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Abstract: In order to accurately judge the tendency of rock burst disaster and effectively guide the
prevention and control of rock burst disaster, a rock burst intensity-grade prediction model based
on the comprehensive weighting of prediction indicators and Bayesian optimization algorithm–
improved-support vector machine (BOA-SVM) is proposed for the first time. According to the
main factors affecting the occurrence and intensity of rock burst, the rock stress coefficient (σθ/σc),
brittleness coefficient (σc/σt) and elastic energy index (Wet) are selected to construct the rock burst
prediction indicator system. On the basis of the research of other scholars, according to the main
performance and characteristics of rock burst, rock burst is divided into four intensity levels. The
collected and sorted 120 sets of rock burst case data at home and abroad are taken as learning samples,
and the T-SNE algorithm is used to perform dimensionality-reduction visualization processing
on the sample data, visually display the distribution of samples of different grades, evaluate the
representativeness of the sample data and prejudge the feasibility of the machine learning algorithm
to distinguish different rock burst intensity levels. The combined improved analytic hierarchy process
(IAHP) and Delphi method determine the subjective weight of the indicators; the combined entropy
weight method and CRITIC method determine the objective weight of the indicator, and use the
harmonic mean criterion of information theory to synthesize the subjective weight and objective
weight of the indicator to obtain the comprehensive weight of the indicators. After weighted
prediction indicators, a rock burst intensity-grade prediction model is constructed based on the
support vector machine, and the hyperparameters of three types of support vector machines are
improved by using the Bayesian optimization algorithm. Then, the prediction accuracy of different
models is calculated by the random cross-validation method, and the feasibility and effectiveness of
the rock burst intensity-grade prediction model is verified. In order to evaluate the generalization and
engineering applicability of the proposed model, 20 groups of rock burst case data from the Maluping
mine and Daxiangling tunnel are introduced to predict the rock burst intensity grade. The results
show that the accuracy of the rock burst intensity-grade prediction model based on comprehensive
weighting and BOA-SVM is as high as 93.30%, which is of higher accuracy and better effect than
the ordinary model, and can provide warning information with a higher fault tolerance rate, which
provides a new way of thinking for rock burst intensity-grade prediction.

Keywords: prediction of rock burst intensity grade; T-SNE dimension reduction; comprehensive
empowerment; Bayesian optimization algorithm; support vector machine

1. Introduction

Rock burst is a disaster phenomenon caused by disturbance of surrounding rock,
such as rock fragmentation, rock ejection and rock stripping [1]. At present, underground
engineering construction projects are developing into the deep, which will inevitably lead
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to high-risk engineering disaster accidents with strong damage and great influence. Rock
burst often occurs in underground engineering construction in mining, civil engineering,
water conservancy and other industries. Once it occurs, it will cause damage to construction
personnel and equipment [2], and it has a strong restriction ability on the feasibility, safety
and economy of construction projects. Accurate prediction of the rock burst intensity
level is helpful to prevent and control rock burst disaster and promote the sustainable
development of the engineering industry. Therefore, it is of great significance to construct a
prediction model of rock burst intensity grade with a good performance.

Many scholars have established a rock burst intensity-grade prediction model based
on a weighting method and mathematical evaluation theory, such as: the cloud model [3],
fuzzy comprehensive evaluation [4], the catastrophe progression method [5], matter–
element extension theory [6], TOPSIS theory [7], etc. For the above theories and methods,
the main problems are the weighting of indicator factors and the classification of prediction
results. Therefore, there are some obvious defects and deficiencies in using the above meth-
ods to solve the problem of rock burst intensity-grade prediction, such as the fact that the
subjective weighting method will inevitably interfere with the subjective consciousness of
decision makers, and the subjectivity and randomness of artificially determined weights are
very strong. In addition, the emphasis and engineering experience of each expert are quite
different, resulting in a large difference in the evaluation results of the indicators’ weight,
and the credibility will also be reduced. However, the objective weighting method cannot
reflect the evaluators’ emphasis on different attribute indicators, and cannot reflect the im-
portance of indicators in the mechanism of rock burst occurrence. Moreover, the objective
weighting method has high requirements regarding the quantity and quality of sample
data. If the number of sample data is small or the dispersion is large, the weight determined
by the objective weighting method will be very different from the actual importance of the
indicators, and the reliability will also be reduced.

The machine learning algorithm has outstanding advantages in solving complex
nonlinear problems, so it has developed rapidly in recent years, and has been widely used
in many fields and achieved good results. It is also suitable for solving the problem of
rock burst intensity-grade prediction in the field of underground engineering, for example,
the artificial neural network [8], support vector machine [9], extreme learning machine [10],
random forest [11], decision tree [12], XGBoost [13], AdaBoost [14], k-nearest neighbors [15],
etc. At present, the machine learning algorithm has been widely used in rock burst prediction,
but there are some shortcomings, the main problems being the collection of sample data
and the setting of model hyperparameters. For example, XGBoost and AdaBoost require a
large number of sample data for training, resulting in slow algorithm convergence and long
iteration time; it is also very difficult to collect a large number of data samples, and the
operability is correspondingly reduced. The setting of hyperparameters in the machine
learning algorithm will directly affect the prediction accuracy and overall performance
of the algorithm. If the setting of hyperparameters is unreasonable, the machine learning
algorithm will not be able to mine the rule of sample data, which will greatly reduce the
feasibility and effectiveness of the prediction model.

Some scholars have built a rock burst intensity-grade prediction model based on index
weighting and the machine learning algorithm. For example, Zhang Meichang et al. [8]
used the PSO algorithm to improve the connection weight of the BP neural network,
and then used this model to predict rock burst, which increased the accuracy rate by
15.00%, compared with the standard BP model. Wen Tingxin et al. [10] adopted the HDO
algorithm to improve the data set structure, and optimized the weight of the input layer
of the extreme learning machine and the threshold value of the hidden layer using the
AHDPSO algorithm; they built a rock burst intensity-grade prediction model, and achieved
good results. Ullah et al. [13] coupled t-SNE, k-means clustering and XGBoost algorithms
to predict rock burst intensity grade, providing a new means of solving the problem of
rock burst prediction and playing a certain role in improving the safety of mining and
geotechnical engineering. Xie Xuebin et al. [16] applied the CRITIC method to carry
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out weighted processing of predictive indicator samples, then introduced the XGBoost
algorithm to train and learn the samples, and finally established the CRITIC-XGB model
for rock burst intensity-grade prediction. Compared with the single XGBoost model, the
convergence performance has been significantly improved. Wen Yanxin et al. [17] applied
the analytic hierarchy process (AHP) and entropy weight method to carry out combination-
weighted processing of indicator samples, and then introduced a mixed particle swarm
optimization algorithm to optimize the support vector machine model to predict rock
burst samples; they verified the feasibility and applicability of the constructed model
combined with the data of other rock burst engineering examples. However, the above
prediction models also have some defects, such as the following: the prediction model built
by Xie Xuebin et al. [16] only carries out a single weight on the indicator samples, has poor
reliability, and does not carry out hyperparameter optimization of the XGBoost algorithm.
In addition, although Wen Tingxin et al. [17] carried out the combination weighting process
for the indicator samples, the combination weighting method was relatively simple and
the fault tolerance rate was low. At the same time, the two scholars selected 50 groups of
rock burst samples for training and testing, and the data numbers were too small and the
generalization was not high.

