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Abstract: The study of the Peña Negra paleoglacier during the Last Glacial Maximum reveals its
sensitivity to paleoclimatic variations. The evolutionary phases of the paleoglacier are correlated
with the evolutionary models proposed for the Sierra de Béjar-Candelario and the Central Iberian
System. To recognize the mechanisms of ice advance/retreat and the response of the glacier to
paleoclimatic variations, modeling is carried out based on a geographic information system tool. This
model is key to establishing the spatial extent of the ice and the estimation of the Equilibrium line
altitudeequilibrium line altitudes at each moment, which makes it easier to infer the approximate
climatic conditions of each phase (temperature and precipitation) and allows us to improve the
understanding of the glacial dynamics versus variations in paleoenvironmental conditions and
paleoglacial morphometry. The spatial reconstruction data show that the paleoglacier had 0.526 km3

of ice during the phase of maximum extension, while the paleoclimatic data reflect an increase in
precipitation and a slight decrease in average summer temperatures compared to today. The stability
phases are associated with the periods of greatest precipitation when the mass balance was positive.

Keywords: palaeoglacier; paleoclimate; glacial geomorphology; Sierra de Béjar-Candelario; Last
Glacial Cycle

1. Introduction

The successive climatic changes during the recent Late Pleistocene played a significant
role in the glacial development of the mountains in southern Europe [1] and in their
current landscapes. Abundant marine sedimentary records bordering the Iberian Peninsula
reflect the region’s susceptibility to North Atlantic climatic changes [2]. These climatic
variations are well documented in all mountain ranges and massifs. The major mountain
chains preserve a valuable record of past glaciation, primarily linked to the Last Glacial
Cycle (LGC).

Glacial landscapes have been a subject of research since the 19th century and have
gained particular attention in recent decades. This research aims to comprehend the timing,
extent, and complexity of the Quaternary glaciation concerning past climatic changes and
oceanic and atmospheric circulation patterns. Investigations have led to detailed and robust
cartography, focusing on the main mountain chains and massifs, as well as specific valleys.
Morphostratigraphic sequences and existing chronologies based on dating of 14C, OSL,
14Be, Cl and Ne indicate four significant advances primarily centered on MIS 4–MIS 2,
though these advances vary in extent and are not uniformly identified in some specific
sectors or valleys. The northernmost sector of the Iberian Peninsula (Cantabrian Cordillera
and Pyrenees) experienced extensive glaciation with multiple fluctuations, related to pro-
nounced southward shifts in the polar front, which directed moist masses from the Atlantic
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towards the continent, driven by the westerly winds (a significant component of atmo-
spheric circulation at these latitudes). Detailed cartography and chronologies have allowed
the reconstruction of two major advances related to the Middle European Glaciation (MIS 4–
MIS 3) and the Last Glacial Maximum (MIS 2), followed by a progressive retreat during the
Late Glacial period. This period records two significant pulses, one centered on the Older
Dryas during a cold/dry episode initiated during a period of weak Atlantic Meridional
Overturning Circulation (AMOC) and another during the Younger Dryas, which is only
recorded in the highest cirques [3]. In the Sierra de Gredos (central sector of the Iberian
Peninsula), this last glaciation was important, with extensive MIS 2 glaciers affecting its
peaks [4–7]. This northeast-to-southwest-oriented range is also influenced by westerly
winds. Glacial research began in the late 19th century [8,9] and developed substantially in
the 20th and early 21st centuries, resulting in detailed descriptions, cartography, and models
regarding the evolution of glaciers during the LGC [10–14]. In recent decades, research has
focused on establishing chronologies, environments, and ice mass reconstructions [15–17].

