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Abstract: Electric vehicles have been gaining attention as a cleaner means of transportation that is
low-carbon and environmentally friendly and can reduce greenhouse gas emissions and air pollution.
Despite EVs’ many advantages, widespread adoption will negatively affect the electric grid due to
their random and volatile nature. Consequently, predicting the charging demand for electric vehicles
is becoming a priority to maintain a steady supply of electric energy. Time series methodologies are
applied to predict the charging demand: traditional and deep learning. RNN, LSTM, and transformers
represent deep learning approaches, while ARIMA and SARIMA are traditional techniques. This
research represents one of the first attempts to use the Transformer model for predicting EV charging
demand. Predictions for 3-time steps are considered: 7 days, 30 days, and 90 days to address both
short-term and long-term forecasting of EV charging load. RMSE and MAE were used to compare
the model’s performance. According to the results, the Transformer outperforms the other mentioned
models in terms of short-term and long-term predictions, demonstrating its ability to address time
series problems, especially EV charging predictions. The proposed Transformers framework and the
obtained results can be used to manage electricity grids efficiently and smoothly.

Keywords: electric vehicles; time series; machine learning; deep learning; ARIMA; SARIMA; RNN;
LSTM; transformers

1. Introduction

In addition to being an integral component of the economic development and daily life
in many countries, the transportation sector is also a major source of energy consumption.
This sector consumes an enormous amount of non-renewable energy, which has a negative
impact on the environment and contributes to global carbon dioxide emissions. Particularly,
CO2 emissions from transportation have made up over 25% of all emissions worldwide
since 2016 [1]. In recent years, electric vehicles (EVs) have become more widespread in
the transportation industry as a cleaner means of transportation that is low-carbon and
environmentally friendly. Based on current trends, EV transportation is likely to replace
internal combustion engine (ICE) cars in the near future. The EV share is anticipated to
increase exponentially up to 13.4% in 2030 under a Sustainable Development Scenario
(SDS) 2020–2030 [2]. Promoting energy security by diversifying energy sources, stimulating
economic growth by establishing new innovative sectors, and, most critically, protecting the
environment and fighting climate change by reducing tailpipe emissions and decarbonizing
are some benefits of EV penetration [3].

Even though EVs have many advantages compared to ICE vehicles, widespread
adoption of electric vehicles among the drivers will have negative impact on the electric
grid. Due to the randomness and volatility of EV charging loads, the power grid will be
impacted by increasing peak powers, frequency and voltage variation, and overall energy
demand.

Under these circumstances, accurate EV charging load prediction is an essential foun-
dation for evaluating the impact of the EVs on the power grid and planning and operating
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a highly penetrable power system [4]. Moreover, estimating EV charging demand is criti-
cal for accurately forecasting the implications of additional demand on grid constraints.
Forecasting EV charging demand successfully preserves grid utility stability and resilience
while also assisting in long-term investment planning and resource allocation for charging
infrastructure [5].

This research focuses on forecasting EV charging load demand by applying time series
algorithms and proposing an optimal model, which can be used by electric vehicle power
suppliers and energy management systems for coordinated EV charging based on real
world EV charging and weather data collected in Denver, Colorado.

Literature Review

Due to the stochastic nature of the EV charging demand, it can be significantly affected
by a wide range of factors, making accurate load modeling and load forecasting challenging.
It is increasingly critical to coordinate the operation of energy and transportation systems
to facilitate the development of the energy-transportation nexus towards a low carbon
future in order to enhance the industrial and social economy while reducing greenhouse
gas emissions. A suitable solution is urgently needed due to the widespread use of electric
vehicles as renewable sources of energy, which poses a threat to the stability of the distri-
bution network. Consequently, load forecasting plays a significant role in the planning,
scheduling, and operation of the power system [6].

Utility decision-making and development depend on the accuracy of EV charging fore-
casts. As a result of implementation of a highly accurate forecasting model, not only will it
enhance prediction precision for optimal dispatching, but it will also support the develop-
ment of EV charging and provide manufacturers with a strong incentive to promote EV
use. Previous research has revealed some unique techniques to monitor EV charging, and a
range of forecasting methods have been identified for modeling EV charging demand [7].

