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Abstract: A two-stage robust planning model is constructed in this paper, which can reduce the
joint planning uncertainty of a wind-photovoltaic-energy storage system caused by the stochastic
characteristics of renewable energy and ensure the sustainability of the power grid. Considering the
life loss of energy storage system comprehensively, the joint planning is realized in the worst scenario.
Addressing the problem that subjective and uniform robustness parameters in robust optimization
cannot cope with the differentiated characteristics of each uncertainty, a robust microgrid-planning
model and its modification strategy based on improved grey relational theory are proposed. The
idea of weight distribution and dynamic value of identification coefficients are introduced into grey
relational theory, so as to enhance the weight of indicators that influence planning and the relational
degree between them, which can avoid the locally relational tendency. According to the relation
degree, the renewable energy’s robustness parameters are modified to improve the applicability and
flexibility of the microgrid-planning results. Finally, the effectiveness and superiority of the proposed
theory and method are verified using a case study approach.

Keywords: microgrid planning; renewable energy; robust optimization; grey relational theory;
modification strategy

1. Introduction

The distributed renewable energy connected microgrid, which is represented by
wind power and photovoltaic (PV), has been developed rapidly [1,2]. The microgrid
planning model has become the research focus, combined with the joint planning for
robustness of the wind-PV-energy storage system (ESS), because the optimal planning
scheme is very important for the economic and sustainability of the power grid [3,4].
Most researchers focus on the planning model’s setting and solving methods, such as
the speed of the solving method and the applicability of the optimal scheme, but the
adjustment effect of planning elements on the optimal solution is ignored. This paper
proposes a microgrid robust planning model and its modification strategy to reduce
the planning cost, based on improved grey relational analysis (IGRA) and the relational
degrees among planning elements.

Based on the stochastic characteristics of renewable energy, the joint planning with the
robustness of wind-PV-ESS is typically uncertain. The robust optimization (RO) algorithm
has been widely used in solving the above problem because it is a method used to find
certain robustness for optimization problems in uncertain environments and only requires
the boundary of the uncertainty set [5–8]. Ref. [9] defines the boundary of the uncertainty set
as a “robust parameter”. To solve the planning scheme more efficiently and economically,
Ref. [10] proposes the distributionally robust optimization (DRO) theory, which is an
optimization method based on insufficient information and combines the solvability of
RO and flexibility of stochastic programming. Refs. [11,12] use Wasserstein Distance to
construct the fuzzy set for the probability distribution of renewable energy. Ref. [13]
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uses matrix information to describe the probability distribution set of renewable energy’s
prediction errors. Ref. [14] proposes an indeterminately distributional model so that the
probability distribution of uncertainties changes around a given reference range. All the
above papers focus on the improvement of the algorithms’ solving power and the planning
model’s setting to get the optimal solution. However, in these papers, the boundary of
the uncertainty set does not consider the adjustment effect of uncertainty’s property on
the optimal solution. In this paper, a two-stage robust planning model is constructed, and
uncertainties are represented by bounded closed-box uncertain sets which will be modified
to reduce the planning cost innovatively.

Grey relational analysis (GRA) shows the hidden relation between indicators according
to the similarity degrees of the geometric curves [15,16]. According to GRA, grey data refers
to data with randomly variable characteristics, and grey system refers to the system that
contains grey data [17,18]. In particular, the relational degree between grey data can reflect
the changing characteristics of the grey system; as for the planning model, renewable energy
can be seen as grey data, and the microgrid planning can be seen as a grey system. However,
GRA adopts equal treatment for each analysis index, which biases the relational degree
with discrete indexes and hides the characteristics of the indexes [19]. To solve the above
problem, Ref. [20] redistribute the weights of the analyzed data based on their importance
to the indicators. Ref. [21] combines the analytic hierarchy process with Delphi (AHPD)
and GRA method to weight the grey data. Ref. [22] introduces the triangle fuzzy theory
(TF), then Fuzzy-Grey Relational Analysis (F-GRA) is used to weight the grey data. Ref. [23]
constructs the relative area change that reflects the similitude degree of the sequence curves,
to define the new relational coefficient. Ref. [24] combines the entropy weight method
(EWM) and analytic hierarchy process (AHP) to carry out combined weighting of grey
relational degree. In this paper, IGRA is proposed based on weighting and using the
dynamic value of identification coefficient innovatively; particularly, the identification
coefficient of dynamic value is set up with TF.

This paper proposes a microgrid robust planning model and its modification strategy
based on IGRA. Firstly, a two-stage robust planning model is constructed, which considers
the life loss of the energy storage system and realizes the joint planning to ensure the
robustness of wind-PV-ESS. Then, the planning model is solved in detail, by using Karush–
Kuhn–Tucker (KKT) method and Column-and-Constraint Generation (C&CG) algorithm.
Secondly, the idea of weight allocation and Triangle-shape grade of membership function
is integrated into GRA, and then, IGRA is proposed with the dynamic value of identifica-
tion coefficient to calculate the relational degrees between the robust microgrid-planning
model’s elements. Thirdly, the steps of modifying the robust planning model’s robustness
parameters are detailed with the obtained relational degrees. Finally, the feasibility and
effectiveness of the proposed method are verified with a real microgrid system of a province
in China.

