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Abstract: Life cycle-based analysis is a key to understand these biofuels’ climate benefits. This
manuscript provides a state-of-the-art review of current biofuel production, primarily through algae-
based routes. Standalone biofuel production has an unfavorable environmental and energy footprint.
Therefore, industrial symbiosis is required to reduce the environmental impacts of biofuel. The
availability of waste heat, CO2, renewable energy, and colocation of other industries, especially
renewable energy and dairy firms, have been demonstrated beneficial for producing biofuel through
the algal route. Dynamic life cycle assessment (DLCA) issues were discussed in detail. DLCA is
one of the highlighted areas of the Life Cycle Assessment (LCA) paradigm that can improve the
applicability of climate change indicators used in the LCA. Various climate change indicators, global
warming potential (GWP), global temperature change (GTP), and climate tipping point (CTP) were
discussed in detail. Special emphasis was given to waste-based bioenergy production and its LCA as
this route provided the lowest GHG emissions compared to the other bioenergy production pathways
(e.g., from energy crops, using lignocellulosic biomass, etc.). The use of LCA results and modification
of life cycle inventory (e.g., modification in the form of the regional energy mix, dynamic Life Cycle
Inventory (LCI), etc.) was another highlight of this study. Such modifications need to be incorporated
if one wants to improve the applicability of LCA results for net zero target analysis.

Keywords: climate change indicators; net zero target; dynamic LCA; industrial symbiosis

1. Introduction

Researchers have a consensus that energy consumption generates a significant frac-
tion of greenhouse gas (GHG) emissions, as most of the energy is derived from fossil
fuels [1,2]. Furthermore, some crude oil-derived products also show high embodied GHG
emissions [3]. One needs to use low-carbon embodied products to develop a low-intensity
carbon-based economy. Nevertheless, alternative processes to manufacture low-carbon
products are still under development. Bio-based products, such as biofuel, bioplastics, etc.,
have low embodied carbon [4].

Similarly, shifting our energy mix from fossil fuel-dominated systems to a renewable
energy-intensive energy mix reduces the carbon intensity of the products. In the USA, the
transportation sector is the highest GHG emitter contributing to 30% of the total GHG
emissions, corresponding to 2000 MMT CO2 in 2019 [5]. Hence, there is considerable
scope for decreasing the GHG emissions from the transportation sector by introducing
biofuel. Biofuel produced from virgin materials mainly dedicated energy crops and other
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biomasses, has considerable GHG emissions. If one considers the land use change, the
resultant GHG emissions are higher than those of fossil fuels [6]. The Intergovernmental
Panel on Climate Change (IPCC) has advocated for biofuel as one of the main contributors
to their GHG emissions reduction strategies. However, bioenergy produced from oil seeds
and lignocellulosic biomass has considerable GHG emissions [7].

Introducing waste biomass or waste nutrients for biomass production provides low-
cost biofuel with lower life cycle GHG emissions than biofuel produced from biomass that
is generated using virgin nutrients or dedicated energy crops [8,9]. Hiloidhari et al. [10]
reported that 14% of the renewable energy produced in India was derived from biomass.
They also reported that energy produced from animal manure has a lower GHG footprint
than coal-based power. Biogas produced from biomass and manure can be used as a clean
fuel for cooking. Biogas as a cooking fuel provides access to clean fuel to a large part of
the rural population, who are otherwise forced to use biomass and dry cow dung as fuel
for cooking [11]. Mittal et al. [12] estimated that in India, around 12.7 EJ/year of energy
could be produced from biomass. These biomass feedstocks are mostly crop residue or
animal manure, which are used to produce biogas through anaerobic digestion. However,
several other routes can produce different types of biofuels and provide an opportunity to
reduce fossil-derived energy demand and GHG emissions. Biofuel from algae is one of the
most attractive ones, considering the GHG emissions and biofuel production per acre of
land [13].

Life cycle assessment has been extensively used to estimate the various environmental
impacts generated from biofuel production from different biomass feedstock such as ded-
icated energy crops [14,15], forest and agriculture residues [7], or microalgae [16]. Some
studies also provided excellent reviews on the life cycle assessment of biofuels, specifically
bioethanol, biodiesel, biomethane, (Fischer-Tropsch) FT-diesel [14,17], ethanol from sug-
arcane, biodiesel from soybean and palm oil [18], second generation ethanol [19], algal
biodiesel [20,21], and algal biorefineries [22]. Levasseur et al. [23] and Collet et al. [24]
provided excellent recommendations for applying LCA to biofuel. These studies high-
lighted various issues with published literature on LCA. Some of these studies tried to
harmonize the results obtained from LCA [25,26]. Harmonization efforts were required
as the differences in the results are due to methodological differences, especially in the
system boundaries, allocation issues, and type of LCA approach used to conduct the
study [19,22,27]. Some studies also highlighted the various issues associated with several
approaches in an LCA, i.e., consequential vs. attributional methodology [28]. Conventional
LCA approaches do not consider the temporal variation in the life cycle inventory (LCI).
The incorporation of temporal LCI would affect the LCA results. Therefore, this study was
developed to understand the various causes which generated temporal dynamics in the
LCA results.

This manuscript was developed to identify the reasons behind the dynamic nature of
life cycle impacts in bioenergy research. How these dynamic issues can affect the results
and the different models used for estimating dynamic life cycle impact are also discussed
in detail. For this purpose, various climate change indicators used to describe the results of
dynamic LCA are discussed in detail. Later, a detailed recommendation was delineated,
which helped to better estimate the GHG emissions from futuristic technology and thus
helped to achieve the net zero target for GHG emissions. Algae-based biofuel has been one
of the most promising biofuels in recent years. Some recent publications on the LCA of algal
biofuel introduced dynamic issues in LCA and are discussed in detail in this manuscript.