In order to solve the above problems, 120 groups of typical engineering rock burst
data are selected as prediction samples. Combined with an improved analytic hierarchy
process (IAHP) and Delphi method, the subjective weight of the prediction indicators
was determined. Combining the entropy weight method and the CRITIC method, the
objective weight of the prediction index is determined. By using the harmonic mean cri-
terion of information theory, the subjective weight and objective weight of the prediction
indicators are synthesized, and the comprehensive weight of the prediction indicators is
obtained. The support vector machine (SVM) algorithm is a classical model often used
to solve classification problems. It has the advantages of fast training speed, simple logic,
strong generalization performance and small-sample data. At the same time, the Bayesian
optimization algorithm can find the optimal hyperparameter combination for the support
vector machine model. In view of this, this paper constructs a rock burst intensity-grade
prediction model based on the Bayesian optimization algorithm–improved-support vector
machine. Then, combined with the method of random cross-validation, the performance of
the rock burst intensity-grade prediction model is evaluated. In addition, the T-SNE algo-
rithm is introduced to visualize the sample data in dimensionality reduction to determine
whether the sample data have significant clustering phenomenon and representativeness.
At the same time, it can prejudge whether the prediction model constructed in this paper
can distinguish rock burst samples of different intensity levels. The aim is to improve the
accuracy and feasibility of the rock burst intensity-grade prediction model. In this paper,
four weighting methods are coupled together, and a new comprehensive weighting method
is proposed to preprocess the prediction indicator data. The support vector machine is
improved by using the Bayesian optimization algorithm and successfully applied to rock
burst intensity-grade prediction, which provides a new way to solve the related rock burst
prediction problem.

2. Indicators and Data
2.1. Prediction Indicators

Due to the different consideration of the main influencing factors of rock burst, many
scholars choose different rock burst prediction indicators. The author summarizes the
prediction index system constructed by some scholars in Table 1.
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Table 1. Summary table of feature indicators for rock burst intensity prediction.

Researcher Prediction Indicators Indicator Quantity

Yang Ling et al. [18] H, σθ , σθ/σc, Wet 4
Liu Ran et al. [3] Kv, σt, σθ , σc, σθ/σc, σc/σt, Wet 7
Yin Xin et al. [4] Kv, σθ/σc, σc/σt, Wet 4

Wang Huabin et al. [19] σθ/σc, σc/σt, Wet 3
Gao Lei et al. [20] σθ/σc, σc/σt, Wet 3

Liu Dejun et al. [21] σt, σθ , σc, σθ/σc, σc/σt, Wet 6
Li Mingliang et al. [22] σθ/σc, σc/σt, Wet 4

Wu Shunchuan et al. [23] σt, σθ , σc, σθ/σc, σc/σt, Wet 6
Zhou Jian et al. [24] H, σt, σθ , σ, σθ/σc, σc/σt, Wet 7

In combination with Table 1 and other scholars’ selection of rock burst prediction
evaluation indicators, it can be found that σθ/σc, σc/σt and Wet are the most commonly used
characteristic indicators in many scholars’ evaluation systems, and that they can accurately
and quantitatively describe rock burst information. After considering the independence,
accuracy and universality of the evaluation indicators, this paper selects σθ/σc, σc/σt and
Wet to construct the prediction indicator system of rock burst intensity grade [18,20–22].

2.2. Classification Standard

In this paper, based on the rock burst criteria proposed by Xu Linsheng [25] and Li
Tianbin [26], the rock burst intensity grade is divided into I~IV grades, and the specific
determination characteristics are shown in Table 2.

Table 2. Classification of rock burst intensity.

Main
Performance

and Trait

Intensity Grade

Level I Level II Level III Level IV
None Light Moderate Strong

Sound trait - No sound or faint noise A crackling sound A loud bang

Movement trait - Stripping,
external drum

Severe stripping, bending
fracture, small amount of

ejection

Large pieces burst and there
is a strong ejection

Time trait - Intermittent burst
The duration is longer, and there
is a tendency to develop deeper

with time

With continuity and
abruptness, rapid expansion

to the depth of the
surrounding rock

Depth involved - <0.5 m 0.5–0.1 m >1.0 m

Rock morphology - Thin sheet, thin lenticular
body Lenticular, prismatic Prismatic, block, plate or

granular

Rock size - The rocks are small in size
and few in number

The rock size is relatively large,
the number is relatively large

The rocks are large and
numerous

Destroyed form - Tensile failure is dominant Tension and shear damage
coexist

Tension and shear damage
coexist

Construction
influence - Little influence on

construction
Certain influence
on construction

Great influence
on construction

2.3. Sample Data
2.3.1. Sample Data Selection

The three characteristic indicators selected in this paper are common indexes for
evaluating the occurrence and intensity of rock burst, and are easy to obtain in the process
of data collection. Therefore, this paper collected the case samples required by the rock burst
intensity-grade prediction model from the domestic and foreign literature [23,24,27,28],
eliminated repeated samples and singular samples, and obtained 120 sets of rock burst case
data after sorting. Some of the data are shown in Table 3.
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Table 3. Part of rock burst sample data.

Serial Number σθ/σc σc/σt Wet Level

1 0.55 11.11 3.97 III
2 0.37 24.00 5.10 II
3 0.71 32.20 5.50 IV
4 0.23 7.52 1.50 I
5 0.20 36.04 2.29 I

. . . . . . . . . . . . . . .
117 0.82 9.89 5.76 IV
118 0.37 12.70 3.20 II
119 0.13 30.77 2.22 I
120 0.53 17.84 4.30 III

2.3.2. Sample Data Analysis

The distribution of four rock burst intensity levels in the sample data is shown in
Figure 1.
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Figure 1. The sample data distribution.

As can be seen from figure, among the sample instances of rock burst, the proportion
of level III rock burst is the largest, accounting for 41%, with a total of 50 groups of medium-
rock-burst sample data. The proportion of IV rock burst is the smallest, at 16%, and there
are 20 groups of strong-rock-burst sample data. The sample sizes of level I rock burst
and level II rock burst are similar, with 21% and 22%,respectively; there are 25 groups of
no-rock-burst sample data, and 27 groups of minor-rock-burst sample data.

Figure 2 shows the distribution of the three indicators under different intensity levels
after normal fitting. It can be roughly judged from the figure that rock stress coefficient is
positively correlated with rock burst intensity grade, rock brittleness coefficient is negatively
correlated with rock burst intensity grade, and elastic energy index is positively correlated
with rock burst intensity grade. Among them, the effect of grade 1, 2, and 4 changing with
the increase in indicator value is more obvious, because the samples of these three grades
are relatively uniform. The relationship of grade 3 with the change of indicator value is
fuzzy, which is caused by the large sample size of grade 3, with a wide boundary and
complex information.
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2.3.3. Dimensionality Reduction

(1) Method and principle

(a) Standardization
The standardized processing of the original data can improve the solving speed of the

algorithm. The calculation formula is shown in (1):

x∗ij =
xij −min

(
xj
)

max
(

xj
)
−min

(
xj
) (1)

In the formula: xij is the jth indicator value of the ith sample; max
(
xj
)

and min
(

xj
)

are the maximum and minimum values of the jth indicator, respectively; and x∗ij is the
normalized result.

(b) T-SNE algorithm
t-distributed stochastic neighbor embedding(T-SNE) is a commonly used dimen-

sionality reduction method [29,30], The nonlinear feature of the algorithm is suitable for
processing rock burst data, and it is also conducive to reducing the multi-dimensional data
to two dimensions for visualization purposes.

The T-SNE algorithm is used to calculate the similarity probability between data
points and then map the similarity probability of the high-dimensional space to the low-
dimensional space, so that the high-dimensional space and the low-dimensional space
maintain a similar probability distribution. T-SNE converts the Euclidean distance rela-
tionship between two data points xi and xj in high-dimensional space into conditional
probability pi|j to represent the correlation. The calculation formula is as follows:

pi|j =
exp
(
−‖xi − xj‖2/2σ2

i
)

∑k 6=l exp
(
−‖xk − xl‖2/2σ2

i
) (2)
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σi is the Gaussian variance corresponding to the sample point xi, and so the joint
probability distribution between two points in n-dimensional space is:

pij =
pi|j + pj|i

2n
(3)

In the low-dimensional space, the Gaussian distribution in the traditional SNE al-
gorithm is replaced by T distribution. Mapping xi and xj to yi and yj, the probability
distribution function is:

qij =

(
1 + ‖yi − yj‖2)−1

∑k 6=l
(
1 + ‖yi − yj‖2

)−1 (4)

The T-SNE algorithm, like the traditional SNE algorithm, combines the KL distance
formula and gradient descent method as loss function. However, compared with the
traditional SNE algorithm, the T-SNE algorithm uses Formula (3) to simplify the loss
function. In addition, T-SNE algorithm replaces Gaussian distribution with T distribution
in Formula (2), which can better distinguish sample categories and enhance dimension
reduction and visualization effect.