2. Two-Stage Robust Planning for Microgrid

The microgrid-planning model includes a wind turbine (WT), PV, microturbine (MT),
and ESS. For this, the uncertainty sets of renewable energy output and demand-side
load, as well as the life model of ESS are constructed. Based on the above mathematical
models, the objective function with the minimum total cost is proposed, including the
initial investment costs and the operation costs, with the constraints of power balance, and
the upper and lower limits of line power, generator outputs, the state of charge (SOC), and
storage charging and discharging power. The microgrid-planning model of this paper is
shown in Figure 1.
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2.1. Mathematical Model of the Microgrid Planning
2.1.1. Uncertainty Sets of Renewable Energy and Demand-Side Load

In the robust model of microgrid planning, the output of WT, PV and the demand-side
load are uncertain (have uncertainties). The bounded closed-box uncertain sets U are used
to express the range of these uncertainties, as shown in Equations (1)–(3). To effectively
adjust the applicability of the planning schemes, the robust adjustment parameters, Γwt,
Γpv and Γload, are introduced to represent the volatility of the above uncertainties.

Uwt =

{
Pwt,t ∈ RNW×T :

T

∑
t=1

∣∣∣∣∣ ∆Pwt,t

∆Pmax
wt,t

∣∣∣∣∣ ≤ Γwt, Pwt,t = P0
wt,t + ∆Pwt,t

}
(1)

Upv =

{
Ppv,t ∈ RNW×T :

T

∑
t=1

∣∣∣∣∣ ∆Ppv,t

∆Pmax
pv,t

∣∣∣∣∣ ≤ Γpv, Ppv,t = P0
pv,t + ∆Ppv,t

}
(2)

Uload =

{
Pload,t ∈ RNW×T :

T

∑
t=1

∣∣∣∣∣∆Pload,t

∆Pmax
load,t

∣∣∣∣∣ ≤ Γload, Pload,t = P0
load,t + ∆Pload,t

}
(3)

where P0
wt,t, P0

pv,t and P0
load,t are the predicted value of WT output and PV output, as well

as the demand-side load respectively, during period t. Pwt,t, Ppv,t and Pload,t are the actual
output values of WT and PV, as well as the demand-side load value. ∆Pmax

wt,t , ∆Pmax
pv,t and

∆Pmax
load,t are the maximum fluctuation values of WT, PV and demand-side load, respectively.

To ensure the stable operation of the microgrid system, the fluctuation range of the
above uncertainties is constrained, as shown in Equation (4).

P0
wt,t − ∆Pmax

wt,t ≤ Pwt,t ≤ P0
wt,t + ∆Pmax

wt,t
P0

pv,t − ∆Pmax
pv,t ≤ Ppv,t ≤ P0

pv,t + ∆Pmax
pv,t

P0
load,t − ∆Pmax

load,t ≤ Pload,t ≤ P0
load,t + ∆Pmax

load,t

(4)

2.1.2. Life Model of ESS and Its Linearization

(1) Life model of ESS

In this paper, the battery is set as the ESS and to be only in a charging or discharging
state during operation. The SOC of ESS is shown in Equation (5).

SOCt = SOCt−1 +

[
χbat,t·Pch

bat,t·ηch

Emax
bat

−
(1− χbat,t)Pdis

bat,t

Emax
bat ·ηdis

]
∆t× 100% (5)

where SOCt and SOCt−1 are the SOC during period t and period (t − 1), respectively. Pch
bat,t

and Pdis
bat,t are the charging and discharging power of the ESS, respectively. ηch and ηdis are

charging and discharging efficiency of the ESS, respectively, and they are usually set to
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0.95 [25,26]. Emax
bat s the rated capacity of the ESS. χbat,t is a binary variable, whose value is 1

indicating that the battery is charged.
The depth of each charging and discharging cycle is the key factor affecting the service

life of a battery. If this factor is ignored, the planning results tend to be optimistic [27]. The
relationship between the discharge depth and the life of a battery is shown in Equation (6).
Firstly, the cycle-discharging depth is determined by the rain-flow counting method; then,
the cycle life can be fitted by the power function.

Nlife = N0(Dcyc
dod)

−kP (6)

where Nlife is the number of cycles when the battery reaches the upper limit of its life. Dcyc
dod

is the discharging depth of the battery. N0 is the number of cycles with which the battery
can reach the life limit when it works at 100% discharging depth. kp is the fitting coefficient
of the power function.

However, Equation (6) is highly nonlinear and difficult to solve in the planning model,
and the planning result is too conservative because Equation (6) replaces the maximum
discharging depth with the current discharge depth of the ESS.

To solve the above problem, we simplify the problem into a life model based on the
equivalent number for the cycle-discharging depth. Firstly, it is assumed that the battery
has a charging and discharging cycle during period t, and its cycle-discharging depth is the
discharging depth of the battery during the period (t − 1), as shown in Equations (7) and (8).

DODt−1 = 1− SOCt−1 (7)

DODcyc
t = DODt−1·χSOC,t (8)

where DODt−1 is the discharging depth during period (t − 1). DODcyc
t is the cycle-

discharging depth. χSOC,t is a binary variable, whose value is 1 indicating that the battery
has a charging or discharging cycle.

Then, the moment of transformation of the charging and discharging state is deter-
mined by Equation (9).

χbat,t = max{χSOC,t − χSOC,t−1, 0} (9)

(2) Linearization of the life model

Firstly, based on the piecewise linearization of discharging depth completed above,
the discharging depth can be divided into D segments. Constraint conditions are set to
ensure that the ESS is only in a discharging or charging state at the dth discharging depth,
as shown in Equations (10) and (11).