2. Current State of Knowledge on Life Cycle GHG Emissions from Biofuel from Algae
Cultivated Using Waste Nutrients

Exploring the sustainability issues associated with algal biofuel started in 2009 when
Lardon et al. [29] first published their research on life cycle-based analysis of algal biofuel.
They first recognized that algal biofuel production was not energetically favorable if
biomass had to be dried for algal biofuel production. Later, several researchers tried
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to reduce the energy burden associated with algal biofuel production by extracting oil
from wet algal biomass [30,31]. Some researchers used residual biomass left after oil
extraction for further energy production through anaerobic digestion [32,33]. Others
estimated the impacts when the microalgal biomass was converted to biofuels through
pyrolysis or supercritical gasification [34]. Residual biomass management is also critical if
a considerable portion of our energy demand has to be produced from the biomass-based
route. For example, if 50% of the US petroleum demand was supplied by algal biodiesel,
almost 8 × 108 tons of residual biomass would be produced annually. The amount of
residual biomass would be almost 1000 times higher than that of dry solids generated from
the US wastewater treatment system [35]. Residual biomass left after oil extraction also
contains most of the nutrients sequestered in the algal biomass.

Therefore, recovering nutrients from the residual biomass reduces our dependency on
virgin nutrients. In that context, anaerobic digestion can solubilize the nutrients present in
the algal biomass and produce energy as biogas. A few studies have shown that further
processing of residual algal biomass through anaerobic digestion can reduce the energy
demand and greenhouse gas emissions of algal biofuel production [32,33]. Yuan et al. [36]
reported that integrating anaerobic digestion with algal biofuel production could reduce the
nitrogen and phosphorus demand by 66% and 90%, respectively. Another option for using
residual biomass was as a protein-rich animal feed [37]. However, some researchers also
used or advocated for a thermochemical route to produce biofuel from residual microalgae
biomass [34] or sewage sludge [38]. Hydrothermal liquefaction, however, can recover
part of the nutrients bound to the biomass. Nutrients recovered through hydrothermal
liquefaction can be in organic and inorganic forms and hinder algal strains’ growth [39,40].

A few experimental studies demonstrated successful uses of waste nutrients from
animal [41], dairy [42] or municipal [43] waste, and biomass hydrolysate [44] for algal
biomass production. Some wastewater-based algal biofuel production showed a high
algae growth rate with low to medium lipid accumulation [45]. Chowdhury et al. [33]
showed that energy burden and GHG emissions from algal biofuel were not dependent
on the lipid content of the algae if anaerobic digestion was used for residual algal biomass
processing. Hence, even though waste nutrient-based algal biomass has low lipid content,
energetically favorable and environmentally benign biofuel can be produced if appropriate
biomass processing can be integrated into the biofuel production process chain. Anaerobic
digestion and pyrolysis used for residual biomass processing also reduced the energy
demand and greenhouse gas emissions from biofuel production compared to stand-alone
biofuel production facilities [33,34]. The introduction of waste biomass and waste nutrients-
based biofuel production further reduced the produced biofuel’s greenhouse gas emissions
and energy demand [38,46]. Therefore, waste nutrients-based biofuel production not only
reduces our dependency on virgin nutrients but also reduces the environmental and energy
burden compared to biofuel produced using virgin nutrients.

Anaerobic digestion [33], enzymatic hydrolysis [47], thermochemical conversion [34],
including gasification followed by the Fischer-Tropsch process, and combinations of anaer-
obic digestion, biodiesel production, enzymatic hydrolysis, pyrolysis and up-gradation of
bio-oil to synthetic diesel and gasoline [48–50] have been employed for the residual biomass
processing. However, the extent of biomass processing through the earlier processes af-
fected the biofuel production and environmental impacts of the produced biofuel [49].
Increasing the extent of biomass processing increased the bioenergy production by at
most 38% compared to algae-based biofuel production, followed by anaerobic digestion
of residual biomass. However, the production of extra energy through various processes,
i.e., pyrolysis, enzymatic hydrolysis, etc., increased energy consumption compared to
energy production. Chowdhury and Franchetti [48] observed that such additional energy
production consumed 1.5 GJ of energy to produce 1 GJ of bioenergy. In this regard, it is
worth mentioning that stand-alone biodiesel production from algae was not energetically
favorable as per the current practice. However, increasing biomass production, and using
waste heat for drying, wet extraction, etc., are some measures one should incorporate
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to produce energetically favorable biodiesel even from stand-alone biodiesel production
facilities [51]. Hence, collocating the algal biofuel production facility with the waste heat
source and other waste materials utilized for algae production and downstream processing
would benefit the overall energy balance. A detail about the industrial symbiosis for algal
biofuel production is given below.

2.1. Industrial Symbiosis

Some sustainability studies on algal biofuel also suggest that algal biomass-based
biofuel production can only be sustainable if the location provides plenty of CO2 without
cost [24]. In that context, algal biofuel plants close to the thermal power plants and
cement production plants provide a steady flow of CO2 for algal growth [52]. However,
the requirement of waste nutrients, a steady flow of CO2, and plenty of water would
reduce the possibility of using most of the waste nutrients for algal biofuel production and
eliminate the potential to develop algal biofuel as a key player in the alternative energy
sector [52]. Somers and Quinn [53] reported that CO2 transport within a 100 km range was
the only economically viable option for producing algal biofuel. Hence, around 360 million
gallons of biofuel could be produced yearly using waste CO2 in the USA. According to
these researchers, CO2 is the limiting nutrient for producing economically viable biofuel.
However, such estimate is based on a stand-alone biofuel production process. Ou et al. [54]
reported that high-purity CO2 sources are most attractive for algal growth. Other diluted
CO2 sources, for example, flue gases from thermal power plants and other facilities, would
affect the algal productivity. Ou and his co-workers [54] observed that the Midwest region
of the USA is the most suitable for algae production if one considers the availability of
high-purity CO2.