The Sierra de Béjar-Candelario (the westernmost sector of Gredos in the southeastern
region of the province of Salamanca, Spain) was notably affected by these climatic changes,
particularly during the LGC, which shaped its landscapes. During cold periods (glacials
and/or stadials) of this cycle, ice accumulation on the hills, cirques, and glacial valleys
led to significant erosive actions, resulting in cirque incisions (escarpments) and valley-
side step features, as well as the deposition of moraines at the margins of the glacial
valleys, both in front of and behind the ice cap. During warm periods (interglacials and/or
interstadials), the ice melted, leaving behind englacial and supraglacial materials on the
valley floor moraines and river incision in the fluvial valleys. Detailed cartography [13] has
enabled the separation of moraine sequences in the cirques and glacial valleys, providing a
general relative chronosequence for the study area during Late Pleistocene moments. The
geometrical and spatial characteristics of these glacial deposits have also allowed for the
differentiation of four key stages within the LGC.

Currently, the region features a Dsb climate type according to the Köppen classification,
which is characterized as cold with temperate summers [18]. The moisture regime is high,
particularly on the southwest and northwest slopes, where dominant winds bring rainy
fronts. From a thermal perspective, the northern slopes are colder due to the influence of
north winds and reduced insolation [13,19].

This study aims to reconstruct the ancient paleogeographies of the Peña Negra Glacier
(located on the north-northeastern slope of Sierra de Béjar) (Figure 1) to calculate its
equilibrium line altitudes (ELAs) and infer the climatic conditions. Furthermore, it seeks to
reconstruct the chronological sequence from the Late Upper Pleistocene to the Holocene
based on glacial records from the study area, employing geomorphological and cartographic
analyses, and Geographic Information Systems (GISs).

The primary objective of this research is to enhance the geomorphological mapping
of the Peña Negra glacier system using the latest high-resolution techniques with GIS
and image analysis from drones (photogrammetry). This approach aims to obtain and
describe ice volume data and the position of glacier equilibrium lines for each phase,
where mass balance is in equilibrium [20]. Additionally, it intends to correlate the different
phases observed at Peña Negra with obtained dating data and relate them to the stages
described in the evolution of the LGC (Late Pleistocene) of the Sierra de Béjar-Candelario
and the Iberian Central System [4–7,16,21–23]. Finally, a paleoclimatic reconstruction will
be conducted using paleoELAs data, which is presented as a main novelty for the Sierra of
Béjar-Candelario, to approximate how climatic conditions have changed in each phase of
glacial equilibrium [24–26].
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2. Materials and Methods
2.1. Regional Setting

The geological history of the Sierra de Béjar-Candelario reflects an extensive and
complex evolution, evidenced by the present lithologies, primarily pre-Variscan metased-
iments and syn- and post-kinematic granitoids, as well as the succession of recorded
tectonic events [27] (Figure 2). The current topography is the result of the main process of
compressive deformation during the Alpine Orogeny, which occurred during the Ceno-
zoic (Oligocene–Lower Miocene). The Iberian Central System is an incomplete chain of
structures responding to intraplate deformation caused by stress transmission from the
nearest active plate boundaries. In this region, mountain chains are located, representing
plate boundaries with a similar tectonic evolution, such as the Pyrenees and the Betic
Cordilleras [28].

Due to its involvement in deformation, the Iberian Central System exhibits geological
facies typical of the internal zones of an orogeny, including anatectic granitoids. It represents
a large, thick-skinned pop-up mountain chain, characterized by a polyphasic and double-
vergent nature. The Sierra de Béjar-Candelario is considered one of the uplifted (pop-up)
blocks with an ENE–WSW orientation, laterally bounded by reverse faults and separated
from adjacent blocks (Sierra de Francia to the west and Sierra de El Barco to the southeast)
by depressions such as the Jerte Valley and the Alagón-Ambroz Valley [28]. Following
the Alpine event, which led to a significant rejuvenation of the landscape, the entire area
was exposed to external geological processes. During the Quaternary cold phases (glacials
and stadials), the glacial morphogenetic system developed. These conditions of erosion,
frost, and nivation, primarily, are responsible for the morphological structures observed
throughout the area, including the glacial features of Peña Negra [29,30].
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Figure 2. Geological map of Peña Negra.