D

∑
d=1

χd
SOC,t = 1 (10)

DODd,min
t χd

SOC,t ≤ DODd
t ≤ DODd,max

t χd
SOC,t (11)

where χd
SOC,t represents the charging or discharging state for d. DODd,min

t and DODd,max
t

represent the lower and upper limits of the dth discharging depth, respectively.
Then, Equation (9) is determined by the Max function, and its equivalent linear form

is shown in Equations (12)–(14).

χSOC,t − χSOC,t−1 ≤ χbat,t (12)

χbat,t ≤ χSOC,t (13)

χbat,t ≤ 1− χSOC,t−1 (14)
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2.1.3. Model of Microturbine

The controllable power supply in micro grid mainly includes the MT, fuel cell and so
on [28]. As for the MT, its response speed is faster in hour-level scheduling, which allows it
to work better with ESS in a microgrid system; its climbing constraint can be ignored and
only its output constraint is considered in this paper [9].

Pmin
G ≤ PG,t ≤ Pmax

G (15)

where Pmin
G is the minimum output of the MT.

2.2. Constraints of the Microgrid Planning

To ensure the stable operation of the planned microgrid, the constraints of the micro-
grid planning are as below, and include power balance, the upper and lower limits of line
power, unit outputs, SOC, as well as storage charging and discharging power.

2.2.1. Constraints on Power Balance

In the microgrid planning, this constraint ensures the power supply and demand balance.

Pwt,t + Ppv,t + Pdis
bat,t + Pbuy

M,t + PG,t = Pload,t + Psell
M,t + Pch

bat,t (16)

where PG,t is the real-time output of MT during period t. Pbuy
M,t and Psell

M,t are the power
purchase and sale between microgrid and power grid during period t, respectively.

2.2.2. Constraints of the Generator Output

The response speed of the MT is faster in hour-level scheduling, so its climbing
constraint can be ignored, and only its output constraint is considered in this paper.

Pmin
wt ≤ Pwt,t ≤ Pmax

wt (17)

Pmin
pv ≤ Ppv,t ≤ Pmax

pv (18)

where Pmin
wt and Pmax

wt are the lower and upper limits of WT, respectively. Pmin
pv and Pmax

pv
are the lower and upper limits of PV, respectively.

2.2.3. Constraints of ESS

The constraints of ESS are constructed in this part, including the upper and lower
limits of SOC and operating power, respectively.

(1) Constraints on the operating power

0 ≤ Pch
bat,t ≤ χbat,tεchEmax

bat (19)

0 ≤ Pdis
bat,t ≤ (1− χbat,t)εdisEmax

bat (20)

where εch and εdis are the ratios of the maximum charging and discharging power to the
maximum capacity of the ESS, respectively.

(2) Constraints on the SOC

SOCmin ≤ SOCt ≤ SOCmax (21)

where SOCmin and SOCmax are the lower and upper limits of the SOC, respectively; they
can avoid excessive charging and discharging of ESS. As shown in [29–31], SOCmin is
generally set to 0.1–0.2, and SOCmax is generally set to 0.8–0.9.
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2.2.4. Constraints on the Purchasing and Sale Power

Constraints are constructed in this part to ensure the reliability of the connection
between the microgrid and the external grid.

0 ≤ Pbuy
M,t ≤ χM,t·P

buy,max
M (22)

0 ≤ Psell
M,t ≤ (1− χM,t)·Psell,max

M (23)

where Pbuy,max
M and Psell,max

M represent the upper limits of purchasing and selling power of
the microgrid, respectively. χM,t is a binary variable, whose value is 1 indicating that the
microgrid buys power from the distribution network.

2.3. Objective Function of the Microgrid Planning

The objective function of the microgrid-planning model is shown in Equation (24),
which is divided into two stages to be solved. The objective function of the first stage is
the lowest cost of initial investment cost, and the second stage is the lowest cost of the
dispatching operation.

min
n

(
Cinv + max

u
min
x,y,z

Copen

)
(24)

where Cinv is the total initial investment cost of the microgrid. Copen denotes the operation and
maintenance costs of the microgrid. x, y, z and n are the sets of optimized variables, and u is

the set of uncertainties; particularly, n = [Emax
bat , Pmax

wt , Pmax
pv , Pmax

load

]T
, u = [Pwt,t, Ppv,t, Pload,t

]T
,

x = [Pdis
bat,t, Pch

bat,t, Pbuy
M,t , Psell

M,t, PG,t, SOCt

]T
, y = [χbat,t, χM,t, χ1

SOC,t, · · · , χd
SOC,t, · · · , χD

SOC,t

]T

and z = [DOD1
t , · · · , DODd

t , · · · , DODD
t

]T
.

2.3.1. Initial Investment Cost

The initial investment cost includes the installation costs of WT, PV, ESS and MT, as
shown in Equations (25)–(28).