Studies of load forecasting for EVs can be classified into two parts based on forecasting
technique: traditional statistical time series approaches and deep learning and machine
algorithms. Time series is a method that predicts the future value of a variable based
on its past. Autoregressive integrated moving average (ARIMA) is one of the statistical
time series models that has been widely applied for load forecasting purposes. Amini
et al. applied ARIMA for forecasting daily charging demand of EV parking lots. By
adjusting the integrated and auto-regressive order parameters, they improved the ARIMA
forecaster’s accuracy in order to minimize the mean square error (MSE). Moreover, the
daily charging demand profile of EV parking lots was decoupled from the load profile’s
seasonal variation. In addition, they forecasted EV charging demand in the scheduling
problem and illustrated better unit commitment along with a reduction in operation cost [8].
Nevertheless, seasonal load patterns, which are typical of EV chargers and of energy time
series can be better caught through seasonal time series. Buzna et al. applied different
time series and ML models for forecasting daily EV charging demand up to 28 days in
the Netherlands and compared their performance. The results illustrated that Seasonal
Autoregressive Integrated Moving Average (SARIMA) outperformed random forest (RF)
and gradient boosting regression tree (GBRT) [9]. Based on two years of time-stamped
aggregate power consumption data from 2400 charging stations located in Washington
State and San Diego, Louie et al. proposed a time-series seasonal autoregressive integrated
moving average model for forecasting EV charging station load [10]. Although statistical
time series models have straightforward structures and require minimal training, they fail
to capture the nonlinear nature of the load series.

In recent years, deep learning (DL), and artificial neural networks (ANNs), as an
essential branch of ML, have developed rapidly and have gained many applications in
EV load forecasting. A neural network can effectively address the shortcomings of a time
series model by capturing features and forming nonlinear mapping relationships [11]. They
are also capable of performing automatic representation learning from big data and have
strong adaptation [12].
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Among the huge variety of approaches, ANNs, recurrent neural networks (RNNs)
and their popular variant including long-short term memory (LSTM) are widely used
by researchers for EV forecasting problem. As reported in [13], authors employed ANN
forecasting algorithms in the Building Energy Management System (BEMS) to predict the
charging profiles of electric vehicles. Jahangir et al. [14] applied three different neural
networks—a simple ANN, a rough artificial neural network (R-ANN), and a recurrent
rough artificial neural network (RR-ANN), approach to forecast 24-h EV load on distribu-
tion system based on travel behavior. Result implied that the RR-ANN model outperformed
other models and generated the most accurate prediction.

In order to overcome the vanishing gradient problem of original RNNs, Hochreiter
et al. developed a long short-term memory, which is an improved form of RNN [15].
Chang et al. applied the LSTM approach to forecast aggregated charging power demand
in a multiple fast-charging station in Jeju, Korea, and compared its performance to other
counterparts. The LSTM model achieved good accuracy and showed the best performance
among other used deep learning models [16]. An LSTM model was used by Marino et al.
for predicting building energy loads using neuron node numbers [17]. The LSTM showed
the greatest performance in a study by Kong et al. that applied it to the forecasting of
residential load [18]. Similarly, Lu et al. applied different neural network models for hourly
level aggregated EV load forecasting, and according to the backtesting results, LSTM
outperformed other models [19].

The literature review showed that the LSTM, RNN, and ANN methods have been
successfully used on EV load forecasting. However, they have several limitations due to
the sequential processing of input data, especially when dealing with datasets with long
dependencies [20]. In order to deal with the long-term dependencies problem in time series
forecasting, transformer-based solutions have been developed.

Transformer is a class of machine learning models that use the scaled dot-product oper-
ation or self-attention as its main learning mechanism [21]. A transformer has widespread
applications and has been applied to tackle various problems in machine learning partic-
ularly natural language processing (NLP), speed recognition, and motion analysis, and
has achieved state-of-the-art performance [22–24]. Recently, the attention mechanism has
gained popularity in the time series task as well.