As a result of its extensive geodiversity and scientific, educational, and tourist impor-
tance of its different geosites, the Sierra de Béjar-Candelario also presents great interest
from the point of view of geological and hydrological heritage [31,32].

Geomorphology

The Peña Negra Glacier is a small paleoglacier with a northeastern orientation situated
on the northern slope of the Sierra de Béjar-Candelario. Its cirque, located from 1840–2100 m
in altitude, is adjacent to that of El Endrinal (Figure 3). During the LGC, this glacier
accumulated enough ice to form a glacier tongue approximately 1500 m in length, reaching
altitudes as low as 1580 m.

Within the cirque, distinct sedimentary records of well-defined forms are present,
which can be attributed to this last glaciation, with few records of erosional features
(Figure 4D,E). The sedimentary record comprises three prominent moraine complexes
displaying different retraction arcs; these sequences are a testament to the rapid response
of this glacier to the climatic changes that have occurred over time. Within these records lie
the various fluctuations that the Sierra has experienced during its glaciation.

In the outermost position, we find remnants of a moraine complex that distinguishes
two climatic oscillations, along with a filled marginal basin containing peat material. This
deposit defines the boundaries of a valley glacier, associated with stages when the ice
reached its maximum extent (Figure 3).

In the innermost zone, two major moraine complexes (each composed of five units)
are visible, separated by an area covered by ground moraine and glaciolacustrine deposits
resulting from the blockage of meltwater by the moraine front. The morainic retraction
arcs correspond to records of various climatic pulses during the deglaciation stage, to
which this glacier responded by diminishing in thickness and extent. These arcs represent
the successive positions adopted by the glacier front during its retreat, delineating the
ice domain occupied at those times. In total, there are ten distinct retraction arcs with
associated embedding and overlapping features, corresponding to as many glacial pulses
of varying magnitudes (Figure 4A,B).

Finally, remnants of a small moraine are found at the most northwestern sector of the
cirque, likely corresponding to the last episode of glacial retreat or stabilization.
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In the interfluve between this glacier and the adjacent El Endrinal, a moraine blanket
is discernible, which is likely related to the presence of ice covering all summits [33].

The glacier is embedded in the summit paleosurface, and the lower part of the cirque
wall is covered by periglacial cones and talus deposits, providing evidence of the intensity
of cryoclastic processes during the deglaciation phases (Figure 4C). These processes were
facilitated by favorable lithological, structural, and climatic conditions in this small glacier.
Periglacial processes occurred concurrently with the glacier during the latter stages and
continue to exhibit some activity.
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Figure 4. Bird’s-eye view photographs from the western area of the Peña Negra cirque. (A) Complexes
of lateral and frontal moraines. (B) Complex of frontal moraines and complex of lateral moraines
of the E slope of the glacial valley. (C) Lateral surface of the cirque covered by periglacial cones.
(D) Polished surfaces belonging to the minority erosional forms in this paleoglacier. (E) Panoramic of
the Peña Negra paleoglacier cirque. The upper limit of the cirque is marked.
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2.2. Methodology

The methodology followed in this study is divided into three main parts: Improvement
of information and detail of geomorphology; 3D reconstruction of the paleoglacier and
paleoELAs; and paleoenvironment calculation (paleotemperatures and paleoprecipitation).

2.2.1. Improvement of Information and Detail of Geomorphology

The geomorphological mapping at a scale of 1:18,000 previously carried out in Peña
Negra (Figure 3) [13,29] was revised by combining photointerpretation and fieldwork with
GIS techniques. This allowed us to work with modern aerial photography and a 1 × 1 m
resolution DEM. In areas of challenging access, such as the cirque section, photogrammetry
was performed using a drone at a constant altitude of 100 m, which enabled the acquisition
of a DEM with a resolution of 5.14 cm/pixel.

