = (10, 50),
InitialLearnRate = (1 × 10−3, 1), and L2Regularization = (1 × 10−10, 1 × 10−2). Then, the
bayesopt function was used to find the best parameter combination by minimizing the loss
function. The network structure of the LSTM model was constructed and the parameters set.
The Adam optimization algorithm was used for model training with the following settings:
MaxEpochs = 1200, InitialLearnRate = (1 × 10−3, 1), LearnRateSchedule: piecewise, and
LearnRateDropFactor: 0.2. The model was trained using the trainNetwork function, and
predictions were made based on the training and testing sets. The normalization of the
predicted results was reversed and the coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE) of the predictions were calculated. Finally,
the trained model was used to predict data for the next decade.

The results of the BP, LSTM, and BO-LSTM models were compared to verify their
effectiveness according to the RMSE, R2, and MAE, which were calculated as follows:
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R2 =

 ∑ (oi − o)(yi − y)√
(oi − o)2(yi − y)2

2

(5)

RMSE =

√
1
n∑n

i=1(oi − yi)
2 (6)

MAE =
∑n

i=1|oi − yi|
N

(7)

where n is the number of samples, and yi and oi are the measured and predicted values,
respectively. R2 values approaching 1 indicate better simulation, and RMSE and MAE
values approaching 0 indicate better simulation.

2.6. Cropland Exposure to Drought

Cropland exposure to drought was calculated by multiplying the DF at a grid point by
the cropland area of that grid point [55]. GlobeLand30 (http://www.globallandcover.cn,
accessed on 10 September 2023) land cover data for 2000, 2010, and 2020 were used to de-
termine cropland exposure. Continuous cropland areas from 2000 to 2020 were determined
using ArcGIS v10.4, and then the spatial resolution was resampled for consistency with the
DF map. To evaluate spatial differences in the impact of drought, we compared cropland
exposure during the periods 1961–1999, 2000–2019, and 2020–2029.

3. Results
3.1. Drought Dynamic Characteristics
3.1.1. Spatiotemporal Variation of SPEI

The SPEI-12 showed a significantly increasing trend with a rate of 0.0013/month
during 1961–2019, and showed a decreasing trend in the 21st century (Figure 3a). In the
1960s and 1970s, conditions were generally dry, with lower SPEI-12, and then changed to
wet conditions, with the 2000s being the wettest decade (average SPEI-12 = 0.49). To detect
the characteristics of these abrupt dry–wet changes, SPEI-12 variation was examined using
the Mann–Kendall test. We detected a clear turning point around 1982, after which the
climate became wetter (Figure 3b). In contrast, a drying tendency was detected in 2012
(Figure 3c), suggesting that this issue will require more attention in the near future. Periods
of extreme and severe dryness occurred during the 1960s, whereas no such events occurred
in other decades. The percentage of dryness decreased from 40.00% in the 1970s to 7.50% in
the 2000s, and were dominated by light dryness (Figure 4).

There were clear spatial differences in SPEI-12 variation during different periods
(Figure 5). From 1961 to 2019, the increasing trends of SPEI-12 were unambiguously
prevailing at 91% of the total stations, with significance at 47% of the total stations mainly in
Zhoukou, Shangqiu, Zhengzhou, Zhumadian, and Anyang cities, in contrast to significant
decreasing trends in Luoyang City (Figure 5a). The SPEI-12 increased significantly at
40% of all stations during 1961–1999, but these increases were mainly distributed in the
cities Jiaozuo, Xinxiang, Zhengzhou, Zhoukou, Xuchang, and Nanyang (Figure 5b). In
contrast, SPEI-12 decreased significantly at 31% of all stations, with negative values at 85%
of stations, mainly in the cities Jiaozuo and Kaifeng. The SPEI-12 increased by less than
0.0039/month at 15% of all stations from 2000 to 2019 (Figure 5c).

http://www.globallandcover.cn
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3.1.2. Drought Periodicity

According to the real part of the wavelet coefficient contour map, there were complex
multiple time scales consisting of small cycles nested within larger cycles, and the drought
evolution showed two clearly different time scales of 2–10 and 20–32 years (Figure 6a).
Combined with the wavelet variance plot, there were two distinct peaks in the drought
evolution in Henan Province, corresponding to time scales of 6 and 26 years, respectively
(Figure 6b). The largest time scale was 26 years, indicating that an approximate 26-year
drought cycle had the strongest fluctuations and formed the first major cycle. The 6-year
time scale corresponded to the second main drought cycle. During the period 2000–2019,
there were three periods of pronounced drought and wetness, which alternated on a time
scale of 2–10 years (Figure 6e). However, the contours of the oscillation periods remained
open around 2019, suggesting that Henan Province may continue to experience drought
after 2019.
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3.1.3. Drought Event Characteristics