(2) Specific analysis

(a) Data standardization
The original data are standardized according to Formula (1); the processed variables

are all in the range of [0, 1], and the distribution is unchanged. This method can effectively
improve the convergence speed of the algorithm, and some of the samples after processing
are shown in Table 4.

Table 4. Sample data of some rock burst cases after standardized processing.

Serial Number σθ/σc σc/σt Wet Level

1 0.50 0.20 0.37 III
2 0.30 0.43 0.50 II
3 0.68 0.58 0.55 IV
4 0.14 0.13 0.08 I
5 0.11 0.65 0.17 I

. . . . . . . . . . . . . . .
117 0.80 0.18 0.58 IV
118 0.30 0.23 0.28 II
119 0.03 0.56 0.16 I
120 0.48 0.32 0.41 III

(b) Dimensionality reduction visualization
The sample contains four kinds of information, three prediction indicators (influencing

factors), and one prediction target (intensity level), which comprises 4-dimensional sample
data. As shown in Figure 3, three-dimensional coordinate values are used to represent
the indicators, and four colors represent different intensity levels to depict the sample
distribution in three-dimensional space. It can be seen that it is difficult to visually see the
distribution of samples and the difference between different rock burst grades in three-
dimensional space. Therefore, reducing the three dimensions to two dimensions can more
intuitively and clearly show the differences and distribution of samples.

The relationship between the dependent variable and the two independent variables
after dimensionality reduction of the sample data using T-SNE algorithm is shown in
Figure 4. Dimensionality reduction results show that there is a relatively obvious boundary
between the four types of samples, and similar sample points are basically clustered
together. Therefore, it can be seen that the sample data have little discreteness, no influence
of singular values, and have a certain representativeness. Moreover, it can be pre-judged
that the machine learning algorithm in this paper can effectively find the boundaries of
various samples and correctly distinguish different rock burst intensity levels.
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3. Model Construction
3.1. Principle of Comprehensive Weighting
3.1.1. Subjective Weighting Method

(1) Delphi method
The Delphi method [31,32] can collect different expert opinions to obtain the weight of

the prediction indicators. The calculation method is as follows:

aj =
q

∑
p=1

apj

q
(5)

S2 =
1

q− 1

q

∑
p=1

(
apj − ej

)2 (6)

m

∑
j=1

apj = 1 (7)

In the formula, ej is the mean of weights assigned to the jth prediction indicators by
different experts; apj is the weight assigned by the pth expert to the jth prediction indicators;
q is the total number of experts; m is the number of indicators; and S2 is the variance, which
reflects the dispersion of different expert opinions.

(2) Improved analytic hierarchy process
The analytic hierarchy process [33,34] is a widely used subjective empowerment

method. In this paper, the 3-scale method is adopted to establish the judgment matrix [22],
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thus improving the traditional analytic hierarchy process. This simplifies the calculation
and avoids consistency checking. The implementation is as follows:

Uij =


0 (Indicator j is more important than indicator i)
1 (Indicator j is as important as indicator i)
2 (Indicator i is more important than indicator j)

(8)

Eij =


ei − ej (ei > ej)
1 (ei = ej)
1/
(
ei − ej) (ei < ej)

(9)

ei =
m

∑
1

eij (10)

b′j =

(
m

∏
j=1

eij

)−n

(11)

bj =
wi

∑n
i=1 wi

(12)

In the formula, Uij is the comparison matrix obtained after evaluating the importance
of indicators; Eij is a judgment matrix transformed by comparison matrix; ei is the sum
of the elements in each row of the comparison matrix; b′j is the weight corresponding
to the JTH index in the judgment matrix; and bj is the final weight obtained after the
normalization of the judgment matrix.

3.1.2. Objective Weighting Method

(1) Entropy weight method
The entropy weight method [35] is one of the most commonly used objective weighting

methods due to its relatively small calculation amount and clear process. Assuming that n
samples are used to calculate the weight of m indicators, the original data matrix

(
xij
)

n×m
must first be converted into a judgment matrix

(
rij
)

n×m, and the calculation method is
as follows.

Among them, the calculation method of the larger and better indicator is consistent
with Formula (1), and the smaller and better indicator is:

rij =
max

(
xj
)
− xij

max
(
xj
)
−min

(
xj
) (13)

The entropy of the jth indicator is:

Hj = −
1

ln n

n

∑
i=1

Pijln Pij (14)

where Pij =
m
∑

i=1
rij, if Pij = 0, Pijln Pij = 0 is defined according to the limit principle.

The weight of the jth indicator is:

cj =
1− Hj

m−∑m
j=1 Hj

(15)

(2) CRITIC method
The CRITIC method [36] determines the weight of indicators through the comparison

intensity of samples and the conflict between indicators. The specific calculation steps are
as follows:
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Calculate the mean and standard deviation of the sample indicator:

xj =
1
m

m

∑
i=1

xij (16)

sj =

√
1

m− 1

m

∑
1

(
xij − xj

)2 (17)

Calculate the coefficient of variation:

vj = sj/xj (18)

The original matrix is normalized into a judgment matrix like the entropy weight
method, and then the correlation coefficient is calculated:

γij =
cov
(
ri, rj

)
sisj

(19)

Calculate the information contained in the jth indicator:

αj = vj

m

∑
i=1

(
1− γij

)
(20)

The weight of the jth indicator is:

dj =
αj

∑
j
i=1 αj

(21)

3.1.3. Subjective and Objective Comprehensive Empowerment

After obtaining a single weight calculated based on different methods, the combined
weight of the same attribute is calculated using the method of multiplication synthesis
normalization. The calculation formula is as follows:

w1
j =

aibj

∑n
i=1(aibi)

, w2
j =

cidj

∑n
i=1(cidi)

(22)

where: w1
j is the combined subjective weight of the jth index, and w2

j is the combined
objective weight of the jth indicator.

Then the method of harmonic average coefficient in information theory is applied
to comprehensively calculate the subjective weights and objective weights of different
attributes. The formula is as follows:

Wj =
w′j

∑n
j=1 w′j

, W ′j =
2× w1

j × w2
j

w1
j + w2

j
(23)

where W ′j is the comprehensive weight calculated by the harmonic average of the combined
subjective weight and the combined objective weight of indicator j; Wj is the final compre-
hensive weight obtained after the comprehensive weight of indicator j is normalized.

3.2. Principle of BOA-SVM Model
3.2.1. Bayesian Optimization Algorithm

The Bayesian optimization algorithm [37] is a global optimization algorithm based on
probability distribution theory. It can solve the problem of how to determine the hyperpa-
rameters reasonably in the prediction model; the optimal hyperparameter is output in the
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hyperparameter combination, and it is a commonly used optimization algorithm. Based on
References [37,38], this paper briefly introduces the Bayesian optimization algorithm:

z∗ = argminϕ(z) (24)

where, z = (z1, z2, · · · , zn) is the hyperparameter combination that needs to be optimized,
and z∗ is the optimal hyperparameter to be output, which minimizes or maximizes the
objective function.

The Bayesian optimization algorithm performs iterative calculation according to the
famous Bayes theorem in the optimization process:

p(ϕ|D1:t) =
p(ϕ|D1:t)p(ϕ)

p(D1:t)
(25)

where D1:t = [z, ϕ(z)] represents the set of observation sample data; t represents the
number of iterations; ϕ represents the unknown objective function; p(ϕ|D1:t) represents
the likelihood probability distribution of the observed sample; p(ϕ) represents the prior
probability distribution of the objective function ϕ; p(D1:t) represents the prior probability
of the observed value; and p(ϕ|D1:t) represents the probability of assuming ϕ to be true by
the given observation sample data D1:t, which is also the posterior probability distribution
of the objective function ϕ.