Cinv = Cinv
bat + Cinv

en (25)

Cinv
en = Pmax

G cGFCRE(rG, YG) + Pmax
pv cpvFCRE(rpv, Ypv) + Pmax

wt cwtFCRE(rwt, Ywt) (26)

Cinv
bat = Emax

bat cbatFCRE(rbat, Ybat) (27)

F(r, Y) =
r(1 + r)Y

(1 + r)Y − 1
(28)

where Cinv
bat and Cinv

en are investment costs of the ESS and power sources, respectively. Emax
bat

is the maximum capacity of the ESS. FCRE(r, Y) is the net present value of the annual
investment [32]. r and Y are the discount rate and the number of discounted years of
equipment, respectively, among which the number of discounted years of the ESS is the
floating charge life [33]. In the lifetime model of the energy storage system, particularly for
the battery, the value of the floating charge life is set to 10 [29,33].

2.3.2. Equipment Operation and Maintenance Costs

The total equipment operation and maintenance cost Copen includes the operating
costs of the MT Copen

G , the costs of purchasing and selling power of the microgrid Cgrid,
the costs of equipment maintenance Cop, as well as the cost of environmental governance
Cpo, respectively.

Copen = Copen
G + Cgrid + Cop + Cpo (29)

Copen
G =

T

∑
t=1

cfuel,t·PG,t (30)
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Cgrid =
T

∑
t=1

(cbuy,tP
buy
M,t ∆t− csell,tPsell

M,t ∆t) (31)

Cop =
4

∑
i=1

ci
op·Pi,t (32)

Cpo =
T

∑
t=1

N

∑
n=1

kn,t·cn,t·PG,t (33)

where cfuel,t is the cost of fuel during period t. kn,t and cn,t are the discharging amount
of the nth pollutant and its unit price of pollution abatement of the MT during period t,
respectively. Cbuy,t and csell,t represent the unit price of power purchase and sale during
period t, respectively. Ci

op and Pi,t are the unit prices of maintenance cost and the power of
ESS, WT, PV and MT during period t, respectively.

2.4. Solution of Two-Stage Robust Planning

Since the robust planning is a large-scale nonconvex and nonlinear optimization
problem, binary variables are introduced in the model to recast it to a mixed integer linear
optimization (MILP), as shown in Equations (10) and (11). The MILP model’s inner layer,
as shown in Equation (24), is a function of the form “max-min”; although the objective
function and constraints of the model are linear, the model is non-convex optimization.

In order to solve the above model, the inner layer model is transformed into a single
layer model by using the KKT method; then, the model is solved by the C&CG algorithm.
Compared with Benders decomposition algorithm, the C&CG algorithm can continuously
introduce variables and constraints related to the subproblem when solving the master
problem, thus obtaining a more compact lower bound of the originally objective function
and effectively reducing the number of iterations.

Considering the above constraints, the simplified form of the original problem is
shown in Equation (34). Particularly, the worst-case scenario is the one in which the value
of u is taken such that the objective function maximizes.

min
n

(
Cinv + max

u
min
x,y,z

CTx
)

s.t.



Ax ≤ a
Bx = 0
E1x + E2y ≤ e
F1x + F2u = 0
H1z + H2y ≤ h
In ≤ i
n,u,x,z ≥ 0, y ∈ {0, 1}

(34)

where A, B, E1, E2, F1, F2, H1, H2, a, e and h are the constant matrices.
The two-layer CC&G algorithm is used to solve the model, and the inner loop is used

to find the most serious scenario and return it to the main problem, namely the subproblem;
the outer cycle is used to solve the planning scheme containing all the obtained scenarios,
namely the master problem.
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2.4.1. Solution of the Master Problem

Every time a subproblem in the model finds the worst scenario, new variables are
introduced in the master problem, and then the master problem can be solved. The
simplified form of the master problem is as follows:

min
n

(
Cinv + α

)

s.t.



α ≥ CTxl
Axl ≤ a
Bxl = 0
E1xl + E2y ≤ e
F1xl + F2ul = 0
H1zl + H2yl ≤ h
In ≤ i
n, ul , xl , zl ≥ 0, y ∈ {0, 1}, ∀l ≤ lmax

(35)

where α is the auxiliary variable of the subproblem. l and lmax are the real-time value and
maximum value of the iterations, respectively. nl , ul , xl and zl are the solutions of the
subproblem after the lth iteration. ul is the worst scenario found in the uncertainty set.

The master problem solves the upper bound of the objective function, while the
subproblem solves the lower bound, which are UBmas and LBmas, respectively. If the
boundary of the objective function satisfies Equation (36), then the iterative calculation of
the master problem is terminated.

|UBmas − LBmas| ≤ ξ (36)

2.4.2. Solution of the Subproblem

The subproblem is used to find the worst scenario and return it to the master problem,
as shown in Equation (37).

max
u

min
x,y,z

CTx

s.t.



Ax ≤ a
Bx = 0
E1x + E2y ≤ e
F1x + F2u = 0
H1z + H2y ≤ h
u, x, z ≥ 0, y ∈ {0, 1}

(37)

The inner layer of the subproblem contains binary variables y, which cannot be directly
converted into a single-layer model by the KKT method [34]. The solution steps are shown
as follows:

(1) Linearization of the subproblem

In Equation (37), the binary variable is set to an initial value, and the upper and
lower value of the subproblem are set to UBsub= +∞ and LBsub= −∞, respectively, and
then, the subproblem becomes a linear optimization problem and can be transformed by
KKT method.

(2) Solve the outer layer of the subproblem
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The subproblem of Equation (37) can be transformed in Equation (38), which is used
to update the upper bound value UBsub= τ.

max τ
u,x,z

s.t.