2.2.2. A 3D Reconstruction of the Paleoglacier and PaleoELAs

The steps for obtaining these data are summarized in Figure 5. Firstly, different glacial
phases must be delineated. This primarily involves geomorphological criteria. Valley
glaciers, such as Peña Negra, are constrained by the surrounding topography, allowing
for the identification of structures that demarcate each evolutionary stage (phase). In
the headwall area, the main cirque scarp and secondary scarps will indicate different
glacier advance stages. On the lateral margins, the maximum height of moraines will
serve as evidence of how far the glacial ice extended. Finally, in more distant areas, the
maximum heights of frontal moraines will be utilized. All these criteria are conditioned by
the evolution of the terrain in the study area.

To calculate the ice volume of the paleoglacier at Peña Negra, the “ArcGIS 10.8”
software and the “PalaeoIce” tool [34] are used. This tool provides an automatic method
for paleoglacier reconstruction and is based on a review and improvement of the “GlaRe”
models [35] and “VOLTA” [36].

“PalaeoIce” utilizes the flowline model, which generates an equilibrium profile along
the ice surface following the flowline of a glacier [37,38]. It assumes a perfectly plastic
rheological behavior of the ice mass [39,40]. The ice thickness points obtained along the
profile will be subsequently used to interpret the three-dimensional distribution of ice
thickness and surface elevation of the glacial ice.

To obtain the final result, various morphological and numerical parameters must be
entered into the tool. Morphological parameters include the perimeter of the glacier to be
modeled (Peña Negra in this case), the corresponding Digital Terrain Model (DTM), and
the flow network, which has been manually digitized. Numerical parameters include the
point resolution of ice thickness along the flowline (in meters) and the basal shear stress,
along with its range of minimum and maximum values (in Pascals). For valley glaciers, the
range of values should be between 50 and 150 kPa [38], while for cirque glaciers, it should
be higher than 190 kPa [41]. In this case, an intermediate value of 100,000 Pa was used for
the basal shear stress, with an upper limit of 150,000 Pa and a lower limit of 50,000 Pa. A
specific value for the shape factor (F) is not required, as the tool optimizes this value based
on the glacier’s morphology [34]. The calculations are performed using the polynomial fit
of [42].

The result will be a Digital Elevation Model (DEM) with ice thickness values within
the glacier’s perimeter, created through a Topo to Raster point interpolation process.

Once the total ice thickness is obtained, it is possible to calculate the position of the
glacial equilibrium line altitude (ELA). For this, a GIS tool will be used for the automatic
calculation of ELAs [43]. To arrive at the ELA value, the Area–Accumulation Ratio (AAR)
technique [44] and the Area–Altitude Equilibrium Ratio (AAER) [20] will be used. The
Equilibrium Ratio (ER) value used is 1.50, which is the regional estimate [15]. This value is
quite close to 1.56, which is the global mean value [44]. For calculating ELA using the AAR
method, a value of 0.58 corresponding to the global mean [45] will be used.
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2.2.3. Paleoenvironment Calculation (Paleotemperatures and Paleoprecipitation)

Once the ELA elevations data are available, the aim is to estimate the paleoclimatic con-
ditions at this position. The empirical relationship between precipitation and temperature
at the ELA is determined through calculations on numerous present-day glaciers [46,47].
This relationship is established when the function of precipitation and temperature is zero,
which is the case at the ELA position, using the following equation (Equation (1)) [47]:

P = 5.87 T2 + 230 T + 966 (1)