On the other hand, Chowdhury and Franchetti [48] showed that using waste nutri-
ents produced in the USA in the form of dairy waste could produce around 3.14 x109 GJ
bioenergy per year, which corresponds to 2.5 billion gallons of biofuel. The study used
perpetual recycling of nutrients, which increased the nutrient content by more than double
within three years. The study also proposed futuristic scenarios. Such a study provides a
first-hand estimate of the potential of dairy waste for biofuel production. Such a facility
would be built close to large dairy farms. Wang et al. [55] reported that various types of
waste biomass from various sources, including animal waste, could produce 110–170 PJ of
energy in British Columbia, Canada, per year. However, such energy can only be economi-
cally viable if it is used for district heating and to produce ethanol. Tua et al. [56] observed
that integrating algae-based municipal wastewater treatment and biogas production from
sludge reduced the GWP of the whole municipal wastewater treatment facility.

Passell et al. [57] and Kohlheb et al. [58] also investigated the industrial symbiosis in
biofuel production. Passell et al. [57] observed that due to low biomass production in a pilot-
scale algae-based biodiesel production facility, the net energy ratio and GHG emissions from
the produced biofuel were higher than those from conventional diesel and soy biodiesel.
Their pilot-scale algae production facility was collocated with a thermal power plant and
downstream algal biomass processing facilities. Hence, even though industrial symbiosis
reduces the overall energy demand of algal biofuel, there is a requirement to increase
biomass production capacity per unit area cultivated to increase the attractiveness of
produced biofuel. Kohlheb et al. [58], on the other hand, observed that treating municipal
wastewater using algae required less electricity as compared to the conventional activated
sludge process. Hence, integrating wastewater treatment with algal biofuel production
may provide energetically favorable biofuel. The studies conducted by Passell et al. [57]
and Kohlheb et al. [58] were based on studies on pilot-scale facility. Hence, researchers
used data taken from real-life scenarios. Several studies, including our previous research,
developed scenarios integrating various processes that could provide extensive biomass
utilization from algal biofuel production facilities. Such studies also used laboratory-
based data for various processes used in the simulation and showed that integration
of such processes could produce energetically favorable bioenergy. Mu et al. [59] also
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reported that waste nutrients-based algal biomass production followed by wet extraction
of lipids and residue combustion had lower energy demand and GHG emissions than
petroleum. Chowdhury et al. [51] observed that stand-alone biodiesel production could
only be energetically favorable if waste heat were available from other industrial sources.
Recently, several studies highlighted the uses of marginal land and renewable energy for
biofuel production [60–62]. Especially, sunlight integration with algal biofuel production is
the key to high algal biomass growth, followed by uses of excess sunlight as heat for drying
and algal biofuel production. Verma et al. [60] reported that sunlight intensity is favorable
for producing low-cost algal biomass in various parts of India and Nigeria. In contrast,
such a facility could not be economical in the UK. This study also advocated using the
heat energy produced from excess sunlight that can be integrated with other processes in a
biorefinery. Besides solar energy integration, solar light/shedding also provides necessary
heating and cooling of the algal reactors. Morales et al. [63] concluded that algal ponds
partially covered by photovoltaic panels provided optimum GHG emissions reduction
benefits. Sunlight also increased the temperature of the culture media. Hence, controlling
the culture temperature by cooling or heating would also increase the GHG emissions from
algal biomass production [64].

2.2. Life Cycle Assessment-Based Methodology and Scenario Adopted for Algal Biofuel Production

Life cycle assessment methods are taken from [65] and [66] guidelines. To develop
an LCA study, one needs to define a system boundary (goal and scope definition) and
scenario. The estimated impacts are also different depending on the scenario and system
boundary. Detail about the changes of impact due to differences in system boundary is
given by Tu et al. [26] and Valente et al. [20]. A schematic of bioenergy production taking
into consideration various processes and its LCA found in literature is shown in Figure 1.

Most LCA studies on biofuel production divided the processes incorporated into the
system boundary into background and foreground processes. Later, the joint research
commission (JRC) of the European Union (EU) advocated for dividing the system boundary
further into 1, 2, 3, and 4th-degree processes depending on their relationship with the
foreground processes [67]. Such division can make an LCA more streamlined, and the
impact of the results can be determined precisely. For example, current GHG emissions
accounting from LCA studies could not be divided into various scopes of GHG emissions
as advocated by various organizations that provided recommendations for GHG emissions
accounting. From the current LCA practices, if one wants, one can divide the GHG
emissions into scope one and scope two categories. For example, GHG emissions from
energy utilization for foreground processes were included in the scope two categories.
However, scope three emissions could not be estimated from the current LCA practices. In
this regard, the recommendation put forth by JRC, EU can help the practitioners disseminate
the LCA results to a greater audience. Some studies on LCA of biofuel did not provide the
type of energy they used for their study (primary vs. final energy), which hindered the
comparison of results with other studies.