The drought event characteristics showed similar spatial distributions across Henan
Province in 1961–2019 and 1961–1999 (Figure 7). For example, Jiyuan, Nanyang, Pingding-
shan, Zhumadian, Xinyang, northwestern Sanmenxia, and eastern Luoyang cities had
higher DF and lower MDD and MDS (except in western Luoyang) during these two peri-
ods. In contrast, northern and eastern Henan Province had lower DF but longer MDD and
higher MDS (Figure 7(a1–c2)), suggesting that droughts in southwestern Henan Province
were short, with low severity and high frequency, whereas those in northwestern Henan
Province were long, with high severity and low frequency. MDI and DPmax generally
exhibited complex, patchy features in Henan Province (Figure 7(d1–e2)), with high MDI
mainly in Jiyuan, Jiaozuo, Hebi, and Xinxiang, and Anyang cities. MDI exceeding 1.1 ac-
counted for 23.61% and 59.69% of the total area, respectively, while high DPmax values were
widely distributed in Puyang, Shangqiu, and Anyang cities, reaching a maximum of 3.29.

In comparison, spatial patterns of drought event characteristics in Henan Province
showed large changes during 2000–2019 (Figure 7(a3–e3)). Higher DF occurred mainly in
cities of Nanyang, Zhumadian, Xinyang, northwestern Sanmenxia, and southern Luoyang
and Jiaozuo, with DF > 20 in 34.40% of total areas, whereas relatively high MDD and
MDS shifted mainly to Sanmenxia, Luoyang, and Xinyang cites. Notably, the maximum
MDD and MDS during 2000–2019 decreased to 50.07% and 46.42%, respectively, compared
to those from 1961–1999 (Figure 7(a3–c3)). Higher MDI and DPmax values had similar
distribution patterns, with higher values scattered in southeastern and western Henan
Province, accounting for 26.16% (MDI > 1.0) and 9.72% (DPmax > 2.0) of total areas.

The 10 most severe drought events were identified based on the station-averaged
SPEI-12 in Henan Province, and the corresponding drought event characteristics were
calculated (Table 1). The most severe drought event occurred between 1965 and 1967,
with a DS of 40.31 and a DP of 2.24 in 1966, and the drought event with the longest DD
was recorded during 1968–1971, lasting approximately 35 months. The three most severe
drought events occurred within the 1960s, indicating that Henan Province suffered its worst
drought during this decade. Notably, only one of the 10 most severe drought events was
detected during 2000–2019, with a DD of 4 months and a DI of 0.89.

Table 1. The drought event characteristics of the 10 most severe drought events occurred at the
provincial level during 1961 to 2019 based on the drought severity from high to low.

Region Event Initiation
Time

Peak
Time

Termination
Time

DD
(Months) DS DI DP

Henan

D1 Oct-1965 Nov-1966 Oct-1967 25 40.31 1.61 2.24
D2 Jul-1968 Apr-1970 May-1971 35 26.42 0.75 1.24
D3 Dec-1961 Jun-1962 Apr-1963 17 16.85 0.99 1.43
D4 Jul-1978 Oct-1978 Aug-1979 14 16.18 1.16 1.47
D5 Jun-1981 Oct-1981 Jul-1982 14 12.65 0.90 1.16
D6 Oct-1986 Oct-1986 Jul-1987 10 7.46 0.75 1.15
D7 Oct-1997 Nov-1997 May-1998 8 7.24 0.91 1.19
D8 Jul-1974 Jul-1974 Jun-1975 12 6.24 0.52 1.41
D9 Sep-2019 Sep-2019 Dec-2019 4 3.57 0.89 1.09
D10 Aug-1999 Aug-1999 Jan-2000 6 3.09 0.52 1.18
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3.2. Drought Prediction
3.2.1. Selection of Preferable Model

All models captured the SPEI-12 variation well (Figure 8), and the accuracy of the BO-
LSTM model generally exceeded those of the LSTM and BP models for all three evaluation
indices, with the highest R2 value of 0.87 and lowest RMSE and MAE values of 0.22 and
0.16 in the testing phase, respectively, suggesting that the BO-LSTM model has advantages
over the BP and LSTM models in drought predicting for Henan Province. We then evaluated
the performance of the BO-LSTM model over the 100 stations (Figure 9). The mean R2,
RMSE, and MAE values for SPEI-12 were 0.86, 0.31, and 0.22 for the training and testing
period, respectively. Therefore, the BO-LSTM model was used to predict dry and wet
conditions over the next 10 years.
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3.2.2. Temporal and Spatial Variation