Here, P represents the annual precipitation (mm/year), and T reflects the average
temperatures of the summer months (June, July, and August). Summer temperatures are
considered, as it is during these months that ice melting is most significant [47]. However,
the issue with this equation is that it requires knowing one of the two values during the
glacial phase in advance. One possible approach to obtain the average summer temperature
is to assume that the dynamics of annual precipitation remain approximately the same.
In this case, the variation in ELA would be fully influenced by temperature changes. The
most accurate way to calculate the data is by using paleoclimatic indicators. In this study,
data from the Navamuño sounding (Béjar) [17] and the sedimentary record of Maltravieso
Cave (Cáceres) [48] are utilized (Table 1).
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To convert paleotemperature data to their corresponding values at the ELA, the
altitudinal gradient value is needed. Since it is not possible to know this value during the
glacial period, it will be assumed that the gradient in the area has remained unchanged.
The gradient calculation is carried out using the mean temperature values from 11 stations
near the area obtained from the Spanish Ministry of the Environment website (https:
//sig.mapama.gob.es/siga/, accessed on 1 December 2023) (Figure 6). We have obtained
for this area an altitudinal gradient value of –0.0066 ◦C/m. To calculate paleoprecipitation,
the value of average summer temperatures must be input. Therefore, the results presented
as annual mean values need to be transformed [24,25,49]. It is observed that the values of
seasonality, annual mean air temperature, and mean summer temperature are related in
the study area.

Table 1. Paleotemperature data.

Nº Tª (◦C) Altitude (m) Age (cal. BP) Site Source

1 12.4 ± 1.5 (MTW) 444 19,500–18,700 Cáceres [48]
2 6.25 (MAAT) 1505 15,090 Navamuño [17]

ª Abbreviations for temperature data correspond to: Mean Temperature of the Warmest Month (MTW) and Mean
Annual Air Temperature (MAAT).
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3. Results
3.1. Characterization of the Different Glacial Phases Recognizable in Peña Negra

In Peña Negra, a total of three main phases are recognizable (Figure 7). Each main
phase is delimited by the geomorphological evidence found in the area, as indicated in the
first paragraph of Section 2.2.2. Phase 1 marks the state of maximum glacial advance. It
occupies the entire glacial valley, and at its head, it is connected to the main cirque scarp.
Phase 2 and Phase 3 are stages of lesser magnitude in terms of glacial development. Both
phases are delimited at their head by the scarp, the elevation of which closely approximates
the height of the moraines. Phase 2 extends to the lateral moraine train located around
the middle of the valley. At this point, there is a break in slope in the glacial valley bed,
marking the boundary of a stabilization phase [39]. Finally, the smallest phase, Phase 3, can
be well delimited by following the maximum height of the upper frontal moraine.

https://sig.mapama.gob.es/siga/
https://sig.mapama.gob.es/siga/
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3.2. Results of Ice Volume Calculations

Once the different main and representative phases of the glacier system have been de-
fined, the goal is to calculate the volume of glacial ice. To do this, each phase is individually
modeled, following the steps, and using the values presented in Section 2.2.2. Two Digital
Elevation Models (DEMs) are obtained for each phase, one representing the thickness of
the ice and the other showing the hypsometry of the glacier in equilibrium state (Figure 8).
The results for each glacial phase are presented in the following table (Table 2).

It is observed that both the extent and volume decrease as the phases progress. The
percentage change in ice volume from Phase 1 to Phase 2 is 71.1%, while the change in the
area covered by ice is 38.89%. The relationship between Phase 2 and Phase 3 indicates a
decrease of 86.85% in ice volume and a 65.45% reduction in the area covered.

Table 2. Dimensional data and position of the paleoELA for the different phases of Peña Negra.