τ ≤ CTx
Axk ≤ a
Bxk = 0
E1xk + E2yk∗ ≤ e
F1xk + F2uk = 0
H1zk + H2yk∗ ≤ h
uk, xk, zk ≥ 0, 1 ≤ k

(38)

where τ is the optimal solution of the subproblem in the objective function. k is the iteration
number of the subproblem’s inner loop. yk∗ is the initial value of y.

The dual multiplier is introduced in Equation (38), the following constraints are added:

s.t.


ET

2 ·λ1 = CT

(E1xk + E2yk∗ − e)·λ1,k = 0
HT

2 ·λ2 = CT

(H1zk + H2yk∗ − h)·λ2,k = 0

(39)

where λ1,k and λ2,k are the dual variables of the kth iteration respectively. In particular, if
the values of (E1xk+E2yk∗− e) and (H1zk+H2yk∗−h) are 0, then λ1,k and λ2,k are uncon-
strained, respectively. If the values of (E1xk+E2yk∗−e) and (H1zk+H2yk∗−h) are not 0,
then the values of λ1,k and λ2,k are 0, respectively.

Then they can be linearized by the Big M method, as shown in Equation (40).

s.t.


λ1,k ≤ M(1− σ)
E1xk + E2yk∗ − e ≤ Mσ
λ2,k ≤ M(1− σ)
H1zk + H2yk∗ − h ≤ Mσ

(40)

where M is a big positive number. σ is a binary variable.

(3) Solve the inner layer of the subproblem

The scenario is substituted into the inner layer of the subproblem, as shown in
Equation (41); and the equation is solved to update LBsub= max

{
LBsub, CTx

}
.

min
x,y,z

CTx

s.t.



Ax ≤ a
Bx = 0
E1x + E2y ≤ e
F1x + F2û = 0
H1z + H2y ≤ h
û, x, z ≥ 0, y ∈ {0, 1}

(41)

where û is the scenario calculated by Equation (38).

(4) Criteria for the subproblem’s iteration

If UBsub and LBsub satisfy Equation (42), the iteration is terminated and UBsub is
returned to the main problem, that is, UBsub= UBmas; otherwise, xk, zk and uk are recreated
respectively, k = k + 1, and the subproblem’s iteration is restarted.

|UBsub − LBsub| ≤ ξ (42)
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2.4.3. Solving Process of the Robust Model

Based on the above analysis, the algorithm flow of the proposed model is shown
as follows:

(1) Convert the objective function to a MILP problem; as for the master problem,
set l = 0, UBmas= +∞ and LBmas= −∞; as for the subproblem, k = 0, UBsub = +∞ and
LBsub= −∞.

(2) Solve the master problem and update LBmas= Cinv+α.
(3) Set the initial value of the binary variable and solve the outer layer of the subprob-

lem, that is, solve the Equation (38). If the equation is successfully solved, UBsub= τ and
return û to (4); otherwise, return û to the Equation (35), and return to (2).

(4) Solve the inner layer of the subproblem, that is, solve the Equation (41); and update
LBsub= max

{
LBsub, CTx

}
.

(5) If |UBsub −LBsub| ≤ ξ, UBsub = UBmas and go to (6); otherwise, k = k + 1 and return
to (3).

(6) If |UBmas − LBmas| ≤ ξ, output the optimal planning scheme; otherwise, return û
to (2) and l = l + 1.

The flow chart of the proposed model is shown in Figure 2.
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3. Construction of IGRA Based on the Robust Microgrid-Planning Model

GRA is used to judge whether the connection between different series is close accord-
ing to the similarity degrees of the geometric curves. This theory can effectively overcome
the shortcomings of mathematical statistics methods, such as requiring large amounts of
data, samples to obey a probability distribution and a large amount of calculation.
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According to GRA, if a system contains data with dynamically random variation
characteristics, the system can be called a grey system. The relational degrees between
the indicators in the grey system can be obtained by relational analysis; particularly, the
relational degrees can indirectly map the change characteristics of the grey system. In
this paper, renewable energy with randomly variable characteristics can be regarded as
grey data, and the system in which renewable energy resides can be regarded as a grey
system; then, the relational degrees are used as the reference indices of the boundary
setting of uncertainty sets, and can indirectly map the change characteristics of the
microgrid planning.

3.1. Grey Relational Analysis with the Microgrid-Planning Model

This part focuses on using traditional GPA to analyze the relational degrees of mi-
crogrid planning. It should be noted that this paper simulates multi-scenario microgrid
planning by changing the robustness parameters, and carries out relational degrees for
each individual cost and total cost. The main calculation steps are as follows.

(1) Generation of the analysis matrix

The index sequence Cto= [C to(1), Cto(2), · · · , Cto(n)]
T is composed of the total plan-

ning costs under n scenarios; the index sequence Csi= [C si,1, Csi,2, · · · , Csi,b

]
consists of b

single planning costs under n scenarios, especially Csi,b= [C si,b(1), Csi,b(2), · · · , Csi,b(n)]
T.

The analysis matrix Can is shown in Equation (43).

Can = (Cto, Csi,1, · · · , Csi,b)n∗(b+1) (43)

(2) Generation of the initial value matrix

Before the relational analysis, the data of the analysis matrix need to be normal-
ized. The above data is adopted by initialization in this paper, and the initial value
matrix Cin is shown in Equation (44), especially C′to= [C′ to(1), C′to(2), · · · , C′to(n)]

T and
C′si,b=

[
C′ si,b(1), C′si,b(2), · · · , C′si,b(n)]

T.