Based on the BO-LSTM model, the SPEI-12 was predicted to decrease slightly at a rate
of −0.0021/month from 2020 to 2029 and there would be a dry condition in the next decade
with SPEI-12 < 0 only in approximately 35% of all predicting months (Figure 10a). The
minimum SPEI-12 of −1.07 was predicted to occur in May 2024, with the largest occurrence
in February 2027. Spatially, from 2020 to 2029, increasing trends of SPEI-12 prevailed at
60% of total stations, with significance at 15% of total stations, mainly distributed in eastern
Shangqiu, Zhengzhou, Xinxiang, and Xinyang cities. In contrast, a significant negative
trend of SPEI-12 occurred in 6% of stations, scattering in areas such as Puyang, Luoyang,
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and Kaifeng cities, with the greatest decreasing rate of −0.0256/month in Puyang city
(Figure 10b).
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3.2.3. Drought Event Characteristics

The mean DF was 24.69%, which was 1.51 times that during 2000–2019 (Figure 11a),
with higher DFs of approximately 20–25 and >25 occurring in 67.89% of the study area,
mainly in Zhumadian, Xinyang, eastern Nanyang, and Xuchang cities. Larger MDD values
were observed across 14.61% of all areas, mainly focused in western Kaifeng, northeastern
Jiaozuo, southwestern Luoyang, and Sanmenxia cities (Figure 11b). An MDS of 10–20
accounted for 69.61% of total areas, whereas those >20 accounted for 19.63%, mainly
in southwestern Luoyang and Sanmenxia, western Kaifeng, and parts of Jiaozuo and
Zhoukou cities (Figure 11c). The MDI exhibited a patchy spatial distribution, with regions
near Anyang, Kaifeng, Zhoukou, and southern Henan Province (39.62%) showing a higher
MDI (>1.0; Figure 11d). Most regions of Henan Province (75.48%) had a DPmax of 1.5–2.0,
with higher DPmax observed mainly in northeastern Kaifeng, Zhoukou, Jiaozuo, and
Zhumadian cities (Figure 11e).
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3.3. Cropland Exposure Characteristics

The average cropland exposure to drought of Henan Province during 1961–1999 was
33,302.81 km2, accounting for 24.32% of the total cropland area. Regions with high exposure
(>1.5) were mainly distributed over Zhumadian, Nanyang, Xinyang, Pingdingshan, and
Jiyuan cities (Figure 12a), accounting for 39.75% of total cropland exposure. In contrast, the
cropland area exposed to drought decreased to 20 907.96 km2 (15.27% of the total cropland
area) in 2000–2019, and that of high exposure (>1.5) decreased noticeably to 4.88% of total
cropland exposure, with sporadic distribution in Xinyang, Nanyang, and Zhumadian cities
(Figure 12b). The rate of low cropland exposure (<0.5) was observed in northern and eastern
Henan Province, particularly in Shangqiu, eastern Kaifeng, and Zhoukou cities, accounting
for 19.11% of total cropland exposure. In 2020–2029, the cropland area exposed to drought
rose again to 33 745.12 km2, approximately 1.61-fold higher than that during 2000–2019
(Figure 12c). Cropland exposure > 1.5 accounted for 42.73% of total cropland exposure,
mainly in Xinyang, Nanyang, and Zhumadian cities, whereas low cropland exposure (<0.5)
showed sporadic distribution in Shangqiu and Anyang cities, accounting for 1.53% of total
cropland exposure.
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(a) 1961–1999, (b) 2000–2019, and (c) 2020–2029.

On the city scale, cropland exposure to drought was higher in Nanyang, Xinyang,
and Zhumadian cities, with cropland exposure >4000 km2, whereas Zhumadian, Jiyuan,
Nanyang, and Pingdingshan cities showed greater exposure during 1961–1999. However,
from 2000 to 2019, all cities showed a decrease in cropland exposure, with the greatest
decreases in Zhumadian, Zhoukou, Shangqiu, and Kaifeng cities. During 2020–2029,
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cropland exposure increased across 94.44% of all cities, particularly in Nanyang, Zhoukou,
Shangqiu, Zhumadian, Xinyang, and Kaifeng cities. Notably, Sanmenxia city showed a
clear decreasing trend during these two periods, with cropland exposure shifting from
1054.74 km2 to 739.77 km2 (Figure 13).
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4. Discussion
4.1. Trends and Periodic Features of Drought Changes