LCA of algal biofuel contains two types of scenarios, i.e., (i) scenarios built from pilot
scale study. Hence, data used in those studies are realistic or obtained from processes that
have already reached maturity. Hence, there is little chance of changing the process data due
to changes in the Technology Readiness Level (TRL), (ii) scenarios that are built on taking
futuristic and hypothetical cases. Futuristic and hypothetical scenarios are developed from
data obtained from laboratory-scale studies or taking data from commercial-scale processes,
which may or may not be part of the whole scenario in its industrial-scale production.
Hence, results obtained from such scenarios are designed by LCA practitioners. However,
such studies provide us with the environmental profiles of the biorefinery that would be
built in the future.
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Figure 1. A nutshell of bioenergy production from biomass and its LCA taking into account various
processes found in the literature. Resources for biomass production includes in background process
Biomass production is a part of foreground process. Downstream processing of biomass is a fore-
ground process, The Figure includes a partial list of products. ** An exhaustive list of products can be
found in Werpy et al. [68]. Various impact categories and their indicators are incorporated to interpret
the results. Attributional vs. consequential modeling issues were addressed by changing the LCI
generated from foreground and background processes. Allocation issues arise from multifunctional
process where several products are produced.

The first few studies on the LCA of biofuel envisaged that the uses of virgin nutrients
had little scope to make biofuel an environmentally benign product [69]. Hence, using waste
nutrients for biofuel production was an environmentally attractive process [45,49]. Recently,
Kohlheb et al. [58] conducted an LCA study for algae-based wastewater treatment and
compared their results with conventional wastewater treatment. They reported their results
for various impact categories such as global warming potential (146.27 × 10−3 kg CO2/m3

wastewater treated or 19 g CO2/kg of algal biomass produced) and energy consumption
(0.032 kWh/kg algae produced). The estimated GHG emissions were comparable with
those from the waste nutrient-based algal biofuel production [30,49].
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Besides developing scenarios, the LCA of biofuel or biomass-based energy production
requires reference scenarios for comparison with the biofuel scenario. The proposed
product is replacing these reference scenarios or flows. Sometimes, an LCA can have more
than one reference scenario or flow. Depending on the reference flow, the study’s outcome
can be different [56,70]. In most biofuel production studies, GHG emissions from fossil
fuels (replaced products) were taken as the reference flow. A direct comparison of the GHG
emissions between two products (biofuel vs. fossil fuel) can estimate the reduction in GHG
emissions due to biofuel deployment. However, the reference flow can sometimes be very
complex, especially for forest-based bioenergy. Depending on the reference flow, it was
observed that produced biofuel had very high GHG emissions as compared to business-as-
usual practices or when forest biomass was used in building construction [70,71]. In the
LCA studies on algae-based biofuel production, uses of reference flow are rare. The use
of waste nutrients for algae-based biofuel production and associated LCA studies need
a reference flow to understand the role of waste nutrients and sludge diversion from the
agricultural field.

Depending on the scenario, the LCA can be mono or multifunctional. Multifunctional
processes produce more than one product, or these processes provide several functions,
e.g., waste treatment and nutrient recovery. Multifunctional processes introduce difficul-
ties in an LCA to incorporate those multi-functionalities in a hardly found appropriate
functional unit. It is most desirable to divide the process by which multiple products are
produced. Upstream of these processes, the cumulative environmental burden is divided
among the various products using mass, cost, or energy value. However, most of the
time, this approach could not be undertaken in biomass-based biofuel research. Hence, the
environmental burden associated with the whole scenario is divided among the various
products as per the products’ mass, cost, or energy value. It is advisable to use cost-based
allocation of burden. However, for emerging products, there is no market price for such
products. Hence, mass or energy-based allocation methods are preferred.

Depending on the allocation procedure, the life cycle impacts would also differ [72].
Besides allocation, the system expansion approach has also been used to tackle the multi-
functionality problem in LCA. In this case, the produced product would replace the conven-
tional products, and the environmental burdens of the replaced product were subtracted
from the whole life cycle burden of the scenario. However, in attributional LCA, generally,
the system expansion approach has been avoided. If one incorporates the system expansion
approach in attributional LCA, nationwide average data of the replaced products should be
taken for subtraction. In consequential LCA, marginal data or the environmental burden of
the replaced product on a local scale can be used. Depending on the allocation vs. system
expansion approach, the life cycle impacts of a product can differ [73,74].

Several national policy documents advocated for a particular method of allocation
or substitution procedures. For example, the European Union recommended an energy-
based allocation procedure, whereas the US government stipulated a substitution-based
approach [24]. Several review papers highlighted various issues and associated problems
with allocation. Readers may consult those manuscripts to understand better allocation
issues and associated changes that may occur in life cycle impacts [19,20,26,57,74,75].

3. Dynamic Issues in LCA

Most of the LCA studies are static, which means that life cycle impacts are constant
with respect to time. However, in several cases, static nature could not simulate several
realistic scenarios. For example, recycling nutrients and variable input of raw materials for
biofuel production develop a life cycle inventory variable with time [48,76,77]. Temporal
dynamics in algal biofuel production could also be developed due to the (i) growth or
reaction kinetics of algal biomass production, (ii) biofuel production from transesterification,
or (iii) biochemical or thermochemical conversion of algal biomass (Figure 2).
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Figure 2. Various reasons behind the dynamic issues in the LCA. GWP: global warming potential
(mass of CO2 equivalent), GTP: (global temperature change/◦K), CTP: climate tipping points. Details
about these indicators and their references are given in the main text.