Cin =
(
C′to, C′si,1, · · · , C′si,b

)
n∗(b+1) (44)

(3) Generation of the difference matrix

The difference matrix Cdi is shown in Equation (45), especially Cdi,b = [C di,b(1), Cdi,b(2),

· · · , Cdi,b(n)]
T. The difference operation is carried out on the data in the initial value matrix,

according to Equation (46), that is, the absolute differences between the total costs and each
individual cost are calculated, respectively.

Cdi = [Cdi,1, Cdi,2, · · · , Cdi,b]n∗b (45)

Cdi,b(n) =
∣∣C′to(n)− C′si,b(n)

∣∣ (46)

The maximum value Cmax
di and minimum value Cmin

di of the difference matrix Cdi are
calculated by the following:

Cmax
di = maxCdi (47)

Cmin
di = minCdi (48)

(4) Calculation of the grey relational coefficient

The relational coefficient λb(n) between the single planning cost bth and the total
cost is calculated by Equation (49) in scenario nth. Then, all calculated results obtained
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by using Equation (49) form the relational coefficient matrix Cre, as shown in, especially,
Cre,b= [C re,b(1), Cre,b(2), · · · , Cre,b(n)]

T.

Cre,b(n) =
Cmin

di + ρCmax
di

Cdi,b(n) + ρCmax
di

(49)

Cre = [Cre,1, Cre,1, · · · , Cre,1]n∗b (50)

where ρ is known as the identification coefficient, whose value is from 0 to 1, and its value
is 0.5 in the traditional GPA.

By taking the mean value of each column in the relational coefficient matrix Cre, as
shown in Equation (51), the grey relational degrees between each individual cost and the
total cost are obtained.

Rb =
1
n

n

∑
i=1

Cre,b(i) (51)

3.2. Entropy Weight Method with the Microgrid-Planning Model

The EWM can make use of the information reflected by the objective data to assign
weights; particularly, the higher the dispersion degree of data, the greater the weight of this
index. Compared with AHP, EWM has higher accuracy and adaptability, and has effective
guidance for the microgrid-planning modification.

As for the same change of the robustness parameters, the more discrete the planning
cost, the greater the effect on the total cost, which indirectly reflects the effects of the above
uncertainties with the same robustness on the microgrid-planning costs. Therefore, when
the weight of all indicators is redistributed, the higher weights should be assigned to
the above costs, and combined into the GRA to obtain the relational degree of different
uncertainties with the same robustness parameter to the total cost.

3.2.1. Generation of the Initial Matrix and Normalization of Its Data

Firstly, the index sequence Csi= [C si,1, Csi,2, · · · , Csi,b

]
mentioned above is taken as

the initial matrix of the EWM. Then, the data inside the initial matrix is normalized by using
the range method, in which Equation (52) is used for negative indicators and Equation (53)
is used for positive indicators. The dimensionless matrix is Cno= [C no,1, Cno,2, . . . , Cno,b

]
,

especially Cno,b=
[
Ĉ si,b(1), Ĉsi,b(2), · · · , Ĉsi,b(n)]

T.

Ĉsi,b(n) =
Cmax

si,b − Csi,b(n)

Cmax
si,b − Cmin

si,b
(52)

Ĉsi,b(n) =
Csi,b(n)− Cmin

si,b

Cmax
si,b − Cmin

si,b
(53)

where Cmax
si,b and Cmin

si,b are the maximum and minimum values of the column where Csi,b
resides, respectively.

Finally, the proportion of each planning cost in the total cost is calculated according
to Equation (54). The proportionality matrix is Cpr= [C pr,1, Cpr,2, . . ., Cpr,b

]
, especially

Cpr,b= [C pr,b(1), Cpr,b(2), . . ., Cpr,b(n)]
T.

Cpr,b(n) =
Ĉsi,b(n)

∑n
i=1 Ĉsi,b(i)

(54)
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3.2.2. Calculation of Information Entropy and Weighting Coefficient

The information entropy Cen,b of the bth planning cost is calculated according to

Equation (55), and the matrix of all information entropy is Cen= [C en,1, Cen,2, . . ., Cen,b

]T
;

particularly, k = 1/ln n can make the information entropy between [0, 1] when the data of
indicators are identical.

Cen,b = k∑n
i=1 Cpr,b(i)· ln Cpr,b(i) (55)

Finally, the entropy weight of the bth planning cost is calculated according to
Equation (56).

Cew,b =
1− Cen,b

∑b
i=1 (1− Cen,i)

(56)

3.3. Improvement of the GRA

The IGRA based on EWM and TF is proposed in this section, in order to improve the
accuracy of the grey degrees. In the first part, the identification coefficient of dynamic value
is set up with TF; in the second part, the calculation of grey relational degrees combined
with EWM is detailed.

(1) Dynamic value of identification coefficient based on TF

The core idea of GPA is to calculate the absolute difference between sequences, because
the results reflect the degree of spatial similarity between the sequences [35], that is, the
smaller the absolute difference, the greater the relational degree. The relational degree is
calculated by a true fraction, as shown in Equation (49); particularly, if the value of ρ is
0.5, the characteristics of the index will be averaged and the accuracy of the model will
be reduced; at the same time, the value of the true fraction increases when the number
contained in both the numerator and the denominator increases. According to the above
theories, for a set of indicators, the absolute difference is negatively correlated with the
relational degree.