This literature review shows the lack of research on forecasting the EV charging using
attention-based mechanisms despite its ability to outperform recurrent neural networks.
This paper fills the gap in the existing literature by applying Transformer as a new method
in forecasting charging demand of the EV by considering historical real-world data, weather,
and weekend data in Boulder Colorado.

The paper studies attention-based mechanism to precisely forecast EV to generate more
realistic results. The performance of Transformer, the state-of-the-art forecaster, is compared
with ARIMA, SARIMA, RNN, and LSTM models, which are the main benchmarking
methods in this field.

2. Materials and Methods
2.1. Forecasting Methods

This paper uses five models for forecasting EV energy load consumption. These
models are Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive
Integrated Moving Average (SARIMA), Recurrent Neural Network (RNN), Long short-term
memory networks (LSTM), and Transformer. The following sections describe each model.

2.1.1. Autoregressive Integrated Moving Average (ARIMA) Model

An ARMA (p, q) model, which combines AR (p) and MA (q) models, is appropriate for
modeling single-variable time series [25]. The future value of a variable is assumed in the
ARIMA model to be a linear function of a number of prior observations and random errors.
The ARIMA model assumes that the datasets are stationary, having a mean and variance



Sustainability 2023, 15, 2105 4 of 17

that remain constant across time. The following formula represents the ARIMA order (p, d,
q):

y = c + εt +
p

∑
i=1

ϕiyt−i+
q

∑
i=1

θjyt−j, (1)

where yt and εt represent the actual value and random error (or random shock), respectively,
at time interval t. θj and ϕi represent the autoregressive parameters, and c indicates a
constant. p represents the model’s order, d is the number of differentiations passes, and p is
the number of moving averages, respectively.

2.1.2. Seasonal Autoregressive Integrated Moving Average (SARIMA)

Most of the time series records display a monthly or annual seasonal pattern. In
order to cope with the seasonal data, Box and Jenkins developed an extension of ARIMA,
which is called SARIMA. There are two types of variations in a seasonal time series: the
first type is between consecutive observations, and the second type is between pairs of
corresponding observations belonging to consecutive seasons. ARIMA (p, d, q) models
can demonstrate the relationship between corresponding observation values of successive
seasons, whereas Seasonal ARIMA (p, d, q) ×(P, D, Q)s models depict the relationship
between corresponding observation values of consecutive seasons. In the Seasonal ARIMA,
S denotes the number of the periods in each season, and the lowercase p, d, and q represent
the autoregressive, differencing, and moving average terms for the nonseasonal part of the
ARIMA model, and the uppercase P, D, and Q refer to the autoregressive differencing, and
moving average terms for the seasonal part. Let L be the lag operator where:

Li
yt = yt−i (2)

The lag operator polynomials are:

φ(L) = 1− φ1L− φ2
2 L2 − · · · − φP

P LP, (3)

θ(L) = 1− θ1L + θ2
2 L2 + · · ·+ θP

P LP, (4)

Φ(L) = 1−Φp1Lp2 −Φ2
p2Lp2 − · · · −Φps LPs , (5)

Θ(L) = 1 + Θq1Lq2 + Θ2
q2Lq2 + · · ·+ Θqs Lqs , (6)

φ(L) = 1− φ1L− φ2
2 L2 − · · · − φP

P LP (7)

2.1.3. Artificial Neural Network (ANN)

A neural network composed of multiple layers of neurons interconnected among
themselves is called an artificial neural network (ANN). Neural networks have an input
layer that contains input values, a hidden layer that transforms those values, and an output
layer that produces output values. These layers are connected together using weights.
ANNs have many different classes and can be used for a wide variety of purposes [12].
There is a particular class of ANN, called a Recurrent Neural Network (RNN). RNNs have
recurrent connections in their structure, which means that their current output is also reliant
upon the previous output; more specifically, the network will memorize previous results
to use them in calculating their current output. The difference between ANN and RNN’s
structure is shown in Figure 1:
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Figure 1. (a): ANN Architecture, (b): RNN Architecture.