Most studies on the dynamic LCA of biofuel production simulated the dynamic
issues using temporal patterns of climate change indicators used in an LCA. Levasseur
et al. [78] were the first to introduce such a dynamic issue in ethanol production from
corn. Later, Shimako et al. [79] extended the use of dynamic LCA related to algal biofuel.
Several mathematical models can simulate the temporal changes of radiative forcing from
greenhouse gases. These models found their usefulness in estimating the climate benefits
of forest-based bioenergy production. Details about these models and their uses are given
in various scientific literature focused on bioenergy from biomass [17,80,81] or even more
complicated systems such as the combination of hydroelectric-wind-biomass-geothermal-
solar systems or biomass combined heat and power and microbial fuel cell systems [82].
The dynamic nature of the GWP was developed using the Bern climate model, whereas
GWP and absolute global warming potential (AGWP) were estimated using Equations
(1) and (2). For simulating dynamic GWP, an algebraic equation was used (Equation (3)).
The various coefficients of the algebraic equation were given in Cherubini et al. [17] and
Levasseur et al. [78]. Equation (3) has three to six exponential functions, which are used to
simulate various sinks of CO2. Later, several versions of the Bern model were developed,
which used seven exponential functions for simulating various sinks of CO2 [83].

GWPi =

∫ t
0 riCtdt∫ t
0 rrCtdt

(1)

AGWPi =
∫ t

0
riCtdt (2)

where ri is the radiative efficiency of gas i and rr is the radiative efficiency of a reference gas.
In all the cases, the reference gas was CO2. Ct is a set of decay function of GHG emissions
(here for CO2) used to find the concentration of a GHG after a time t (Equation (3)).

Ct = a0 + ∑i=3,6
i=1 aie−t/Ti (3)



Sustainability 2023, 15, 1767 9 of 19

Values of parameters (a0, ai, Ti) are given in Table 1.

Table 1. Values of various parameters used for calculating decay of CO2 in atmosphere. These values
are derived from Bern climate model (3 and 6 parameters). Values of parameters in underlined
italics were taken from Lan and Yao [81]. Values of parameters given in bold were taken from
Levassseur et al. [78] and Cherubini et al. [84].

BERN model a0 = 0.217
a0 = 0.2173

a1 = 0.259
a1 = 0.2240
T1 = 172.9
years
T1 = 394.4 years

a2 = 0.338
a2 = 0.2824
T2 = 18.51
years
T2 = 36.54 years

a3 = 0.186
a3 = 0.2763
T3 = 1.186
years
T3 = 4.304 years

[78,81,84]

BERN SCM
1.0 model a0 = 0.013691 a1 = 0.27022

T1 = 0.07027
a2 = 0.45937
T2 = 0.57621

a3 = 0.094671
T3 = 2.6900

a4 = 0.10292
T4 = 13.617

a5 = 0.0392835
T5 = 86.797

a6 = 0.012986
T6 = 337.30 [83]

For dynamic GWP (GWPdynamic) estimation, the integral of the numerator has a differ-
ent time frame depending on the time of the release of CO2 into the atmosphere (Equation (1)).
Ct is the concentration of CO2 in the atmosphere after releasing of CO2 from biomass.
A detailed description of the derivation of such concentration can be found in the litera-
ture [17,81,85,86]. Time-dependent release of a mass of CO2 can also be used as a multiplier of
Ct instead of ambient concentration of CO2 for GWP calculation (Equations (4)–(6)).

Dynamic global warming due to time dependent release of GHG into the atmosphere
(DCF) is given by Equation (4).

DCF = ∑n
i=1 DCFi = ∑n

i=1

∫ k

k−1
rpCtdt (4)

where DCFi (i = 1, n are the number of GHG emissions for same or different GHGs) is the
dynamic absolute GWP for a puff emission of a GHG emission p at a time k-1, k is the time
for which the GWP needs to be calculated. rp is the radiative efficiency of a GHG emission
p. For CO2 rp is given by Equation (5) [81,82].

rp =
∝
C

(5)

where ∝ = 5.35 W/m2 and C is the atmospheric concentration of CO2 for a particular time,
or the average concentration over the time frame for which the Equation (3) needs to be
evaluated. Equation (3) can be used to find the concentration or mass of GHG emissions
remaining after a particular time frame.

Hence,

GWPdynamic =
∑n

i=1 DCFi∫ k
0 rpCtdt

(6)

There are several other estimation approaches for GWP also available in the liter-
ature. A thorough description of such methodologies can be obtained from relevant
references [78,80,85–87].

The two models mentioned earlier (Table 1) and others given in the literature provide
different atmospheric CO2 concentrations from a pulse input of CO2 [81,84,85]. Hence,
associated dynamic GWP factors could also differ depending on the models used. IPCC [88]
used the first model (Bern model) in Table 1 for GWP estimation. Various climate models
were tested to check their sensitivity against emissions or temperature changes. These
climate models have been shown to provide comparable results when they were used to
simulate the atmospheric CO2 concentration after a pulse input of 100 Gt C. These models
showed temperature sensitivity (temperature change) no less than 1.5 ◦C [83]. Incorporating
such inherent discrepancy in GWP calculation, dynamic LCA of forest bioenergy showed
various exciting features because of the long sequestration time of CO2 due to the growth
of plants in the forest. Cherubini and his group tried to capture the dynamic nature of
GWP from forest bioenergy in their various papers. They have used plant growth and CO2
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decay models in the atmosphere to capture the CO2 sequestration in various compartments,
i.e., biosphere, ocean, land, etc. [15,17,84]. Later, a French group led by Dr. Pierre Collet
reported that the analysis time frame, and way of analysis, affected the results obtained
from the dynamic LCA of forest bioenergy [89]. Levasseur et al. [90] also observed that the
way of analysis affected the outcome of the study. Collet and his group, to some extent,
followed the models developed by Cherubini and his team [17,84,85,91]. However, they
mentioned that instead of keeping the dying trees for decay by natural processes, using
mature trees for bioenergy production provided climate benefits. They estimated that
depending on the analysis procedure, the GWP from forest bioenergy provided lower or
higher GWP (Approx± 75%) as compared to GWP produced from the static LCA approach
(GHG emissions from burning biofuel are carbon neutral). Collet and his group argued that
dynamic issues in forest bioenergy are very prominent because of the long duration of CO2
sequestration. They developed such dynamic models taking into account time-dependent
uptake and release of CO2 to and from biomass. They also coupled a partial equilibrium
model and time-dependent GWP indicators for calculating the dynamic nature of the GHG
emissions from forest bioenergy [89,91,92]. The team argued that the dynamic nature of the
forest bioenergy is aroused because of the prolonged growth period of the forest biomass.
Change in surface temperature does not follow the changes in radiative forcing. Surface
temperature change is a more end-point-oriented impact than GWP. The global temperature
change potential (GTP) was developed to simulate the global temperature change profile
because of the release of GHGs. Change in surface temperature, deltaTp, was simulated
using Equation (7).