The intensification of global warming and human activities and time-varying nat-
ural influences have greatly affected the global and regional precipitation and heat bal-
ance [47]. In this study, we found that the SPEI-12 showed an overall increasing trend
during 1961–2019. Li et al. [56] reported a significant increasing trend of the SPEI-12 in
the Huang–Huai–Hai Plain during 1963–2014 using the Penman–Monteith SPEI method,
which was consistent with our results. In contrast, Lu et al. [57] showed a decreasing
trend in the SPEI-12 with a rate of 0.131/decade during 1970–2020 in Henan Province
using the Thornthwaite SPEI method. These discrepancies were likely due to differences in
PET calculation [58]. For example, PET calculated using the Thornthwaite and Penman–
Monteith methods can produce different results in arid and semiarid regions, showing
opposite trends [24]. Another possible explanation is that the number of meteorological
stations can lead to differences in the spatial distributions of SPEI values between anal-
yses [59]. According to the Chinese Meteorological Disasters Ceremony, there were four
severe droughts in the 1960s, which occurred in 1961, 1962, 1965, and 1966. Similarly,
we detected periods of extreme and moderate dryness in the 1960s during the past six
decades, with an average SPEI-12 of −0.50. However, likely due to the global warming
hiatus in the early 21st century [60], we found that the 2000s was the wettest decade, with
an average SPEI-12 of 0.49. After this period, the SPEI-12 exhibited a decreasing trend,
at a rate of −0.0023/month, signaling a substantial shift toward warmer and drier con-
ditions. Previous studies have shown that, after 2012, air temperature increased rapidly
at a rate of 0.17 ◦C/decade [61], and that global warming would result in changes to re-
gional precipitation and PET that in turn would exacerbate drought phenomena during the
21st century [7].

Based on Morlet wavelet analysis, we found that drought evolution in Henan Province
during 1961–2019 was characterized by multiple time scales, with a major cycle of 26 years.
The 6-year time scale was the second main cycle of drought variation. Similarly, Li et al. [62]
reported that the SPEI-12 had a scale of 2–7 years in Henan Province during 1961–2015, and
Tao et al. [63] reported that the SPEI-12 had a small scale of 5–10 years and a large scale of
15–23 years in the Henan section of the Yellow River during 1970–2020. This phenomenon
may be partly attributed to the influence of the El Niño–Southern Oscillation (ENSO); a
previous study reported that ENSO events can markedly weaken the intensity of Walker
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Circulation, causing less precipitation and frequent droughts in the North China Plain [64].
The ENSO events of 1961–1966 and 1997–1998 [65] were closely related to the occurrence of
serious droughts in Henan Province. The Pacific Decadal Oscillation (PDO) is another major
driver of DF in China, which may be modulated by the Western Pacific Subtropical High
and the Mongolian High, resulting in high temperatures and low precipitation levels [66].
Additionally, the sunspot phase logarithm is commonly used to characterize the intensity
of solar activity and its impact on hydrological processes occurring in an 11-year cycle [67].
The SPEI-12 and sunspot phase logarithm showed a significant positive phase resonance
relation in the Henan section of the Yellow River during 1970–2020 [63]. According to its
periodic features, Henan Province was in a dry state around 2019 and remained dry for
the subsequent period, which was consistent with predictions based on our BO-LSTM
model. However, further studies are needed to better understand this oscillatory behavior
of dry/wet changes in Henan Province.

4.2. Drought Regional Differentiation Characteristics and Adaptation Recommendations

Drought is the main weather disaster influencing crop production in Henan Province.
The investigation of the spatiotemporal patterns of drought can yield a better understand-
ing of the mechanisms and factors influencing drought occurrence and evolution [68]. Here,
we found that drought event characteristics shifted markedly between 1961–1999 and
2000–2019. DF was higher in southern Henan Province from 1961 to 1999, as observed in
Nanyang, Zhumadian, and Xinyang cities, which is consistent with previous studies [43,69];
however, these areas showed lower MDD and MDS. In comparison, the maximum MDD
and MDS decreased to 50.07% and 46.42% during 2000–2019. Xinyang, Nanyang Zhuma-
dian, northwestern Sanmenxia, and southern parts of Luoyang cities had higher DF during
2000–2019, while the relatively high MDD and MDS had mainly shifted to some regions of
Sanmenxia, Luoyang, and Xinyang cities. As is already known, southern Henan Province
had relatively abundant rainfall, with annual rainfall of 760.2 mm [70], and the average
temperature and extreme weather heat index showed marked variation [71], which may
have resulted in higher DF. However, with climate change in recent years, precipitation has
declined and temperatures have increased in western Henan Province [72], while annual
mean temperatures showed a cooling trend in most other regions [73]. These may lead to
changes in drought conditions to a certain extent. To prevent the influence of drought, the
use of drought-tolerant crop varieties, appropriate irrigation methods, and efficient water
and fertilizer application technologies have been widely implemented [74]. However, based
on our BO-LSTM model results, the mean DF was projected to be 1.51 times that during
2000–2019, and regions with higher MDD (>15 months) and DPmax (1.5–2.0) increased by
340.07% and 128.13%, respectively, suggesting that more precise measures should be taken
to support the development of low-cost and high-efficiency drought prevention facilities
and equipment, as well as their supporting implementation plans.