As shown in Figure 1, despite ANN, RNN has recurrent connections between hidden
layers. RNNs consist of multiple layers, where each layer is composed of one or more
neurons that connect to the previous layer as well as the next layer in sequence. As for
ANN, the information travels from one layer to another without touching a node twice.

Mathematically, for time t, RNN formula is:

ht = f (Wht−1 + Uxt + b), (8)

yt = g(Vht) (9)

In this equation, f and g are the non-linear activation function (sigmoid function), ht
and xt are respectively the hidden layer and input layer in time step t, and W, U, and V are
the weight matrices. yt is the output, and b denotes the bias.

2.1.4. Long Short-Term Memory (LSTM)

Conventional RNNs are only capable of memorizing short time series data. They
lose the important information of long-term input as data and time steps increase, causing
vanishing gradients or expanding gradients. In order to overcome this problem, Long
short-term memory (LSTM) was proposed by Horchreiter and Schmidhuber in 1997 [15],
whose structure is shown in Figure 2. In LSTM networks, such problems are solved by
incorporating specific gate mechanisms into the recurrent feedback loops.
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During the learning process, the neuronal network’s gating mechanism determines
what information to keep and what information to discard. The LSTM structure contains
three gates: the forget gate (f ), which decides what information is going to be thrown away
from the cell state, the input gate (i), which decides which information should be stored in
the cell state, and the output gate (o), which decides what parts of the cell state are going to
be produced as output.

The formulation of updating the cell states and parameters can be written as:

ft = σ
(

xtU f + ht−1W f
)

, (10)

it = σ
(

xtUi + ht−1Wi
)

, (11)

∼
Ct = tanh(xtUg + ht−1Wg), (12)

Ct = σ

(
ft × Ct−1 + it ×

∼
Ct

)
, (13)

ht = tanh(Ct)× ot (14)

In the LSTM formula, it, ft, and ot are input gate, forget gate, and output gate at time
t, respectively. xt stands for input data at time step t, and ht−1 represents the hidden layer

in time t. Ct−1 and Ct are cell states in time t− 1 and t, respectively, and
∼
Ct denotes the

internal memory unit. W, and U are the weight matrices associated to the corresponding
gates.

2.1.5. Transformer

Vaswani et al. published the first transformer architectures in 2017 [21]. By imple-
menting attention and self-attention mechanisms, this architecture eliminates the need for
recurrent neural networks [26]. The Transformer model can improve time series forecasting
accuracy through the use of an attention mechanism inspired by human perception, which
enables the model to selectively focus on certain things while ignoring others. To sum
up, attention is best utilized by capturing the core information in each task from a large
amount of information. Unlike recurrent networks, the Transformer does not suffer from
vanishing gradients and can access any point in the past no matter how far time steps are.
As a result of this feature, the Transformer can identify long-term dependencies. Moreover,
unlike recurrent networks that require sequential computation, the Transformer can also
run completely in parallel at high speeds.

The Transformer model uses an encoder–decoder structure, which consists of stacked
encoder and decoder layers. Input sequences can be mapped into output sequences with
varying lengths using the encoder–decoder structure of the model. The encoder receives
the input, a sequential sequence of time series data (x1, . . . , xn), and transfers it into a
continuous representation (z1, . . . , zn). Based on z, the decoder calculates the output and
then generates one symbol at a time (y1, . . . , ym). The Transformer model is auto regressive,
which means it uses the previous generated symbols as additional inputs. The output layer
yi at time step i is written as:

yi = ∑n
j=1aij

(
xjWV

)
(15)

where yi is the updated xj, and aij is the attention score, measuring the similarity between
xi and xj, which is calculated as:

aij =
exp

(
eij
)

∑n
k=1 exp(eik)

(16)

where eij measures the combability of two linearly transformed input elements, xi and xj:
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eij =
(x iWQ)(x jWK)