The trigonometric fuzzy number is used as the referenced function to make the alge-
braic operation easier, and its membership function is shown as Equation (57). Therefore,
based on the membership characteristic of TF theory, a method for dynamic calculation of
the identification coefficient is proposed.

µ(Tx) =


(Tx − Ta)/(Tb − Ta) , Ta ≤ Tx ≤ Tb

(Tc − Tx)/(Tc − Tb) , Tb ≤ Tx ≤ Tc

0 , Tx < Ta or Tb < Tx

(57)

The triangle fuzzy number is constructed according to the difference value of Equation (46)
and the value range of the identification coefficient of Equation (51), as shown in Figure 3.
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Since the value of the identification coefficient is in the range (0, 1), the values of the
two endpoints are 0.999 and 0.001 here. The value of membership degree ρ (d b(n)) is
shown in Equation (58).

ρ(Csi,b(n)) =


0.999 , Csi,b(n) = 0

1− Csi,b(n)
Cmax

si,b
, 0 < Csi,b(n) < Cmax

si,b

0.001 , Csi,b(n) = Cmax
si,b

(58)

(2) Calculation of grey relational degrees combined with EWM

All the calculation results of Equation (51) and Equation (56) can be expressed as
R = [R 1, R2, . . ., Rn] and Cew= [C ew,1, Cew,2, . . ., Cew,b

]
, respectively; then, the final

relational degree based on comprehensive weight is calculated according to Equation (59).

gr = [R1, R2, · · · , Rb]·[Cew,1, Cew,2, · · · , Cew,b]
T (59)

3.4. Solution of the Robust Microgrid-Planning Model’s Modification

In this part, the relational degrees between the microgrid-planning costs and robust
parameters are introduced in detail. Firstly, the GRA is used to calculate the relational
degree between each cost and the total cost of microgrid planning, in the same range of
robust parameters. Secondly, the calculation process of EWM is introduced in detail; it is
combined with the relational indexes of the previous step, in order to obtain the weight of
each cost under the same total cost. Finally, the calculation method of weighted relational
degree and the dynamic value method of resolution coefficient are introduced, that is, the
construction of IGRA. The calculation procedure is shown as Figure 4.
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4. Model Solving including the Robust Model and Its Modification Strategy

The two-stage robust planning model’s establishment and solution are first detailed.
Then, this paper introduces the basis of GRA as a modification method and the method
of improvement of its shortcomings; particularly, the calculation process of modification
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index is detailed by combining the robust planning model’s parameters. Based on the
above theory, the steps of modifying the robust planning model’s robustness parameters
are detailed in this section.

(1) The robust planning model with robustness parameters is constructed and solved,
according to Figures 1 and 2.

(2) The microgrid-planning schemes under multiple scenarios are simulated by chang-
ing the renewable energy’s robustness parameters, respectively, and the influences of
renewable energy on microgrid planning are analyzed.

(3) The microgrid-planning costs in multiple scenarios are analyzed by IGRA accord-
ing to Figure 4, namely the construction of reference indices, and the relational degrees
between the renewable energy’s robustness parameters and each cost component of the
microgrid is analyzed.

(4) The robustness parameters are modified by using the relational degrees as a
reference for the robustness parameters’ weighting, and the planning schemes are compared
with the original.

The specific solving steps are shown in Figure 5.
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5. Results and Analysis

Based on the microgrid-planning model built in Figure 1 and the IGRA algorithm,
this section verifies the effectiveness of the proposed modification system through the case
studies. This section consists of setting parameters of the robust planning mode, verifying
the effectiveness of IGRA by comparison, calculating and analyzing the two-stage robust
programming model with different renewable energy robustness parameters, modifying
the robustness parameters and comparing the planning schemes.

In particular, a real microgrid system in a province of China is taken as a case to
calculate, and its parameters are set based on its location and actual operation. The
currency of the planning cost is RMB.

5.1. Parameters Description of the Planning Model

In this paper, n = [E max
bat , Pmax

wt , Pmax
pv , Pmax

load

]T
is the variable to be optimized, that

is the proposed microgrid-planning model is a capacity planning model. Based on [36],
typical daily values are recommended for the data used in the planning model. Particularly,
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a typical day is a representative scenario extracted from a large amount of historical resource
data of renewables, which reduces the calculation of the planning while retaining valid
information [37,38]. The typical daily data is adopted to take place of the annual data in
this paper, including: demand-side load and the output of renewable energy, and the data
used are all normalized data, as shown in Figure 6.

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 
Figure 6. Typical power of the microgrid-planning model. 

The typical power price of the microgrid is shown in the Figure 7 [9], which is for the 
consumption of the demand-side load and microgrid purchasing and sale power. 

 
Figure 7. Typical power price of the microgrid-planning model. 
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Table 1. Parameters of the planning model. 

Element Name of the Parameter Numerical Value 

MT 

PG
max/kW 500 

PG
min/kW 50 

cfuel/(Yuan/(kW∙h)) 0.6 
YG/year 15 

Renewable energy 
Ywt/year 20 
Ypv/year 15 

ESS 

SOCmin 0.1 
SOCmax 0.9 

SOCbeg  [39] 0.5 
ηch, ηdis 0.95 

Ybat/year 10 

Figure 6. Typical power of the microgrid-planning model.