Phase Total Ice Volume (km3) 3D Extension (ha) paleoELA AAR (m) paleoELA AABR (m)

Phase 1 0.526 195.16 1861.5 1836.5
Phase 2 0.152 119.28 1934.5 1909.5
Phase 3 0.020 41.58 1963.2 1938.5

The represented ELAs were calculated from the Digital Elevation Model (DEM) obtained through the polynomial
adjustment of [42].
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calculated ELAs is represented. (A) Ice thickness in Phase 1. (B) Hypsometries and ELAs in Phase 1.
(C) Ice thickness in Phase 2. (D) Hypsometries and ELAs in Phase 2. (E) Ice thickness in Phase 3. (F)
Hypsometries and ELAs in Phase 3.
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3.3. Value and Variation in the Position of the ELAs

For each glacial phase, a total of two Equilibrium line altitudes (ELAs) are obtained
(Figure 8B,D,F), each using a different method: AAR [44] or AABR [20] (Table 3). The
steps and values used to obtain them are described in Section 2.2.2. In the case of Phase
1, it is assumed that the precipitation regime was at least like that of Phase 2, as there
were no paleoclimatic data found that were sufficiently close to the study area during its
evolutionary development.

Table 3. Variation in the position of ELA with respect to current theoretical ELA.

Phase paleoELA AAR (m) ∆ELA AAR (m) paleoELA AABR (m) ∆ELA AABR (m)

Phase 1 1861.5 −776.44 1836.5 −751.44
Phase 2 1934.5 −678.44 1909.5 −703.44
Phase 3 1963.2 −649.74 1938.5 −674.94

The calculation of ∆ELA (m) is carried out by comparing the values of the paleoELAs with the value of the current
ELA: 2612.94 m.

To make a comparison with current conditions, it is necessary to know the theoretical
position of the ELA and the climatic values from thermometric stations. Current annual
average precipitation data are taken from the La Covatilla thermopluviometric station
(Béjar), which is located less than 1 km from the study area. Using the current average
precipitation values (information compiled by the State Meteorological Agency, AEMET), a
theoretical current ELA value for Peña Negra of 2612.94 m is obtained. The comparison
with the values obtained for the paleoELAs is shown in Table 4.

Table 4. Climatological variations with respect to current values.

Phase ∆T (◦C) AAR ∆T (◦C) AABR ∆P (mm) AAR ∆P (mm) AAR

Phase 1 −2.96 −2.56 +1281.87 ± 750 +1335.64 ± 750
Phase 2 −2.12 −2.15 +1281.87 ± 750 +1335.64 ± 750
Phase 3 −1.18 −0.78 +1529.85 ± 750 +1595.25 ± 750

It is assumed that the precipitation values in Phase 1 were at least like Phase 2. The comparison is made with
respect to the average value of precipitation and the average values of summer temperatures measured today in
the ELA.

It is important to note that the results are subject to an uncertainty error that ac-
cumulates with progress in the calculation processes: (1) the position of the ELA is in-
fluenced by the initial reconstruction of the paleoglacier, which assumes uncertain bed
conditions [35,40,42]; (2) the value of the altitudinal gradient; (3) the standard deviation of
the relationship between mean summer temperatures and precipitation (±750 mm) [46,47];
(4) the value of each paleoclimatic data point [48].

4. Discussion
4.1. Meaning of the Geomorphological Features Described in Peña Negra

The geomorphological record reveals four clearly distinguished sequences of deposits
(Phases 1, 2, 3, and the late phase moraine), separated by a basal moraine and obstruction
deposits or peat bogs. Within these sequences, both Phases 2 and 3 exhibit approximately
five episodes of incision/overlay that allow the determination of the relative chronological
order of ice advance/retreat phases. Each set of moraines indicates rapid changes in the
glacier’s dynamics, demonstrating that Peña Negra responds quickly to paleoclimatic
variations. One hypothesis to explain this high sensitivity to climatic variations is the
limited size of the glacier’s accumulation area [13]. Consequently, during periods of
negative mass balance, the ice accumulated in the head areas could not compensate for
the losses due to summer melting. However, under optimal conditions for a positive mass
balance, the glacier could recover more easily.
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Other intrinsic factors of the paleoglacier, such as its topographical position and ori-
entation, significantly influenced its development. Through geomorphological evidence
preserved in its erosional and depositional forms, a relative age of its origin can be deter-
mined. The topographical location of the main cirque scarp of Peña Negra, embedded in
other nearby paleoglaciers (such as El Oso or El Trampal) and linked to that of El Endrinal,
indicates that its development was the most recent. This implies a longer time for the
attainment of optimal paleoclimatic conditions to host a stable ice body. Similarly, it was
the first to be affected by unfavorable paleoclimatic variations when it was in equilibrium
(mass balance equal to 0). Moreover, the smaller number of moraine sequences compared
to other paleoglaciers in the massif marks a genesis of the paleoglacier subsequent to the
other paleoglaciers.