The prior function and the posterior function (sampling function) are two important
components of the Bayesian optimization algorithm.

The Gaussian regression process can be expressed as:

ϕ(z) ∼ GP(m(z), k(z, z∗)) (26)

m(z) represents the mean function of solving the sample data, and k(z, z∗) represents
the covariance function of solving the sample data.

The collection function can be expressed as:

PI(z) = Φ
(

m(z)− ϕ(z)− ξ

k(z, z∗)

)
(27)

Φ is the normal distribution accumulation function, and ξ is a parameter.
The prior function maximizes the fit of the true objective function through an approxi-

mation function. According to the posterior probability distribution, the sampling function
samples the region where the global optimal solution is most likely to appear and the
region that has not been sampled, and selects the optimal sample points from the candidate
set to minimize the value of the objective function. The Gaussian regression process and
PI (Probability of Improvement) function are generally adopted as prior functions and
sampling functions [38].

The essence of the Bayesian optimization algorithm is to generate a posterior function
to select the next new information, through the prior information. It seeks the optimal
value of the objective function through iterative calculation. In each iteration, the algorithm
selects a new evaluation point as the input through the sampling function, and obtains a
new output after calculation, so as to update the observed data set and the value of the
objective function.

3.2.2. Support Vector Machine

The support vector machine [39] is a machine learning algorithm based on the
structural risk minimization principle and statistical principle. It can map data to high-
dimensional space through the kernel function, and find the optimal hyperplane in high-
dimensional space to divide data categories. It has good generalization ability, and the
solution has uniqueness and global optimality. This method is suitable for analyzing small
samples and multi-dimensional data problems, and is often applied to classification and
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prediction problems. Based on References [39,40], this paper briefly introduces support
vector machines:

The relationship between the input variable x and the output variable is:

f (xi) = ωTφ(xi) + b (28)

where φ(xi) represents the mapping function; ω represents the weight vector; and b
represents the threshold vector.

The objective function in this case is:

g(x) = minω,b
1
2
‖ω‖2 + C

n

∑
i=1

lε( f (xi)− yi) (29)

where C is the penalty factor; lε is a loss function; and the specific meaning is shown in
reference [40].

Then, relaxation variables ξi and ξi
∗ are constructed according to the error values

between the mapped output variable and the real output variable, Lagrangian operators δi
and δi

∗ are introduced to perform dual transformation of the objective function [40], and
the predictive decision function of the support vector machine is obtained as follows:

h(x) =
n

∑
i=1

(δi
∗ − δi)k(x, xi) + b (30)

where k(x, xi) is the kernel function.
There are three main types of kernel functions:
Linear kernel function:

k(x, xi) = φ(xi)
Tφ
(

xj
)

(31)

Polynomial kernel function:

k(x, xi) = [φ(xi)
Tφ
(
xj
)
]
l

(32)

Gaussian kernel function (radial basis function):

k(x, xi) = exp
(
−
‖xi − xj‖

2σ2

)
(33)

where l is the power of the polynomial and σ is the width parameter of the Gaussian
kernel function.

4. Case Analysis

In Section 2.1 of this paper, σθ/σc, σc/σt and Wet are selected to construct the pre-
diction indicators of rock burst intensity grade. In Section 2.2, the rock burst intensity
grade is divided into classes I to IV; in Section 2.3, 120 groups of rock burst examples
at home and abroad are selected as sample data for the prediction model; in Section 3.1,
the prediction indicators are weighted by combining four weighting methods; finally, the
Bayesian optimization algorithm was used to improve the support vector machine to train
and learn the weighted index data, thereby building a rock burst intensity grade prediction
model. The specific modeling process is shown in Figure 5.

The selection of prediction indicators, the classification of intensity levels, the collection
of sample data and the visualization processing of the dimensionality reduction of the
original data have been explained in the first section. The following describes the process of
comprehensive weighted processing of prediction indicators and the process of improving
the support vector machine using the Bayesian optimization algorithm.
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4.1. The Process of Comprehensive Empowerment
4.1.1. Calculate the Subjective Weight

The Delphi method is the simplest and most intuitive weighting method among
the four weighting methods selected in this paper. This method directly averages and
normalizes the expert evaluation results as the final result, with clear logic and simple
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calculation. This paper cites the expert evaluation results of Zhou Yinghao et al. [31] and
Li Shaohong et al. [32], and assigns weights to the three selected rock burst prediction
indicators based on the Delphi method; the result is a = [0.4, 0.3, 0.3].

The traditional analytic hierarchy process (AHP) is based on the nine-scale method for
building a comparison matrix, which is cumbersome and complicated in determining the
scale value and matrix operation, and its practicability will be reduced when the number of
data is large. In this paper, the analytic hierarchy process is improved, and the comparison
matrix is constructed based on the three-scale method. The improved analytic hierarchy
process is more logical, less computational, and more practical. In this paper, based on the
evaluation results of the importance of the three prediction indicators by Li Mingliang [22]
and Yang Ling et al. [18], the occurrence mechanism of “three highs and one disturbance”
of rock burst, and the expert consultation results, the stress condition is higher than the
energy condition, and the energy condition is higher than the surrounding rock condition.

According to Formula (8), the comparison matrix of the three indicators is as follows:

U =

1 2 2
0 1 0
0 2 1

 (34)

Then, according to Formulas (9) and (10), the judgment matrix of the three indicators
is obtained as follows:

U =

 1 4 2
1/4 1 1/2
1/2 2 1

 (35)

Finally, according to Formulas (11) and (12), the subjective weights of the three indi-
cators based on the improved analytic hierarchy process are calculated, and the result is
b = [0.571, 0.143, 0.286].

Comparing the weight results of the two subjective weighting methods, it can be seen
that there is not a small difference between the two results, which also reflects the limitations
of the single weighting method. In order to increase the fault tolerance and reliability of the
final results, Equation (22) is used to balance the two calculation results, and the subjective
weight of the combination of the two methods is obtained: w1 = [0.640, 0.120, 0.240].

4.1.2. Calculate the Objective Weight

The entropy weight method and the CRITIC method use the difference between the
indicators in the original data to determine the objective weight, and the calculation process
is more complicated than the subjective weight method. Therefore, the calculation process
of the two methods will not be shown here. The author uses the MATLAB intelligent
computing tool to calculate two objective weights of the three indicators, and the results
are as follows: c = [0.452, 0.297, 0.251], d = [0.394, 0.319, 0.287].

Comparing the weight results of the two objective weighting methods, it can be seen
that there is not a small difference between the two results, which further reflects the
limitations of the single weighting method. Similarly, Equation (22) is used to balance the
two calculation results, and the objective weight of the combination of the two methods is
obtained: w2 = [0.516, 0.275, 0.209].

4.1.3. Calculate the Comprehensive Weight

Considering the subjective experience and cognition of decision makers and the objec-
tive information and law of the sample data, the subjective weight and objective weight of
the three indicators are balanced, and Formula (23) is used for comprehensive calculation.
The result is W = [0.594, 0.174, 0.232]. Among these, the internal operation mechanism of
Formula (23) makes each indicator have a higher comprehensive weight only when the sub-
jective weight and objective weight are both higher, avoiding the contradiction caused by
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the large difference between subjective and objective weight values, and obtaining a more
balanced and scientific indicator weight. In addition, the calculated results are normalized.

The specific calculation results of different weights are shown in Table 5.

Table 5. Indicator weight calculation results.