deltaTp = ∑2
i=1

Ci

di
e−t/di (7)

where C1 = 0.631; C2 = 0.429; d1 = 8.4; and d2 = 409.5 (d1 and d2 are in years)

AGTPi =
∫ t

0
riCtdeltaTpdt (8)

Absolute global temperature change (AGTP) and global temperature (GTP) can be
estimated using Equations (8) and (9), respectively

GTPi =

∫ t
0 riCtdeltaTpdt∫ t

0 rCO2Ctco2deltaTpdt
(9)

The climate tipping point (CTP) was developed to understand the effect of GHG emissions
on a particular climate target developed by IPCC as a representative concentration pathway
(RCP) [93]. Hence, in CTP calculation, the ambient concentration of GHGs in CO2 equivalent
was also considered [94,95]. CTP formulation has two cardinal times: (i) time of emission
of GHG (te); (ii) target time or the time at which the tipping point needs to be estimated (T)
[Equation (10)–(12)]. CTP is the ratio of two factors (i) capacity and (ii) impact factor.

Capacity =
∫ T

te
(C(T)−C(t))dt (10)

where C(T) and C(t) are the target atmospheric GHG concentration in CO2 equivalent
(ppm) at target time T and t, respectively. The time step for the integral was taken as 1 year,
and average atmospheric concentration of GHG for 1 year was used for calculation of C(t).

Impact =
AGWP

ACO2, ppm
(11)
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where ACO2,ppm is the specific radiative forcing of CO2 for 1 ppm with a background
concentration of 378 ppm. AGWP can be estimated using Equation (2).

CTP =
impact

capacity
(12)

Characterization factor for CTP, Equation (12), was estimated for unit mass of GHG
emissions. Hence, for ‘m’ kg of GHG emissions, resultant CTP would be m × CTP.

CTP and GTP were primarily used in LCA for forest bioenergy production. Changes
in the earth’s surface temperature lag behind the radiative forcing. Hence, the GTP also lags
behind the GWP. Guest and Strømman [95] observed that harvested wood used in various
products increased the storage of biogenic carbon and thus could affect climate change.
Depending on the forest management scenario and the fraction of wood used in wood
products, net cooling of surface temperature could be achieved in 100 years. However,
depending on the time horizon and forest biomass management, net warming of climate
was observed when one considered GWP as an indicator, whereas net cooling was observed
if GTP was used as an indicator. This study, therefore, elaborated on the importance of
indicators to understand the impact on the climate of GHG emissions from a product. In
the calculation procedure of GTP or GWP, the ambient concentration of GHG was not taken
into consideration. However, IPCC advocated for various targets for GHG reduction. To
accommodate year-wise targets and variable GHG concentration, CTP was developed. If
one compares the two indicators, it can be observed that the effect of time of emission
is different in these two indicators. In GTP, the effect of GHG emissions was higher as
time passed, whereas, for CTP, the impact was higher, if GHG was emitted close to the
target time. Hence, these two indicators provide different implications, which cannot be
compared to each other. The developers of this indicator [93] also advocated that CTP be
used with other climate change indicators in an LCA.

These dynamic issues in an LCA can be estimated using various software used for
mathematical calculation, including MS Excel. Later, a matrix-based method was used
to estimate the dynamic GWP for bioenergy. The mathematical structure was the same
as the input-output analysis, where a technical coefficient matrix was developed to find
a relationship between input of resources vs. product or reference flow (in input-output
analysis, flow is a transaction in $ between two industries) [96,97].