As a result of these factors, Peña Negra would have housed ice for a shorter period
and would have had a smaller thickness. Both factors could explain the limited variety and
size of its erosional features.

4.2. Evolutionary and Chronological Stages of Peña Negra

Four main stages can be distinguished in the evolution of Peña Negra. Phase 1, the
oldest in chronological terms, depicts a valley glacier with the maximum ice advance.
Next is Phase 2, which features the first sequence of overlapping lateral moraines. Finally,
we reach a terminal stage of the glacier where the transition from a valley glacier to a
cirque glacier is evident (Figure 9A,B). In this latter period, Phase 3, frontal moraines in a
semilunar shape are recorded, indicating the position of the small glacial front. Phase 4 is
represented by small moraines at the base of the cirque.

The main phases defined in the paleoglacier of Peña Negra can be correlated with the
evolutionary models proposed for the Sierra de Béjar-Candelario during the Last Glacial
Maximum (Late Pleistocene). These models outline an initial ice cap phase, followed by
three evolutionary phases confined to the valleys [13,15,16,49]. This evolutionary trend is
also observed in the Central Iberian System. The model suggests that the phase of maximum
ice extent in the Central Iberian System follows an asynchronous pattern, indicating it
was not synchronous in all paleoglaciers, unlike the later phases that conform to more
consistent timeframes [4–6,23,50].

Geomorphological evidence shows that Peña Negra reached its maximum ice extent
relatively late [13]. This suggests that this phase was likely after the maximum ice extent
phase dated at approximately 25.0 ± 1.5 ka in the Cuerpo de Hombre paleoglacier [16] or
at 25.0 ± 1.4 ka in paleoglaciers of the Sierra de Gredos [23]. Phase 1 of Peña Negra should
be placed within a later phase, which is constrained between 25 and 21 ka and experienced
various oscillations (advance/retreat) [4–6,23,50]. This maximum extent phase would fall
within the Last Glacial Maximum [51].

Phase 2 represents an evolutionary stage of reduced ice extent, marked by a sequence
with several pulsations denoting a trend of ice loss. This deglaciation stage, with several
minor periods of ice front fluctuations, is framed around 19–17 ka [23,50].

Finally, Peña Negra becomes limited to a cirque glacier (Figure 8B). This terminal
phase would be around 15–13 ka, during which the final sequence of frontal moraines is
deposited. The deposit occurred during stable phases as the ice retreated. The topographic
and hypsometric characteristics of Peña Negra signal the conclusion of the glacier system’s
development after this phase. Other paleoglaciers with greater extent, cirque size, and ice
volume may have left later records of glacial activity until the glacier system finally ceased
to function at the beginning of the Holocene [23,50]. In this glacier, this last phase (phase 4)
could correspond to the moraines at the base of the cirque and to the last glacial advance
during the Younger Dryas.
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4.3. Paleoenvironmental Reconstruction of Peña Negra

The data obtained from the precipitation and temperature balance formula at the
Equilibrium line altitude (ELA), in line with the evolution proposed for Peña Negra in
this study, indicate a progressive decrease in paleotemperatures and paleoprecipitation
(Table 4). This directly influenced a predominantly negative mass balance, promoting the
gradual retreat of the ice. The reduction in ice volume and the retreat of the glacier area
coincide with the progressive increase in the topographical position of the ELAs.