Weighting Method
Weighted Value

P1 P2 P3

Empower
subjectively

Delphi 0.400 0.300 0.300
IAHP 0.571 0.143 0.286

Combinatorial subjectivity 0.640 0.120 0.240

Empower
objectively

Entropy weight 0.452 0.297 0.251
CRITIC 0.394 0.319 0.287

Combinatorial objectivity 0.516 0.275 0.209

Comprehensive weighting method 0.594 0.174 0.232

4.2. Process of Improving Support Vector Machine by Bayesian Optimization Algorithm

Using the Bayesian optimization algorithm to improve the support vector machine
is mainly in order to select the best hyperparameters for the support vector machine by
using the iterative optimization function of the Bayesian optimization algorithm. When
SVM chooses a linear function and polynomial function as kernel function, the Bayes
optimization algorithm only needs to optimize one hyperparameter: the penalty factor.
When SVM selects the Gaussian function (also known as the radial basis function) as the
kernel function, the Bayesian optimization algorithm needs to optimize both the penalty
factor and the kernel width hyperparameters. The specific optimization process is shown
in Figure 6. The iterative optimization process of the Bayes algorithm in the support vector
machine is shown in Figure 7.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 28 
 

4.1.3. Calculate the Comprehensive Weight 
Considering the subjective experience and cognition of decision makers and the ob-

jective information and law of the sample data, the subjective weight and objective weight 
of the three indicators are balanced, and Formula (23) is used for comprehensive calcula-
tion. The result is 𝑊 = [0.594, 0.174, 0.232]. Among these, the internal operation mecha-
nism of Formula (23) makes each indicator have a higher comprehensive weight only 
when the subjective weight and objective weight are both higher, avoiding the contradic-
tion caused by the large difference between subjective and objective weight values, and 
obtaining a more balanced and scientific indicator weight. In addition, the calculated re-
sults are normalized. 

The specific calculation results of different weights are shown in Table 5. 

Table 5. indicator weight calculation results. 

Weighting Method 
Weighted Value 

P1 P2 P3 

Empower 
subjectively 

Delphi 0.400 0.300 0.300 
IAHP 0.571 0.143 0.286 

Combinatorial subjectivity 0.640 0.120 0.240 

Empower 
objectively 

Entropy weight 0.452 0.297 0.251 
CRITIC 0.394 0.319 0.287 

Combinatorial objectivity 0.516 0.275 0.209 
Comprehensive weighting method 0.594 0.174 0.232 

4.2. Process of Improving Support Vector Machine by Bayesian Optimization Algorithm 
Using the Bayesian optimization algorithm to improve the support vector machine 

is mainly in order to select the best hyperparameters for the support vector machine by 
using the iterative optimization function of the Bayesian optimization algorithm. When 
SVM chooses a linear function and polynomial function as kernel function, the Bayes op-
timization algorithm only needs to optimize one hyperparameter: the penalty factor. 
When SVM selects the Gaussian function (also known as the radial basis function) as the 
kernel function, the Bayesian optimization algorithm needs to optimize both the penalty 
factor and the kernel width hyperparameters. The specific optimization process is shown 
in Figure 6. The iterative optimization process of the Bayes algorithm in the support vector 
machine is shown in Figure 7. 

Initial network

Input sample data

Data normalization

Sample data partitioning

Reach termination 
condition

Training network model

Calculated output

Determining penalty 
factor C and Gaussian 

kernel width σ 

Selective kernel function

Randomly initializes 
the hyperparameter 

combination

Prior function data set

Gaussian process fitting

Increase sampling point

A posterior data set

Gets the hyperparameters 

Yes
No

 
Figure 6. Process of BOA improving SVM.

The Bayesian optimization algorithm first fits a prior function as a proxy model of
the real objective function through the Gaussian regression process. The prior function
can first sample several points to fit the objective function curve, as shown by the yellow
dashed line in Figure 8. In the next iteration, the prior function can collect more points near
the minimum point or in the new region, and then update the proxy function to carry out
the next iteration, as shown in the blue solid line in Figure 8. As the number of iterations
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increases, the proxy function continuously approximates the real objective function, thus
finding the minimum value of the objective function, as shown in the green solid point.
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(1) Initialize network parameters
After several preliminary tests on the prediction model, combined with some common

experience on support vector machines, the initial parameters are set to the following: the
penalty factor is 1; the width of the Gaussian kernel is

√
m/4, and m is the number of

prediction indicators; and the maximum number of iterations is 100.
(2) Input samples
According to the first section of this paper, the three prediction indicators, σθ/σc, σc/σt

and Wet, and the corresponding 120 groups of rock burst instance data, are selected as the
input variables of the prediction model, and the input variables are weighted. The numbers
“1”, “2”, “3” and “4” are used to represent the four intensity levels of rock burst as the
output variables of the prediction model.

(3) Sample division
The sample data are divided into test sets and training sets, according to the routine

ratio of 1:4. The training set is used to mine the law behind the data, and the test set is used
to evaluate the prediction effect of the prediction model.

(4) Data normalization
The same method as in Section 2.3.2 is used to normalize the weighted sample data to

achieve the purpose of accelerating the iterative convergence of the model.
(5) Select kernel function
In this paper, three types of kernel function support vector machine models are trained

and tested. Among them, the polynomial kernel type support vector machine typically
selects quadratic function and cubic function as the kernel function for training test.

(6) Determine the optimal hyperparameters
The Bayesian optimization algorithm is used to determine the hyperparameters in the

prediction model, namely the penalty factor and the Gaussian kernel width.
(7) Calculation output
After the prediction results are output in the form of a confusion matrix, the true posi-

tive rate (TPR), false negative rate (FNR), positive prediction value (PPV), false discovery
rate (FDR) and accuracy rate (ACC) of the prediction model can be obtained. And they
have the following relationship: TPR + FNR = 1; PPV + FDR = 1. The meanings of the
confusion matrix are shown in Table 6, and the meanings of each output result are shown
in Table 7.
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Table 6. Confusion matrix.

Prediction
Result

Real Situation

Positive Negative

Positive TP
(Correct judgment)

FP
(Class II errors)

Negative FN
(Class I errors)

TN
(Correct judgment)

True Positive (TP): the sample is positive and is judged positive by the classifier; True Negative (TN): the samples
are negative and judged negative by the classifier; False Positive (FP): the sample was negative but was judged
positive by the classifier; False Negative (FN): the sample was positive but was judged negative by the classifier.

Table 7. Output results.

Index Abbreviation Significance Formula

Recall/Sensitivity
True Positive Rate TPR

The ratio between the number of samples in a class that
are predicted correctly and the total number of

such samples.
TPR = TP/(TP + FN)

False Negative Rate FNR The ratio between the number of predicted wrongly in a
class of samples and the total number of such samples. FNR = FN/(TP + FN)

Precision
Positive Predicted

Value
PPV

The ratio between the actual number of samples of a class
and the number of samples that the prediction model

determines to be of that class.
PPV = TP/(TP + FP)

False Discovery Rate FDR
The ratio of the number of false predictions of a certain

type of sample to the number of such samples in the
prediction result.

FDR = FP/(TP + FP)

Accuracy ACC The ratio of the total number of correct samples to the
total number of complete samples.

ACC = (TP + TN)/(TP +
FP + TN + FN)

(8) Result analysis
Taking the prediction results of a training set during the experiment as an example, the

significance of the above output results represented in the prediction model is elaborated:
As shown in Figure 8a, the TPR of Grade-1 rock burst is 100%, which means that all the

actual level-1 rock burst samples are predicted to be level-1 rock burst; that is, the correct
prediction rate of grade 1 is 100%. The TPR of level-2 rock burst is 90.9%, which means
that 90.9% of the actual level-2 rock burst samples are correctly predicted to be level-2 rock
burst; that is, the correct prediction rate of level-2 rock burst is 90.9%. The TPR of level-3
rock burst is 92.3%, which means that 92.3% of the actual level-2 rock burst samples are
correctly predicted to be level-3 rock burst; that is, the correct prediction rate of level-2 rock
burst is 90.9%. The TPR of level-4 rock burst is 80.0%, which means that 80.0% of the actual
level-4 rock burst samples are correctly predicted to be level-4 rock burst; that is, the correct
prediction rate of level-4 rock burst is 80.0%.