Bioenergy produced from short-rotation biomass, for example, algae, could also have
dynamic nature. This dynamic nature, however, was not developed from biomass growth
and biofuel burning. The dynamic nature of the LCA was developed because of the slow
release of greenhouse gases from land application of residual biomass or biochar produced
as a by-product of bioenergy production (biodiesel, biogas, bio-oil, etc.). The temporal
release of greenhouse gases can be coupled with temporal climate change indicators (GWP,
GTP, etc.) to fully capture the dynamic nature of indicators from algae-based bioenergy
production. Such issues, especially the time-dependent release of greenhouse gases, can be
modeled using biogeochemical models such as Roth C, Denitrification−Decomposition
(DNDC), or in-house models developed to simulate the GHG emission [98–100]. Incor-
porating biogeochemical and plant growth models can simulate the coupling of N and
P with the carbon cycle. However, these biogeochemical models do not have an ocean
component. Some of these models are being used for regional biogeochemical modeling
(i.e., DNDC). GHG emissions estimation for a short duration using the DNDC model taking
inherent biogeochemical processes provided a better estimate of GHG emissions. Ignoring
the ocean component for short-duration simulation does not incorporate considerable error
as the ocean works as a very slow sink for GHGs. Guo et al. [99] used the DNDC model
to derive the N2O emission from wheat production. Later, N2O emission was fed into the
LCA model used to develop biopolymer production. The model can be used to develop
temporal GHG emissions from crop rotation and the application of residual biomass on
agricultural land. Collet and his group developed such a dynamic model using temporal
emission of greenhouse gases from land application of residual biomass, crop residue, or
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organic amendments [92]. They have simulated the temporal release of CO2 using a set
of differential equations. Instead of using IPCC guidelines for residual carbon remaining
after a stipulated time frame, they collected kinetic coefficients of biomass degradation in
different soil and moisture conditions. They used the kinetic models of biomass mineraliza-
tion for temporal CO2 emissions simulation. They found that incorporating temporal CO2
release and associated dynamic GWP estimation provided climate benefits compared to
the static LCA approach [89].

Types of energy technologies, especially fossil-based energy vs. renewable energy,
particularly solar energy, showed strikingly different results in the dynamic vs. static
approach in LCA. When operational CO2 was high (fossil energy), the dynamic and static
LCA provided comparable results in a longer time frame, i.e., 100 years. On the other hand,
GWP for renewable energy (solar PV, geothermal, wind, etc.) showed higher values in
short and long-time frames (35–100 years) in a dynamic approach as compared to a static
approach. These contrasting results occur because of different residence times of GHG
gases [81].

Current GHG emissions accounting procedures and GWP calculation methods provided
by the IPCC did not consider the dynamic GWP calculation [101]. However, dynamic issues
provided higher or lower GWP than the static approach. The lower GWP obtained from a
dynamic approach can be beneficial for implementing net zero goals announced by most
countries. The current LCA practice can be refined to simulate the more accurate GWP
required to achieve the net zero target and will be discussed in detail in the next section.

4. Application of LCA Approach for Net Zero Target Achievement

Bioenergy will play a vital role in climate mitigation and achieving the net zero
emissions target. Estimated global bioenergy potential is ranged 40–300 EJ/year with a
potential of carbon sequestration. Implementing bioenergy with carbon capture and storage
will play a vital role in achieving stringent and ambitious representative concentration
pathways (RCP) to limit the average global temperature rise to 1.5 ◦C. Some bioenergy can
have carbon sequestration potential as high as 3–10 Gt C/year [7]. However, these estimates
are based on 1st and 2nd generation biofuel and do not include microalgal feedstock and
waste-based bioenergy, except forest residues.

Currently, the USA emits around 6.5 Gt CO2 and 3.5 Gt GHG annually from energy
consumption (electricity and transportation) [102]. In the USA, as per the current record
of the United States Department of Agriculture (USDA), around 6 million tons of N and
1 million tons of P were produced as dairy manure [48]. Besides this nutrient source, pig-
gery and poultry facilities also produce considerable waste nutrients. Poor management of
these wastes generates a large amount of GHG emissions. Only dairy manure produces
5.8 Mt of CO2 annually [103]. Due to the poor management of manure, a large amount of
nutrients in the form of nitrogen and phosphorus are lost. Dairy manure can be processed
further to produce bioenergy. Hence, dairy manure management and its uses can signifi-
cantly impact the net zero emission target set by the US government. As mentioned, dairy
waste can produce 3.14 × 109 GJ energy per year, which can satiate almost 10% of the US
transportation energy demand [48]. Even if the energy production from the dairy waste
stream can satiate only a minor fraction of the transportation energy demand, a high GHG
emissions reduction is possible. An estimated 0.17 Gt CO2 emissions reduction is possible
by using biofuel in the transportation sector. The GHG emissions reduction estimate has
been carried out using a life cycle approach and assuming the GHG emissions from diesel
as 85 kg CO2/GJ of energy [14]. However, the reduction can be higher if the replaced
energy was coal-based energy [104].

The current process-based LCA approach could only incorporate some sectors or
processes involved directly or indirectly in producing a product. Hence, the LCA approach
provides an approximate GHG emission from a product or process. Therefore, such an
estimate could only be used with caution for net zero target setting. LCA, developed from
the input-output model, i.e., Economic Input-Output Life Cycle Assessment (EIO-LCA)
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developed by Carnegie Mellon University (www.eiolca.net) [105], can be an excellent tool
for GHG accounting from a product at a national level. However, the data in this model
are old, and because of aggregation issues, the model could not be used to simulate the
GHG emissions at the product level. For example, the model aggregates all the emissions
from the steel sector into two or three products. Hence, if one tried to simulate the GHG
emissions from steel used in car production, it would not be possible from this model. In
addition, due to the non-availability of the model in the public domain, data curation and
modification could not be carried out.