T

√
h

, (17)

where WK, WQ, and WK are three linear transformation matrices to increase the Trans-
former’s expressiveness, and h is the dimension of the model. Figure 3 shows the structure
of the Transformer model:
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As shown in Figure 3, the encoder layer contains of two sub-layers: first and second
fully connected multi-head self-attention mechanism and Feed Forward, respectively.
Similarly, encoder layer can be deconstructed into three sub-layers. Masked Multi-head
Attention, Multi-head Attention, and Feed Forward mechanism are three sub-layers of
decoder. A masked Multi-head Attention ensures that no subsequent positions are involved
in the predictor input. The Transformer uses residual connections surrounding each of the
sublayers, followed by layer normalization, to accelerate training speed and convergence.

2.2. Data Analysis

An initial data analysis was perfumed before forecasting EV charging demand. In
order to accurately forecast EV demand, we use charging load and weather data ranging
from 1 January 2018 to 28 December 2021. Real-world EV charging load data from Boulder,
Colorado was collected from 25 public charging stations, containing type 2 connectors of
22 kW. The EV charging data were obtained from the Colorado webpage, which contains
historical data of electric charging facilities in Colorado [27]. The raw data of individual EV
charging session such as type of the plug, address, arrival and departure time, date, and
energy consumption in kW are available on the website for each charging record.

For this paper’s objective of forecasting aggregated EV charging demand, raw individ-
ual EV charging session data must be transformed into an EV charging demand profile (in
kW). In order to do that, the charging data were aggregated per day for all the charging
facilities, and all the missing and negative data were removed from the dataset. The final
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dataset contains 1425 records, which were fed to the machine learning models. Table 1
presents a statistical summary of the EV charging data in aggregated and disaggregated
type.

Table 1. Statistical Summary of the EV Charging Data.

EV Stations Type Number of
Record

Energy Usage
Min Max

25

Disaggregated (EV
charging Event) 29,780 0.001

(kW/Event)
85.2

(kW/Event)
Aggregated (Daily

EV charging) 1425 0.74
(kW/Day)

531.6
(kW/Day)

To develop the machine learning models, we divided the dataset into training and
testing according to the standard 80/20 rule. The data of the first 38 months were used for
training the models and those of the remaining nine months were used for testing. The
range of test and training data is shown in Figure 4.
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Next, the dataset was normalized before being fed into the models. Data were nor-
malized using min-max normalization. The formula of min–max normalization is given
by:

xN =
xt − xmin

xmax − xmin
, (18)

where xN is normalized data, xt is non-normalized data, and xmax and xmin are the maxi-
mum and minimum values of the entire dataset.

A time series plot was created for the EV charging load data to identify the overall
pattern. From the start datapoint date to the summer of 2020, the charging load for EVs
increases exponentially before starting to decline until the summer of 2021. Following
that, the trend shows an increase in the overall EV charging load. The COVID-19 outbreak
and accompanying quarantine, which reduced travel demand and EV charging load, was
responsible for abrupt reducing of the data. In Figures 5 and 6, time series patterns are
displayed. The dataset’s decomposed pattern clearly shows a seasonal trend, and the
residual pattern suggests that the data are non-stationary.
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We use two different type of time series models for this paper, denoted as statistical
and neural network models. ARIMA and SARIMA are the statistical time series, whereas
RNN, LSTM, and Transformer are the deep learning time series approaches. EV charging
demand, weekend, and weather data were applied as input features. We collected weather
data of Boulder, Colorado form National Weather Service website. Weather data include
maximum and minimum temperature, precipitation, and snow condition. The list of the
features is given in Table 2.
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Table 2. List of Dependent and Independent Variables.

Variable Feature ARIMA SARIMA RNN LSTM Transformers

Load EV charging load (kW/day) + * + + + +
Calendar Binary weekend (0 or 1) + + +

Weather

Max temperature (◦F)
Min temperature (◦F)

Snow (mm/day)
Precipitation (mm/day)

+ + +

* indicates the applied dataset in models.