PPV: As shown in Figure 8b, the PPV of level-1 rock burst is 100%, which means that
the predicted level-1 rock burst samples in the prediction results are all consistent with the
actual level-1 rock burst samples; that is, the forecasted correct rate of level-1 rock burst is
100%.The PPV of level-2 rock burst is 90.9%, which means that 90.9% of the predicted level-
2 rock burst is consistent with the actual level-2 rock burst samples; that is, the forecasted
correct rate of level-2 rock burst is 90.9%. The PPV of level-3 rock burst is 87.8%, which
means that 87.8% of the predicted level-3 rock burst is consistent with the actual level-3
rock burst samples; that is, the forecasted correct rate of level-3 rock burst is 87.8%. The
PPV of level-4 rock burst is 92.3%, which means that 92.3% of the predicted level-4 rock
burst is consistent with the actual level-4 rock burst samples; that is, the forecasted correct
rate of level-4 rock burst is 92.3%.
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ACC: As shown in Figure 8c, the prediction of the training set is quantitatively ob-
served. The actual situation of rock burst is as follows: including 20 level-1 rock burst
samples, all were predicted correctly: there were 20 + 2 = 22 level-2 rock burst samples, 20 of
which were predicted correctly and 2 of which were wrongly predicted as class-3 rock burst.
There were 36 + 2 + 1 = 39 level-3 rock burst samples, 36 of which were predicted correctly,
2 of which were wrongly predicted as level 3, and 1 of which was wrongly predicted as
level 4. The samples contained 12 + 3 = 15 class-4 rock burst samples, 12 of which were
correctly predicted and 3 of which were incorrectly predicted to be level-3 rock burst. The
forecast of rock burst was as follows: there were 20 forecasted results of level-1 rock burst,
all of which were correct. There were 20 + 2 = 22 forecasted results of level-2 rock burst,
20 of which were correct and 2 of which were wrong, and should actually be level-3 rock
burst. There were 36 + 2 + 3 = 41 forecasted results of level-3 rock burst, 36 of which were
correct and 5 of which were wrong, and should actually be two level-2 rock bursts and
three level-4 rock bursts. There were 12 + 1 = 13 forecasted results of level-4 rock burst,
12 of which were correct and 1 of which was wrong, and should actually be level-3 rock
burst. The overall accuracy is: (20 + 20 + 36 + 12)/(20 + 22 + 39 + 15) = 91.67%, that is,
(20 + 20 + 36 + 12)/(20 + 22 + 41 + 13) = 91.67%.
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Among these: FNR and TPR have conflicting meanings, as do FDR and PPV. So, FNR
and FDR are not discussed here.

4.3. Analysis of Test Results

According to the elaboration in article 4.3.2 (8), the information attributes expressed
by prediction correct rate and prediction error rate are consistent, and the information
attributes expressed by forecast correct rate and forecast error rate are also consistent. In
order to fully display the information and simplify the expression, the two indexes of
prediction correct rate and forecast correct rate, which are larger and better, are selected as
the evaluation criteria of the model. The prediction effects of the three models are shown
and analyzed below:

(1) Build a prediction model with raw data and unoptimized SVM. (SVM model)
The indicator data of rock burst samples are not weighted, and the hyperparameters

of the support vector machine are selected subjectively to predict the intensity level of rock
burst. The specific prediction situation is shown in Table 8:

Table 8. Output results of the general SVM model.

TPR PPV

Number
of Tests

Kernel
Type Level 1 Level 2 Level 3 Level 4 Mean

Value Level 1 Level 2 Level 3 Level 4 Mean
Value

1

Linearity 76.50% 33.30% 100.00% 75.00% 67.08% 75.00% 66.70% 64.30% 100.00% 76.50%
Quadratic 89.58% 83.30% 100.00% 75.00% 79.58% 100.00% 83.30% 75.00% 100.00% 89.58%

Cubic 87.50% 83.30% 88.90% 50.00% 75.55% 100.00% 83.30% 66.70% 100.00% 87.50%
Gauss 79.18% 33.30% 88.90% 50.00% 58.05% 100.00% 66.70% 50.00% 100.00% 79.18%

2

Linearity 78.33% 80.00% 77.80% 60.00% 64.45% 100.00% 50.00% 63.30% 100.00% 78.33%
Quadratic 84.85% 80.00% 88.90% 80.00% 77.23% 100.00% 66.70% 72.70% 100.00% 84.85%

Cubic 82.45% 80.00% 88.90% 80.00% 72.23% 100.00% 57.10% 72.70% 100.00% 82.45%
Gauss 82.08% 60.00% 88.90% 60.00% 62.23% 100.00% 75.00% 53.30% 100.00% 82.08%

3

Linearity 81.25% 40.00% 100.00% 100.00% 76.68% 100.00% 50.00% 75.00% 100.00% 81.25%
Quadratic 84.45% 60.00% 77.80% 100.00% 84.45% 100.00% 60.00% 77.80% 100.00% 84.45%

Cubic 90.45% 80.00% 100.00% 75.00% 84.58% 100.00% 80.00% 81.80% 100.00% 90.45%
Gauss 82.08% 40.00% 88.90% 75.00% 63.48% 100.00% 100.00% 53.30% 75.00% 82.08%

4

Linearity 75.83% 33.30% 77.80% 100.00% 72.78% 100.00% 40.00% 63.30% 100.00% 75.83%
Quadratic 83.18% 50.00% 88.90% 100.00% 79.73% 100.00% 60.00% 72.70% 100.00% 83.18%

Cubic 84.18% 66.70% 77.80% 75.00% 79.88% 100.00% 66.70% 70.00% 100.00% 84.18%
Gauss 84.13% 50.00% 88.90% 50.00% 72.23% 100.00% 75.00% 61.50% 100.00% 84.13%

5

Linearity 79.28% 50.00% 88.90% 25.00% 60.98% 100.00% 60.00% 57.10% 100.00% 79.28%
Quadratic 83.35% 66.70% 88.90% 50.00% 71.40% 100.00% 66.70% 66.70% 100.00% 83.35%

Cubic 87.50% 83.30% 88.90% 25.00% 74.30% 100.00% 83.30% 66.70% 100.00% 87.50%
Gauss 83.03% 50.00% 88.90% 25.00% 65.98% 100.00% 75.00% 57.10% 100.00% 83.03%

Average
correct

rate

Linearity 65.34% 47.32% 88.90% 72.00% 68.39% 95.00% 53.34% 64.60% 100.00% 78.24%
Quadratic 76.00% 68.00% 88.90% 81.00% 78.48% 100.00% 67.34% 72.98% 100.00% 85.08%

Cubic 80.66% 78.66% 88.90% 61.00% 77.31% 100.00% 74.08% 71.58% 100.00% 86.42%
Gauss 70.00% 46.66% 88.90% 52.00% 64.39% 100.00% 78.34% 55.04% 95.00% 82.10%

It can be seen from the table that the performance of the rock burst intensity-grade
prediction model based on traditional SVM is poor. The average prediction correct rate of
four kinds of kernel SVM was lower: 68.39%, 78.48%, 80.02% and 68.34%, respectively. The
average forecast correct rate is not high, and is, respectively, 78.24%, 85.08%, 86.42%, and
82.10%. The results show that it is not reasonable to select the hyperparameters of SVM
only by subjective experience, and that the mapping ability of unweighted indicator data is
not strong enough.

(2) After weighted data processing, the prediction model is built with unoptimized
SVM (W-SVM model)
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The rock burst intensity grade is predicted by using unoptimized-support vector
machine-training weighted data. Due to space limitations, compared with the above table,
only the average prediction correct rate and average forecast correct rate of each grade of
rock burst are shown here. The prediction situation is shown in Table 9:

Table 9. Output results of the W-SVM model.