Hybrid models can be developed using input-output and process-based models to
have quick and effective LCA models. The process-based LCA model can easily incorporate
future changes in emissions from the manufacturing of various products, especially energy
systems. GHG emissions from bioenergy production, especially algae-based bioenergy,
were driven by GHG emissions from fossil energy in the biofuel supply chain. Currently,
the energy industry has been going through a time-consuming decarbonizing process. Such
changes in the energy industry will provide an energy mix that has lower GHG emissions
as compared to the present energy mix. Hence, the GHG intensity of bioenergy will be
reduced with the gradual decarbonization of the energy industry. Therefore, temporal
changes in the GHG intensity of the bioenergy should be modeled so that such temporal
GHG emissions can be integrated with the net zero goal or with the RCP scenario developed
by IPCC. Yang and Chen [86] used such changing LCI for energy systems to model the
GHG emissions of biofuel produced from crop residue. Uses of dynamic LCI for energy
mix will not suffice to develop an accurate GWP from the proposed technology. The
existing attributional approach used the average energy mix of a country in the life cycle
inventory. This energy inventory could not catch the variation in GHG emissions from
different regional energy mixes [106]. Hence, the uses of energy mixes of a grid from which
electricity was derived should be used in the LCI. Distinguishing between electricity and
heat energy helps estimate better GHG emissions from the LCA of a product. Besides the
regional energy mix, the operational characteristics of power plant operation (running
in peak load vs. base load) need to be integrated with emissions calculation. It was
reported that CO2 emissions increased by several folds if a coal-fired power plant was
run in base load vs. peak load [107]. Hence, for better accounting of GHG emissions, the
duration of running a thermal power plant in various cycles need to be well documented
or incorporated during emission factor calculation.

GHG emissions reduction in bioenergy systems was estimated in the form of GHG
reduction in the supply chain and by using carbon capture and storage technologies.
However, residual biomass originating from biofuel production can provide carbon se-
questration. The incorporation of dynamic GWP calculation provides a better estimate
of GWP than static GWP. Depending on the type of biomass, the dynamic GWP can be
higher or lower than the static GWP [71,78,89,92]. IPCC advised that 10–20% of the applied
carbon would be taken as sequestered carbon after 100 years [108]. Most countries have
announced that they will achieve a net zero target 2050–2070. Hence, carbon sequestration
potential from residual biomass in a short time frame relevant to the net zero emission
target is much higher than 100 years time frame.

Various biogeochemical or in-house models can be used to simulate the temporal GHG
emissions from the residual biomass. Some of these models used either a complex set of coupled
differential equations in which carbon nitrogen and phosphorus dynamics and plant growth
are solved together or only CO2 released in the atmosphere is simulated [109–111]. Among
these models, a mathematical model for simulating the soil organic carbon dynamics was
well documented for Daisy, developed by a group of researchers from Technical University of
Denmark [112]. Daisy [112,113] and DNDC [114,115] was used extensively by the researchers
for simulating the (i) GHG emission, (ii) effects of crop rotation, (iii) fertilizer, (iv) residual
biomass application on the soil organic carbon dynamics. A set of differential equations with
various kinetic parameters were used to simulate the soil organic carbon content. Some of

www.eiolca.net
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these models were trained with experimental studies carried out for a long duration. These
long-duration experimental studies have been carried out in some parts of Europe [116–118].

It is also not possible to find long-term experimental data for soil organic matter
depending on the soil type, moisture content, and other parameters, which can affect the
soil organic matter degradation and accumulation. These problems were discussed in
several publications [92,98]. Albers et al. [92] collected various kinetic parameters of soil
organic matter degradation for different soil types and moisture content in France. They
have used the above-mentioned data (kinetic coefficients) for simulating the CO2 emission
from soil application of residual biomass. Hence, depending on the training of the kinetic
parameters with experimental data, the temporal pattern of CO2 mass released is different
and residual carbon remaining in the soil would also be different after a specific time
frame. Therefore, the reliability of the residual carbon and temporal CO2 profile would be
the primary concern for developing GHG sequestration potential from residual biomass
after a short duration relevant to the time frame of the net zero targets. Developing a
robust methodology for climate change indicator calculation (GWP, GTP, etc.) provides
a way to reach the net zero target with less cost. Most developed countries announced
their net zero targets and the associated cost. Such exorbitant cost is a major obstacle to
achieve the target. For low- and medium-income countries, such exorbitant costs would
not be possible to spend. Hence, biomass-based biofuel production and residual biomass
management provide a cheap way to sequester carbon in the near future. Reduction in
GHG emission due to temporal changes of soil organic carbon and storage of carbon in
biochar was not taken as the storage carbon in IPCC and other policy documents [95,119].
Most of the technologies advocated by IPCC are also in their infancy, and the costs of such
technologies (hydrogen fuel, carbon storage, sequestration, CO2 sequestration from air)
are exorbitant. Hence, the approach presented here provided a new avenue to achieve the
target. Several researchers advocated that biofuel and incorporating dynamic issues in the
GWP calculation for a shorter time frame can buy time to develop other proof of concept or
low TRL high-cost technologies to the economically viable commercial state [119].

5. Conclusions

Dynamic issues have been extensively studied in the literature, especially in forest
bioenergy. However, its application for microalgae bioenergy production, mainly when the
residue produced from biofuel is applied on the land, should be studied in detail. Regional
inventory for background data and temporal changes in LCI are some amendments one
should implement to acquire a better estimate of GHG emissions, which can be applied
for net zero target setting. IPCC advocated for mitigating the GHG emissions from trans-
portation sector by incorporating 1st and 2nd generation biofuel. However, waste-based
bioenergy especially dairy waste has one of the key ingredients for biofuel production.
Depending on the production route and location, such waste can produce 3 × 109 GJ of
bioenergy. Produced energy has low GHG emissions. However, for providing a better
estimate of GHG emissions and for estimating associated climate change indicators, a
dynamic approach should be considered. Especially the time-dependent release of GHG
from applied residual biomass provided a better estimate of the climate impact of biofuel.
Using biogeochemical models for estimating GHG release from residual biomass provides a
better simulation of GHG emissions and helps to estimate a better climate change indicator
as compared to static approach.
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