When comparing the ELA data from other studies for an evolutionary state of max-
imum ice extent (equivalent to Phase 1) in the Sierra de Béjar-Candelario [15,16], Peña
Negra has the lowest values throughout the massif. Regarding the ELA values for Peña
Negra presented in [15], there is a variation of −81.5 m for the AAR method and +25.5 m
for the AABR method. The general ELA for the Sierra de Béjar-Candelario was established
at 2010 m [15]. This implies that, in comparison to other paleoglaciers, Peña Negra required
a higher volume of winter precipitation to achieve a positive mass balance that allowed
glacier advance, as its average summer temperatures were higher. Peña Negra was espe-
cially sensitive to precipitation variations, responding rapidly with ice advance during
wetter periods (positive mass balance) and retreat during phases of reduced precipitation
(negative mass balance).
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The Heinrich Stadials [52], which occurred during the Last Glacial Cycle (Late Pleis-
tocene), mainly within the last 100 thousand years, recorded paleoclimatic conditions with
decreasing temperatures and precipitation. These conditions would have resulted in re-
duced snowfall, impeding glacier advance and leading to a negative mass balance [53–55].
Analysis of the Upper Pleistocene glacier record, often well-preserved, enables the recon-
struction of paleoclimatic conditions (precipitation and temperatures) at the time of its
formation [1]. Current models based on a large database of exposure to terrestrial cosmo-
genic nuclides in the Mediterranean area indicate a major accumulation trend of advancing
phase dates outside the Heinrich Stadial ranges [55]. The Heinrich Stadials that occurred
during this late Late Pleistocene period, with evidence of glacier system development in
the region, are HS 3 (32.7–31.3 ka), HS 2 (26.5–24.3 ka), and HS 1 (18.0–15.6 ka) [55–57].
The phases of glacial stability in which Peña Negra’s moraines formed correlate more
effectively with intervals between Heinrich Stadials than the closer paleoglaciers, especially
during the phase of maximum ice expansion. These variations in paleotemperatures and
paleoprecipitation are evident not only in the geomorphological record of the glacier system
but also in changes in vegetation and human settlements during these colder and drier
intervals [54,58].

5. Conclusions

The detailed study of the Peña Negra paleoglacier system has provided valuable
insights into its evolution during MIS 2, as well as approximate paleoclimatic conditions
(temperature and precipitation). From this research, the following conclusions can be
drawn:

1. Due to its hypsometric and topographic characteristics, the Peña Negra paleoglacier
system was highly sensitive to climatic variations at the end of the LGC (Late Pleis-
tocene). This sensitivity is evident in the sequences of lateral and frontal moraines,
which show small cycles of ice advance and retreat.

2. The evolutionary sequences of the paleoglacier system correlate with the phases
described in the evolutionary models of the study area. Specifically, three main
phases can be distinguished, demonstrating a gradual retreat in ice extent. The
combination of fieldwork with high-resolution data collection techniques provides a
better understanding of cirque glacier scarps and terraced walls, resulting in a more
precise description of the evolutionary phases.

3. Paleoclimatic data obtained from the equilibrium line altitudes (ELAs) calculated for
each phase reveal a clear increase in precipitation and a slight decrease in average
summer temperatures compared to current conditions. This suggests that precipi-
tation variations were the primary factors responsible for moments of positive and
negative mass balance. The paleoclimatic study of the paleoglaciers closest to Peña
Negra will allow for a more comprehensive understanding of the paleoclimatic pat-
terns that occurred during the different phases of stability recorded in the Sierra de
Béjar-Candelario.

4. During MIS 2, there were alternating cold and arid periods (Heinrich Stadials) with
slightly warmer and wetter periods. The stability phases that led to the formation of
moraine records are associated with these last moments in which the mass balance
was positive due to the notable increase in precipitation in the form of snow.
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