Kernel
Type

TPR PPV

Level 1 Level 2 Level 3 Level 4 Average Level 1 Level 2 Level 3 Level 4 Average

Linearity 76.00% 56.66% 93.34% 86.00% 78.00% 96.00% 67.84% 76.74% 100.00% 85.15%
Quadratic 80.00% 72.00% 86.90% 91.00% 82.48% 100.00% 76.34% 79.54% 94.28% 87.54%

Cubic 84.00% 72.00% 91.34% 87.00% 83.59% 100.00% 76.48% 78.62% 100.00% 88.78%
Gauss 80.00% 60.00% 95.56% 69.00% 74.14% 100.00% 90.48% 67.30% 100.00% 89.45%

It can be seen from the table that the performance of the rock burst intensity-grade
prediction model based on W-SVM is not good. The average prediction correct rate of the
four kernel SVMs is not high, and is 78.00%, 82.48%, 83.59% and 74.14% respectively. The
average forecast correct rate was also low: 85.15%, 87.54%, 88.78% and 89.45%, respectively.
The results show that the mapping ability of indicator data is enhanced after weighted
processing, which can improve the effect of rock burst intensity-grade prediction, to a
certain extent. However, in view of the problems of poor stability and low prediction
correct rate of the SVM with subjective selection of hyperparameters, it is necessary to
improve the SVM to further improve the performance of the rock burst intensity-grade
prediction model.

(3) After data-weighted processing and BOA-improved SVM to build the prediction
model (W-BOA-SVM model)

The SVM is improved by BOA, and then the weighted index data are trained by it
to predict the intensity level of rock burst. The specific forecasted results are shown in
Table 10:

Table 10. Output results of the W-BOA-SVM model.

Kernel
Type

TPR PPV

Level 1 Level 2 Level 3 Level 4 Average Level 1 Level 2 Level 3 Level 4 Average

Linearity 96.66% 86.00% 95.56% 100.00% 94.56% 100.00% 93.80% 90.14% 100.00% 95.99%
Quadratic 92.66% 86.00% 95.56% 100.00% 93.56% 100.00% 89.80% 90.14% 100.00% 94.99%

Cubic 92.66% 82.68% 95.56% 100.00% 92.73% 100.00% 92.66% 88.22% 96.00% 94.22%
Gauss 96.66% 82.66% 97.78% 100.00% 94.28% 100.00% 96.66% 88.14% 100.00% 96.20%

It can be seen from the table that the rock burst intensity- grade prediction model
built on the W-BOA-SVM has excellent performance. The average prediction correct rate of
the four kernel SVMs was higher, with 94.56%, 93.56%, 92.73% and 94.28%, respectively.
The average forecast correct rate was 95.99%, 94.99%, 94.22% and 96.20%, respectively.
The results show that the performance of the rock burst intensity-grade prediction model
can be greatly improved by using the Bayesian optimization algorithm to determine the
hyperparameters of the support vector machine on the basis of weighted processing of
indicator data.

(4) Comparative analysis
The results of the three forecasting models based on different methods are compared

and analyzed, and the specific results are shown in Table 11:
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Table 11. Comparison of the predictive performance of the three models.

Model Average TPR Average PPV Average ACC

SVM 72.14% 82.96% 74.97%
W-SVM 79.55% 87.73% 82.29%

W-BOA-SVM 93.78% 95.35% 93.30%

As can be seen from the above table, the average TPR and PPV of the SVM model are
74.14% and 82.96%,respectively, and the average accuracy is 78.97%. The average TPR and
PPV of the W-SVM model were 79.55% and 87.73%, respectively, and the average accuracy
was 82.29%. The average TPR and PPV of W-BOA-SVM model are 93.78% and 95.35%
respectively, and the average accuracy is 93.30%.

Comparison between SVM and W-SVM: Compared with SVM, the TPR and PPV of
W-SVM are increased by 7.41% and 4.77%, respectively, and the improvement efficiency is
10.27% and 5.75%, respectively. The average accuracy rate was improved by 7.32%, and the
efficiency was improved by 9.76%. It can be seen that the performance of the rock burst
intensity-grade prediction model can be slightly improved after weighted processing of the
indicator data.

Comparison between W-SVM and W-BOA-SVM: Compared with W-SVM, the TPR and
PPV of W-BOA-SVM are increased by 14.23% and 7.62%, respectively, and the improvement
efficiency is 17.89% and 8.69%, respectively. The average accuracy rate is improved by
11.01%, and the improvement efficiency is 13.38%. It can be seen that the performance of
the rock burst intensity-grade prediction model is greatly improved by using the Bayesian
optimization algorithm to improve the support vector machine.

Comparison between SVM and W-BOA-SVM: Compared with SVM, the TPR and PPV
of W-BOA-SVM are increased by 21.64% and 12.39%, respectively, and the improvement
efficiency is 30.00% and 14.93%, respectively. The average accuracy rate is increased by
18.33%, and the improvement efficiency is 24.45%. It can be seen that the performance of the
rock burst intensity-grade prediction model can be significantly improved by combining
indicator data-weighting processing and the Bayesian optimization algorithm to improve
the support vector machine.

The model in this paper is compared and analyzed with the model in previous studies,
and the specific results are shown in Table 12.

Table 12. Comparison of different forecasting models.

Model Sample Set
Size Used Weighting Methods Average

Accuracy

Integrated cloud model [32] 12 Nebulization conditions 75.00%
Combinatorial weighting—set pair analysis model [31] 15 Delphi, Entropy weight 87.00%

CRITIC-XGB [16] 50 CRITIC 93.30%
H-PSO-SVM [17] 46 AHP, Entropy weight 83.80%

W-SVM 120 Delphi, Entropy weight, IAHP, CRITIC 82.29%
W-BOA-SVM 120 Delphi, Entropy weight, IAHP, CRITIC 93.30%

As can be seen from Table 13, some scholars have predicted the rock burst intensity
level by means of the weighting method and the machine learning algorithm, and achieved
some good results. However, compared with the model constructed in this paper, the data
set of these models is relatively small, so the generalization of the model is not as good
as the model in this paper, and its accuracy is not high. At the same time, the weighting
methods of some models are relatively simple, which will lead to the determined index
weights not being reasonable and balanced, and reduce the reliability of the models. In this
paper, four weighting methods are coupled together to determine the weight of the index,
and the support vector machine is improved by using the Bayesian optimization algorithm
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with strong optimization ability, so as to predict the intensity level of rock burst. The result
is relatively good.

Table 13. Actual rating and indicator data of tunnel and mine to be predicted.

Sample
Number Engineering Rock Type Height

(m)
σθ

(MPa)
σc

(MPa)
σt

(MPa) σθ/σc σc/σt Wet Actual
Level

1 Ma Luping mine Dolomite 750 2.60 20.00 3.00 0.13 6.67 1.39 I
2 Ma Luping mine Phosphate 750 44.40 120.00 5.00 0.37 24.00 5.10 II
3 Ma Luping mine Dolomite 700 3.80 20.00 3.00 0.19 6.67 1.39 I
4 Ma Luping mine Phosphate 700 57.60 120.00 5.00 0.48 24.00 5.10 III
5 Ma Luping mine Sandstone 600 81.40 110.00 4.50 0.74 24.40 5.10 IV

. . . . . . . . . . . . . . .
12 Daxiangling tunnel Rhyolite 799 56.90 123.00 2.70 0.46 45.50 5.20 III
13 Daxiangling tunnel Rhyolite 760 29.10 94.00 2.60 0.31 36.10 3.20 II
14 Daxiangling tunnel Rhyolite 1074 40.10 72.10 2.30 0.55 31.30 4.60 III
15 Daxiangling tunnel Rhyolite 980 58.20 83.60 2.60 0.69 32.10 5.90 IV

5. Engineering Application

In order to verify the generalization and engineering applicability of the model, 15 sets
of rock burst case data from Maluping mine [41] and Dxiangling Tunnel [42] were selected
to predict the intensity grade and further evaluate the model constructed in this paper.
In the data set, the number of class I-to-IV rock bursts is 3, 3, 6, 3 in sequence, which is
consistent with the proportion of each class of rock bursts in 120 training samples. Some of
the selected data are shown in Table 13.