In this study, based on a dataset from 100 meteorological stations, we systematically
identified the spatiotemporal variation characteristics of drought and developed algorithms
for regional drought prediction, enabling the adoption of proactive development strategies
to prevent drought disasters. However, drought formation is a complex process, and
relying solely on a single prediction model can lead to uncertainty. Future research should
focus on employing hybrid models or integrating drought indices with relevant hydro-
meteorological variables as prediction factors to derive drought indices. Additionally, we
limited our objective to dry–wet patterns on a 12-month scale. In fact, meteorological
drought conditions always vary greatly; a multi scale analysis to gain a comprehensive
understanding of drought variation has yet to be further strengthened.

5. Conclusions

In this study, the temporal and spatial patterns of drought events during a historical
period (1961–2019) and future period (2020–2029) were investigated using the SPEI-12 in
Henan Province, China. The main conclusions are as follows:
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(1) Based on Sen’s slope and MMK approaches, we demonstrated a predominant trend
toward increasing wetness in Henan Province over the 59-year study period. However,
we observed contradictory trends, i.e., a transition from dry to wet during 1961–1999,
followed by a transition from wet to dry during 2000–2019. Wavelet analysis showed
periodic variation in drought evolution with cycles of 6 and 26 years.

(2) The spatial distribution of drought event characteristics indicated that southern Henan
Province had a higher drought frequency; these droughts tended to have shorter
duration and relatively low severity during 1961–2019. We also found that the drought
frequency, higher drought duration and peak would greatly increase to 1.28–3.40-fold
compared with that of 2000–2019 using the BO-LSTM model.

(3) The average cropland exposure to drought of Henan Province during 1961–1999 was
33,302.81 km2, while it decreased to 20,907.96 km2 in the first two decades of the 21st
century, and could rise again to 33,745.12 km2 in the near future. On the city scale,
94.44% of cities would face increasing cropland exposure challenges.
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15. Başağaoğlu, H.; Sharma, C.; Chakraborty, D.; Yoosefdoost, I.; Bertetti, F.P. Heuristic data-inspired scheme to characterize
meteorological and groundwater droughts in a semi-arid karstic region under a warming climate. J. Hydrol. Reg. Stud. 2023,
48, 101481. [CrossRef]

16. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the
Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183.

17. Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in
drought. Nat. Clim. Chang. 2014, 4, 17–22. [CrossRef]

18. Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited:
Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023.
[CrossRef]

19. Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438.
[CrossRef] [PubMed]

20. Hui-Mean, F.; Yusop, Z.; Yusof, F. Drought analysis and water resource availability using standardised precipitation evapotran-
spiration index. Atmos. Res. 2018, 201, 102–115. [CrossRef]

21. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized
precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

22. Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.;
Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applica-
tions. Earth Interact. 2012, 16, 1–27. [CrossRef]

23. Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci.
2021, 21, 1685–1701. [CrossRef]

24. Wang, H.; Cao, L.; Li, X.; Feng, R.; Zheng, P. Differences in drought evolution as portrayed for China using various evapotranspi-
ration models and drought indices. Int. J. Climatol. 2022, 42, 9404–9429. [CrossRef]

25. Ullah, I.; Ma, X.; Yin, J.; Asfaw, T.G.; Azam, K.; Syed, S.; Liu, M.; Arshad, M.; Shahzaman, M. Evaluating the meteorological
drought characteristics over Pakistan using in situ observations and reanalysis products. Int. J. Climatol. 2021, 41, 4437–4459.
[CrossRef]

26. Sharafi, S.; Ghaleni, M.M. Spatial assessment of drought features over different climates and seasons across Iran. Theor. Appl.
Climatol. 2021, 147, 941–957. [CrossRef]

27. Shi, L.; Feng, P.; Wang, B.; Liu, D.; Yu, Q. Quantifying future drought change and associated uncertainty in southeastern Australia
with multiple potential evapotranspiration models. J. Hydrol. 2020, 590, 125394. [CrossRef]

28. Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [CrossRef]
29. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO

Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; pp. 1–289.
30. Um, M.J.; Kim, Y.; Park, D.; Jung, K.; Wang, Z.; Kim, M.M.; Shin, H. Impacts of potential evapotranspiration on drought

phenomena in different regions and climate zones. Sci. Total Environ. 2020, 703, 135590. [CrossRef]
31. Zhou, S.; Wang, Y.; Li, Z.; Chang, J.; Guo, A.; Zhou, K. Characterizing spatio-temporal patterns of multi-scalar drought risk in

mainland China. Ecol. Indic. 2021, 131, 108189. [CrossRef]
32. Hao, Z.; Singh, V.P.; Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018,

56, 108–141. [CrossRef]
33. Deo, R.C.; Şahin, M. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation

and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmosph. Res.
2015, 161, 65–81. [CrossRef]

34. Ortiz-Garcia, E.; Salcedo-Sanz, S.; Casanova-Mateo, C. Accurate precipitation prediction with support vector classifiers: A study
including novel predictive variables and observational data. Atmos. Res. 2014, 139, 128–136. [CrossRef]

35. Xiong, B.; Li, R.; Ren, D.; Liu, H.; Xu, T.; Huang, Y. Prediction of flooding in the downstream of the Three Gorges Reservoir based
on a back propagation neural network optimized using the AdaBoost algorithm. Nat. Hazards 2021, 107, 1559–1575. [CrossRef]

36. Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series
satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [CrossRef]

37. Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on particle swarm optimization in LSTM
neural networks for rainfall-runoff simulation. J. Hydrol. 2022, 608, 127553. [CrossRef]

38. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter Optimization for Machine Learning Models Based
on Bayesian Optimizationb. J. Electron. Sci. Technol. 2019, 17, 26–40. [CrossRef]

https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1029/2020EF001502
https://doi.org/10.1016/j.rse.2019.111291
https://doi.org/10.1016/j.ejrh.2023.101481
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1002/joc.3887
https://doi.org/10.1038/nature11575
https://www.ncbi.nlm.nih.gov/pubmed/23151587
https://doi.org/10.1016/j.atmosres.2017.10.014
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/2012EI000434.1
https://doi.org/10.5194/nhess-21-1685-2021
https://doi.org/10.1002/joc.7829
https://doi.org/10.1002/joc.7063
https://doi.org/10.1007/s00704-021-03853-0
https://doi.org/10.1016/j.jhydrol.2020.125394
https://doi.org/10.2307/210739
https://doi.org/10.1016/j.scitotenv.2019.135590
https://doi.org/10.1016/j.ecolind.2021.108189
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1016/j.atmosres.2015.03.018
https://doi.org/10.1016/j.atmosres.2014.01.012
https://doi.org/10.1007/s11069-021-04646-4
https://doi.org/10.1016/j.rse.2019.111358
https://doi.org/10.1016/j.jhydrol.2022.127553
https://doi.org/10.11989/JEST.1674-862X.80904120


Sustainability 2023, 15, 15737 18 of 19

39. Di, Y.; Gao, M.; Feng, F.; Li, Q.; Zhang, H. A New Framework for Winter Wheat Yield Prediction Integrating Deep Learning and
Bayesian Optimization. Agronomy 2022, 12, 3194. [CrossRef]

40. Zou, S.; Zhang, L.; Huang, X.; Osei, F.B.; Ou, G. Early Ecological Security Warning of Cultivated Lands Using RF-MLP Integration
Model: A Case Study on China’s Main Grain-Producing Areas. Ecol. Indic. 2022, 141, 109059. [CrossRef]

41. Wang, Z.; Zhang, E.; Chen, G. Spatiotemporal Variation and Influencing Factors of Grain Yield in Major Grain-Producing Counties:
A Comparative Study of Two Provinces from China. Land 2023, 12, 1810. [CrossRef]

42. Zhu, Y.; Pan, P.; Kuang, X.; Yang, N.; Liu, Y. Changing Characteristics and Causes Analysis of Drought Disaster in Henan Province.
Chin. J. Agrometeorol. 2011, 32, 311–316. [CrossRef]

43. Shi, B.; Zhu, X.; Hu, Y.; Yang, Y. Drought characteristics of Henan province in 1961-2013 based on Standardized Precipitation
Evapotranspiration Index. J. Geogr. Sci. 2017, 27, 311–325. [CrossRef]

44. Xu, L.; Chen, N.; Yang, C.; Zhang, C.; Yu, H. A parametric multivariate drought index for drought monitoring and assessment
under climate change. Agric. For. Meteorol. 2021, 310, 108657. [CrossRef]

45. Zhao, H.Y.; Gao, G.; Yan, X.D.; Zhang, Q. Risk assessment of agricultural drought using the CERES-Wheat model: A case study of
Henan Plain, China. Clim. Res. 2011, 50, 247–256. [CrossRef]

46. Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36, L08706. [CrossRef]
47. Lean, J.L. Observation-based detection and attribution of 21st century climate change. Wiley Interdiscip. Rev. Clim. Chang. 2018,

9, e511. [CrossRef]
48. Asong, Z.E.; Wheater, H.S.; Bonsal, B.; Razavi, S.; Kurkute, S. Historical drought patterns over Canada and their teleconnections

with large-scale climate signals. Hydrol. Earth Syst. Sci. 2018, 22, 3105–3124. [CrossRef]
49. Yao, N.; Li, L.; Feng, P.Y.; Feng, H.; Liu, D.L.; Liu, Y.; Jiang, K.T.; Hu, X.T.; Li, Y. Projections of drought characteristics in China

based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci. Total Environ. 2020, 704, 135245.
[CrossRef] [PubMed]

50. Khan, N.; Shahid, S.; Ismail, T.B.; Wang, X.J. Spatial distribution of unidirectional trends in temperature and temperature extremes
in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [CrossRef]

51. Cao, S.; He, Y.; Zhang, L.; Chen, Y.; Yang, W. Spatiotemporal characteristics of drought and its impact on vegetation in the
vegetation region of Northwest China. Ecol. Indic. 2021, 133, 108420. [CrossRef]

52. Ayantobo, O.O.; Li, Y.; Song, S.; Yao, N. Spatial comparability of drought characteristics and related return periods in mainland
China over 1961–2013. J. Hydrol. 2017, 550, 549–567. [CrossRef]

53. Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Hydrology Papers;
Colorado State University: Fort Collins, CO, USA, 1967.

54. Moriconi, R.; Deisenroth, M.P.; Sesh Kumar, K.S. High-dimensional Bayesian optimization using low-dimensional feature spaces.
Mach. Learn. 2020, 109, 1925–1943. [CrossRef]

55. Wang, A.; Tao, H.; Ding, G.; Zhang, B.; Huang, J.; Wu, Q. Global cropland exposure to extreme compound drought heatwave
events under future climate change. Weather Clim. Extrem. 2023, 40, 100559. [CrossRef]

56. Li, X.; Ju, H.; Liu, Q.; Li, Y.; Qin, X. Analysis of drought characters based on the SPEI-PM index in Huang-Huai-Hai Plain. Acta
Ecol. Sin. 2017, 37, 2054–2066. [CrossRef]

57. Lu, J.; Rong, G.; Feng, Y.; Zuo, T. Drought Characteristics and Its Correlation with Circulation Index in Henan Province Based on
SPEI Index. Chin. Rural Water Hydropower 2022, 17–24. [CrossRef]

58. Wang, Z.; Li, J.; Lai, C.; Zeng, Z.; Zhong, R.; Chen, X.; Zhou, X.; Wang, M. Does drought in China show a significant decreasing
trend from 1961 to 2009? Sci. Total Environ. 2017, 579, 314–324. [CrossRef] [PubMed]

59. Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought characteristics and its elevation dependence in the Qinghai-Tibet plateau during the last
half-century. Sci. Rep. 2020, 10, 14323. [CrossRef]

60. Guan, X.; Huang, J.; Guo, R. Changes in aridity in response to the global warming hiatus. J. Meteorol. Res. 2017, 31, 117–125. [CrossRef]
61. Du, Q.; Zhang, M.; Wang, S.; Che, C.; Ma, R.; Ma, Z. Changes in air temperature over China in response to the recent global

warming hiatus. J. Geogr. Sci. 2019, 29, 496–516. [CrossRef]
62. Li, Z.; Zhu, L.; Zhang, Y.; He, P. Spatial and temporal variations of drought in Henan Province over a 55-year period based on

standardized precipitation index. Jiangsu Agric. Sci. 2018, 46, 237–242. [CrossRef]
63. Tao, J.; Qiao, W.; Li, H.; Qu, X.; Gan, R. Spatial and temporal evolution characteristics and causes of drought and flood in the

Henan section of the Yellow River. Nat. Hazards 2022, 113, 997–1016. [CrossRef]
64. Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought

characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [CrossRef]
65. Xu, W.; Wang, W.; Ma, J.; Xu, D. ENSO events during 1951–2007 and their characteristic indices. J. Nat. Dis. 2009, 18, 18–24.