By analyzing weather data, we can find that seasonal changes can noticeably affect the
EV charging load. The dry season starts from September to March, and March to September
is considered rainy season. Figure 7 shows the box plot of average monthly charging load
distribution. In the dry season, the peak load, median load, upper quantile, and lower
quantile are all higher than those of the rainy season. People tend to travel more during the
dry season and consume more power, which results in a greater number of vehicles being
charged.
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Box plot of charging load based on weekday and weekend is shown in Figure 7.
Analyzing charging load records by calendar data exhibits a slight difference between
weekdays and weekends charging demand. It is observed that the median load on the
weekdays, as well as the upper and lower loads, are higher than on weekends. Similarly,
the plot shows a higher peak demand on weekdays compared with weekends. Considering
the data are recorded at public charging stations, it can be explained by the fact that people
typically charge their vehicles at public charging stations during working hours. In contrast,
people typically use residential charging locations during weekends.

2.3. Performance Measurement

There are number of performance measures that are used for evaluating model accu-
racy. Among the commonly used error evaluation functions, we apply root mean squared
error (RMSE) and mean absolute error (MAE) for evaluating model performance in load
forecasting.

RMSE enables us to penalize outliers and clearly interpret the forecasted output, as
they are in the same unit as the feature that the model is predicting. The equation of RMSE
is:

RMSE =

√
1
N

n

∑
i=1

(ŷi − yi)
2 (19)

We apply MAE as the second performance measurement mostly as a means of enhanc-
ing and confirming the confidence in the values obtained. Its formula is as follow:

MAE =
1
N

n

∑
i=1
|ŷi − yi| (20)

where N is the number of the sample, yi is the actual value and ŷi is forecasted value. A
lower value of RMSE and MAE indicates better prediction performance.

3. Results and Discussion

ARIMA, SARIM, RNN, LSTM, and Transformer models were tested based on a dataset
of 1425 points obtained over four years. In this study, four different time intervals were
applied for forecasting EV charging load, from 7 days (short-term) to 1, 2, and 3 months
(long-term). The different forecast horizons reflect different uses of the models, as follows:
EVCS operators can use the 1, 2, and 3-month horizons for forecasting their system usage.
As a result of the short horizons, energy providers can plan and optimize their short-term
energy consumption in order to meet demand with clean energy.

For ARIMA and SARIMA, we train the model using target variable, which is EV
charging load. For training deep learning models, Exogenous mentioned variables were
used.

In the experiment, we implemented LSTM and RNN models in Keras deep learning
framework and Transformer in Pytorch [28]. To facilitate the training process, the number
of the hidden units and batch for the deep learning approaches are generally set as the
power of 2. The deep learning model’s hyperparameters are shown in Table 3.

Table 3. Applied Hyperparameters for Deep Learning Models.

Hyper Parameters Value

Hidden Dimension 128
Number of Epoch 100
Number of Layer 1
Number of Head 8

The number of the hidden dimension in proposed models is set as 128, and the batch
size is set as 64. For total number of 100 epochs, the training loss of neural network methods
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is exhibited in Figure 8. The results indicate that Transformer achieves lower training loss
and converges faster.
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A histogram of metrics and error comparisons is shown in Figure 9 for four scenarios.
Based on the histograms, we can clearly see that the Transformer has the lowest error
compared to the other four methods.
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In the next step, we evaluate and compare the performance of the trained models
using the test set. The results for the performance accuracy of applied models are reported
in Table 4, which indicates that the closer to zero the better, regardless of the evaluation
indicator.
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Table 4. Model Performance for Different Time Steps.