In practical engineering, the specific application process of the W-BOA-SVM model
constructed in this paper is shown in Figure 9. Based on the model, the above 15 groups of
rock burst case data are predicted. During the experiment, the prediction accuracy of the
W-BOA-SVM model with Gaussian function as the kernel function reached the maximum
of the experimental results. It can be seen that the choice of the Gaussian function as the
kernel function has certain advantages in the W-BOA-SVM model, so the Gaussian function
is selected as the kernel function of the model in this test. The optimization process is
shown in Figure 10.
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As shown in Figure 10, this training reached convergence at the 21st iteration calcula-
tion, and the minimum classification error value was 0.10252. The optimal hyperparameter
combination is found: the C is 76.26 and the σ is 7.12.
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At the same time, the three test results of the SVM model, W-SVM model and W-BOA-
SVM model were compared, and the specific test results are shown in Figure 11.
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The analysis of Figure 11 shows that the average prediction correct rate of the ordinary
SVM model is 75.00%, the average forecast correct rate is 81.25%, and the prediction
accuracy is 80.00%. The average prediction correct rate of the W-SVM model is 83.25%, the
average prediction accuracy is 93.75%, and the prediction accuracy is 86.68%. The average
prediction correct rate of the W-BOA-SVM model is 91.66%, the average forecasted correct
rate is 96.43%, and the prediction accuracy is 93.33%. Comparing the above three models,
it can be seen that the W-BOA-SVM model has the best test effect. The model incorrectly
predicted a grade-2 rock burst to a grade-3 rock burst, that is, it wrongly forecasted a
grade-3 rock burst, but it should actually be a grade-2 rock burst, and overestimated
the intensity level of the rock burst. In the forecasted results, if the rock burst intensity
level is overestimated, it may increase the safety cost and waste the resources of the
construction project, but it will not cause serious disasters. If the rock burst intensity level is
underestimated, the prepared disaster prevention and reduction conditions are not enough
to cope with the actual disaster level, resulting in high-risk engineering disaster accidents,
bringing very serious consequences. Therefore, the W-BOA-SVM model constructed in
this paper can effectively predict the intensity level of rock burst, provide early-warning
information for the occurrence and intensity of rock burst, and provide reference for rock
burst disaster prevention in deep underground engineering construction.

6. Discussion
6.1. Superiority

(1) There are few prediction indicators, which is convenient for collection and sorting
of sample data. In addition, this can reduce the workload caused by quantitative
indicators in the application process of the model.

(2) The T-SNE algorithm is used to reduce the dimension of sample data, which can more
intuitively and clearly show the distribution of samples.

(3) The four weighting principles are coupled for the first time, and a new comprehensive
weighting method is proposed. The prediction accuracy is improved effectively by
weighting the prediction indicators.

(4) Two machine learning algorithms of BOA and SVM were fused; and a W-BOA-SVM
rock burst intensity-grade prediction model was constructed for the first time on the
basis of data pre-processing, and good results were achieved.

6.2. Limitation

(1) The occurrence of rock burst is affected by many factors; the actual situation of each
project is different, and if there are no similar characteristics, it will be difficult to
compare and analyze the two projects, which is a difficulty in the study of rock burst.

(2) The number of project case data collected in this paper is relatively small, and the
sample data set is small, so this study is a preliminary study. At the same time, the
rock burst prediction indicator system will change with the different rock behavior
characteristics of underground engineering in the future, and the prediction model
should be further improved. The essence of rock burst is artificially induced micro-
seismic activity. For more complex seismic events, on-site monitoring is needed to
obtain more information for analysis. In addition, in reality, the background and
situation of each project are different, so the model may not be suitable for some
underground projects. In view of this, this study is still a partial study.

(3) The geological structure of the mine is complex and may contain many types of rock
mass, and the brittleness coefficient of rock mass of different rock types is different.
The brittleness coefficient will change with the change in mine geological structure,
and also with the deterioration of rock mass. Therefore, when predicting the rock burst
of the same mine, if the geological structure of the mine is simple, it can be assumed
that the rock mass is uniform. If the geological structure of the mine is complex, it is
necessary to quantify the rock burst prediction index according to different geological
structures. If the degradation of rock mass is serious, it is necessary to reduce the
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strength of rock mass. Generally speaking, rock burst rocks are relatively uniform, and
hard, have good structural density, with few cracks, and have good brittleness and
elasticity. The prediction model in this paper assumes that the rock mass is uniform.
Rock burst is more likely to occur in complex geological structures, such as folds,
bends, fractures and abrupt changes in strata. In view of this, the model may not be
suitable for underground projects with complex geological structures.

6.3. Outlook

(1) Visualization of the running code of the model can facilitate some engineers who are
unfamiliar with programming to use the rock burst prediction model. This will be the
focus of the author’s future work.

(2) In the future, it is necessary to establish rock burst sample databases according to
different engineering backgrounds such as mines, hydropower stations and tunnels.
This will make the sample data more characteristic and improve the applicability of
the prediction model to similar projects. At the same time, it is necessary to expand
the sample database and mine more data information in the future. Based on big data
samples and intelligent algorithms, the future trend will be to solve the problem of
rock burst prediction.

(3) Against the background of continuous accumulation of engineering data and in-
creasingly mature machine learning algorithms, machine learning algorithms will
become one of the effective ways of solving the problem of rock burst intensity-
grade prediction.

7. Conclusions

(1) Combined with the research results of other scholars, this paper selects three main
factors, σθ/σc, σc/σt and Wet to construct the prediction indicator system of rock burst
intensity grade; according to the main performance and characteristics of rock burst,
the intensity of rock burst is divided into I~IV levels. A total of 120 groups of rock
burst data at home and abroad were collected as learning samples, and the T-SNE
algorithm was used to reduce the dimension of the sample data, which showed the
distribution of samples intuitively and clearly.

(2) In this paper, the Delphi method and improved analytic hierarchy process are used to
determine the subjective weight of the prediction indicator, the entropy weight method
and CRITIC method are used to determine the objective weight of the prediction
indicator, and the method of harmonic average coefficient is used to integrate the
subjective weight and objective weight to obtain a more scientific and reliable indicator
weight. At the same time, BOA is used to determine the best hyperparameters of SVM
to improve the prediction performance of SVM. Finally, SVM improved by BOA is
used to train and learn the weighted indicator data, and the W-BOA-SVM rock burst
intensity-grade prediction model proposed in this paper is obtained. At the same
time, the model is compared with other models to show the superiority of this model.

(3) The W-BOA-SVM model constructed in this paper was used to predict the rock burst
case data pairs of the two actual projects of the Maluping mine and Daxiangling
tunnel; there was only one error in the prediction results, and the consequences
were within the controllable range. It shows that the model has good validity and
engineering applicability, and provides a reference for rock burst disaster prevention.
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Abbreviations

BOA Bayesian optimization algorithm
SVM Support vector machine
BOA-SVM Bayesian optimization algorithm–improve- support vector machine model
W-BOA-SVM BOA-SVM model after indicator comprehensive weighting
T-SNE t-distributed stochastic neighbor embedding
H Underground depth
Kv The rock integrity factor
σθ Maximum tangential stress of rock
σc Maximum uniaxial compressive strength of rock
σt Maximum uniaxial tensile strength of rock
σθ/σc The rock stress coefficient
σc/σt The rock brittleness coefficient
Wet The rock elastic-energy index
IAHP Improved analytic hierarchy process
CRITIC Criteria Importance Though Intercriteria Correlation
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