[CrossRef]
66. Qian, C.; Yu, J.Y.; Chen, G. Decadal summer drought frequency in China: The increasing influence of the Atlantic Multi-decadal

Oscillation. Environ. Res. Lett. 2014, 9, 124004. [CrossRef]
67. Dong, L.; Fu, C.; Liu, J.; Zhang, P. Combined effects of solar activity and El Niño on hydrologic patterns in the Yoshino River

Basin, Japan. Water Resour. Manag. 2018, 32, 2421–2435. [CrossRef]
68. Zhou, L.; Wu, J.; Mo, X.; Zhou, H.; Diao, C.; Wang, Q.; Chen, Y.; Zhang, F. Quantitative and detailed spatiotemporal patterns of

drought in China during 2001–2013. Sci. Total Environ. 2017, 589, 136–145. [CrossRef]

https://doi.org/10.3390/agronomy12123194
https://doi.org/10.1016/j.ecolind.2022.109059
https://doi.org/10.3390/land12091810
https://doi.org/10.3969/j.issn.1000-6362.2011.02.027
https://doi.org/10.1007/s11442-017-1378-4
https://doi.org/10.1016/j.agrformet.2021.108657
https://doi.org/10.3354/cr01060
https://doi.org/10.1029/2009GL037810
https://doi.org/10.1002/wcc.511
https://doi.org/10.5194/hess-22-3105-2018
https://doi.org/10.1016/j.scitotenv.2019.135245
https://www.ncbi.nlm.nih.gov/pubmed/31818549
https://doi.org/10.1007/s00704-018-2520-7
https://doi.org/10.1016/j.ecolind.2021.108420
https://doi.org/10.1016/j.jhydrol.2017.05.019
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1016/j.wace.2023.100559
https://doi.org/10.5846/stxb201511102274
https://doi.org/10.3969/j.issn.1007-2284.2022.04.003
https://doi.org/10.1016/j.scitotenv.2016.11.098
https://www.ncbi.nlm.nih.gov/pubmed/27894798
https://doi.org/10.1038/s41598-020-71295-1
https://doi.org/10.1007/s13351-017-6038-1
https://doi.org/10.1007/s11442-019-1612-3
https://doi.org/10.15889/j.issn.1002-1302.2018.10.060
https://doi.org/10.1007/s11069-022-05333-8
https://doi.org/10.1016/j.jhydrol.2020.124849
https://doi.org/10.3969/j.issn.1004-4574.2009.04.004
https://doi.org/10.1088/1748-9326/9/12/124004
https://doi.org/10.1007/s11269-018-1937-1
https://doi.org/10.1016/j.scitotenv.2017.02.202


Sustainability 2023, 15, 15737 19 of 19

69. Yuan, B.; Wang, S.; Guo, L. Drought Vulnerability Assessment of Winter Wheat Using an Improved Entropy-Comprehensive
Fuzzy Evaluation Method: A Case Study of Henan Province in China. Atmosphere 2023, 14, 779. [CrossRef]

70. Shang, D.; Zhang, Z.; Yue, Y.; Hu, C.; Wang, Q. Drought characteristics analysis of Henan Province based on standardized
precipitation index in recent 45 years. Agric. Res. Arid Areas 2021, 39, 162–170. [CrossRef]

71. Ma, X.; Zhao, J. Analysis on Characteristics of Extreme Temperature Change and Cycle of Southern Henan from 1958 to 2013.
Resour. Sci. 2014, 36, 1825–1833.

72. Zhang, Y.; Xiao, F. Study on Precipitation and Temperature Change in Western Henan Mountain Area. J. Nat. Resour. 2010,
25, 2132–2141. [CrossRef]

73. Xie, Y.; Huang, J.; Liu, Y. From accelerated warming to warming hiatus in China. Int. J. Climatol. 2017, 37, 1758–1773. [CrossRef]
74. Wu, B.; Ma, Z.; Boken, V.K.; Zeng, H.; Shang, J.; Igor, S.; Wang, J.; Yan, N. Regional differences in the performance of drought

mitigation measures in 12 major wheat-growing regions of the world. Agric. Water Manag. 2022, 273, 107888. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/atmos14050779
https://doi.org/10.7606/j.issn.1000-7601.2021.04.21
https://doi.org/10.11849/zrzyxb.2010.12.014
https://doi.org/10.1002/joc.4809
https://doi.org/10.1016/j.agwat.2022.107888

	Introduction 
	Dataset and Methods 
	Study Area 
	Data Sources 
	Drought Trends and Periodicity 
	Drought Event Identification 
	Prediction Model 
	Cropland Exposure to Drought 

	Results 
	Drought Dynamic Characteristics 
	Spatiotemporal Variation of SPEI 
	Drought Periodicity 
	Drought Event Characteristics 

	Drought Prediction 
	Selection of Preferable Model 
	Temporal and Spatial Variation 
	Drought Event Characteristics 

	Cropland Exposure Characteristics 

	Discussion 
	Trends and Periodic Features of Drought Changes 
	Drought Regional Differentiation Characteristics and Adaptation Recommendations 

	Conclusions 
	References