Steps Ahead (k) Transformer LSTM RNN SARIMA ARIMA
RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE

K = 7 0.055 0.043 0.036 0.026 0.367 0.229 1.06 0.819 0.831 0.643
K = 30 0.112 0.085 0.425 0.317 0.348 0.224 1.02 0.776 0.779 0.586
K = 60 0.096 0.073 0.488 0.373 0.438 0.310 0.960 0.729 0.841 0.639
K = 90 0.085 0.070 0.522 0.427 0.564 0.427 0.903 0.683 0.920 0.680

Among all the models assessed in Table 4, Transformer achieved the best prediction for
30, 60, and 90 days ahead. LSTM and Transformer results for 7 days ahead are comparable,
as shown in Table 3. It is because LSTM is like Transformer when the prediction length is
short. For 30, 60, and 90 days ahead, Transformer outperforms the next best model by 62%,
78%, and 84%, respectively. A key factor contributing to the model’s higher performance is
the ability of Transformer to incorporate any observation of the series (potentially skipping
over non-relevant data points), which renders them for capturing similarities over more
extended periods. These similarities are critical for accurate forecasting.

Despite the inferior results of LSTM and RNN when compared to Transformer, both
models exhibit similar performance accuracy for long-term prediction. Moreover, they
outperform ARIMA and SARIMA models in all prediction steps, which indicates the
superior performance of deep learning methods over traditional statistical time series
approaches. By looking at the results of Table 4, we notice that the Transformer model
outperforms traditional time series methods, ARIMA and SARIMA, which are widely
applied for addressing the EV charging load forecasting in both long-term and short-term
prediction. It has been shown that the forecasting quality of ARIMA and SARIMA models,
which predict the future value only based on the variable of interest without considering
any complementary features, is significantly lower than that of Transformer, RNN, and
LSTM models.

A histogram of metrics and error comparisons is shown in Figure 10 for four scenarios.
Based on the histograms, we can clearly see that the Transformer model has the lowest
error compared to four other methods.
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On Figure 10, comparisons between the original test data and the predicted values
converted into the original units are shown. The figure shows that the Transformer curve
fits the real-world value precisely under each scenario and has perfectly predicted the
load for each time step. For long-term horizons, both LSTM and RNN capture the general
trend of the data, but still differ ominously from the test data. Traditional time series
models, ARIMA and SARIMA, failed to capture fluctuation of time series data and created
a straight-line prediction, which indicates the inability of traditional models compared with
deep learning methods to predict time series dataset.

4. Conclusions

This article employs different time series methods to forecast EV charging load demand
using historical real-world EV charging records of 25 public charging stations located at
Boulder, Colorado for both short-term and long-term periods. This work is the first to
use the Transformer model to address the EV charging load demand problem, and we
benchmarked Transformer using ARIMA, SARIMA, LSTM, and RNN and compared its
forecasting performance. According to the results, Transformer provided the best long-term
prediction performance when compared to the time series and ML models stated above,
with RMSE values of 0.085, 0.096, and 0.112 for k = 30, 60, and 90, respectively. Even while
the model’s performance for short-term prediction is slightly behind that of LSTM, it still
performs much better than the other models indicated.

Upon reviewing the results, it is apparent that the Transformer model has excellent
generalization capabilities, which can be applied effectively to EV charging record datasets.
In addition, the Transformer model shows a greater ability to adjust to changes in the
characteristics of EV records when compared with the LSTM and RNN models.

Due to the absence of a continuous hourly dataset in this project, the demand data are
aggregated by day, which reduces the size of the training data for our proposed model and
disables its capacity to forecast for shorter time steps (e.g., 15 min, 1 h). It is advised to use
a larger real dataset of EV charging records with a smaller time step, such as a residential
charging dataset in order to capture the EV charging demand more precisely and enhance
the model’s performance.
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In this study, weather data and weekday datasets are utilized as independent variables
for EV charging demand forecasting. Other related dataset, such as traffic distribution,
which can affect the charging behavior of EVs, can be considered for future predication.

The primary objective of this research was to propose Transformer, a state-of-the-art
deep learning method, for forecasting EV charging demand for the first time and compare its
performance with models that are highly used by other studies, such as ARIMA, SARIMA,
LSTM, and RNN. Applying other regression models, deep learning, and neural networks
for future analysis is recommended.

The outcome of this study is beneficial for utility operators managing the operation of
electric profiles in future power systems, by employing more precise models to forecast
EV charging demand. This research also may help with the selection of investment and
management strategies for flexible EV charging infrastructures based on EV charging
demand.
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