The typical power price of the microgrid is shown in the Figure 7 [9], which is for the
consumption of the demand-side load and microgrid purchasing and sale power.
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The discount rate r of the MT, renewable energy and ESS in this paper is 0.08, and
the ratios εch and εdis of the maximum charging and discharging power of the ESS to the
maximum capacity are 0.25. The robustness parameter of the demand-side load, Γload, is
always 0.15; and the initial values of the robustness parameters of the WT, Γwt, and PV, Γpv,
are both 0.05. The planning parameters of each unit are shown in Table 1.
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Table 1. Parameters of the planning model.

Element Name of the Parameter Numerical Value

MT

Pmax
G /kW 500

Pmin
G /kW 50

cfuel/(Yuan/(kW·h)) 0.6
YG/year 15

Renewable energy Ywt/year 20
Ypv/year 15

ESS

SOCmin 0.1
SOCmax 0.9

SOCbeg [39] 0.5
ηch, ηdis 0.95

Ybat/year 10

The power exchanged by the
distribution network

Psell,max
M /kW 400

Pbuy,max
M /kW 400

In the planning model, a series of polluting gases is generated during the operation of
the MT. The environmental parameters of the microgrid are shown in Table 2.

Table 2. Environmental parameters of the MT.

Polluting Gas Discharge Coefficient
(g/(kW·h))

Governance Cost
(Yuan/kg)

CO2 889 0.210
SO2 1.8 1.842
NOx 4.6 62.964

5.2. Improvement Analysis of IGRA

In order to verify the effectiveness and efficiency of the IGRA, this paper uses the data
in [40,41]. Firstly, the IGRA and the traditional are used to calculate the relational degrees,
as shown in Table 3.

Table 3. Calculation results of relational degree.

Value Method of
Identification Coefficient r1 r2 r3 r4 r5

ρ = 0.5 0.681 0.664 0.568 0.780 0.731
Dynamic ρ 0.644 0.619 0.424 0.760 0.687

According to the calculation results in Table 3, it can be known that the sequence of
relational degrees is: r4 > r5 > r1 > r2 > r3, which is consistent with the results of [40,41].
The above result proves that the improved algorithm is feasible.

Then, the method and point position in [40] are used to calculate the relational degree
between two sequences, as shown in Table 4.

Table 4. Comparison of algorithm results.

(r1,r2) (r2,r3) (r1,r4) (r2,r4) (r5,r4)

ρ = 0.5 0.018 0.095 0.099 0.117 0.049
ρ = 0.458 0.018 0.096 0.102 0.120 0.051

[40] 0.022 0.083 0.100 0.121 0.064
Dynamic ρ 0.027 0.199 0.117 0.143 0.080
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It can be seen from Table 4 that the algorithms proposed in [40,41] have their own
advantages and disadvantages. However, the improved algorithm proposed in this paper
is superior to the above algorithms.

5.3. Calculation and Analysis of Microgrid Planning Results

Firstly, the initial planning model is generated when Γwt = Γpv = 0.05. Secondly, while
the robustness parameter of the WT is unchanged (Γwt = 0.05), the robustness parameter
Γpv is gradually increased from 0.05 to 0.08, and a series of planning costs affected by the
robustness parameter of PV can be obtained. Thirdly, under the same operation as above, a
series of planning costs affected by the robustness parameter of WT can be obtained, while
Γpv is 0.05 and Γwt is gradually increased from 0.05 to 0.08. Finally, the planning costs for
all scenarios are shown in Table 5, and the operation plannings are shown in Figures 8–10.

Table 5. Planning results in multiple scenarios.

Γwt Γpv

Cost of the Initial
Investment

/Yuan

Cost of Equipment
Maintenance

/Yuan

Cost of Environmental
Governance

/Yuan

Total Cost
/Yuan

0.050 0.050 179,154.07 20,072.35 5300.18 204,526.60

0.050

0.060 179,033.22 20,251.77 5357.24 204,642.23
0.065 178,696.94 20,867.10 5327.01 204,891.05
0.070 178,288.53 21,251.08 5373.06 204,912.67
0.075 178,288.53 21,239.73 5384.40 204,912.66
0.080 178,272.26 21,369.44 5392.10 205,033.80

0.060

0.050

178,067.16 21,769.91 5402.43 205,239.50
0.065 177,949.69 21,783.52 5434.33 205,167.54
0.070 177,390.89 23,158.29 5461.12 206,010.30
0.075 177,390.89 23,085.89 5533.52 206,010.30
0.080 176,640.39 24,110.56 5485.00 206,235.95
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Figure 8. Output planning of the MT in different scenarios. (a) Results of microgrid planning for
dynamic Γpv. (b) Results of microgrid planning for dynamic Γwt.

(1) The influence of robustness parameters on planning costs

As can be seen from Table 5, with the increase of robustness-parameter ranges, the
total cost of the microgrid planning shows an upward trend, especially the robustness
parameter of WT. As for each individual cost, equipment maintenance cost and environ-
mental governance cost also shows a rising trend, while initial investment cost shows a
fluctuating trend.

(2) The influence of robustness parameters on operation-planning schemes

As can be seen from Figure 8, with the increase of renewable energy’s robustness
parameter, the thermal power units all change the output at 0:00–5:00 and 11:00–15:00 to
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reduce the influence. By comparing (a) and (b) in Figure 8, it can be clearly seen that the
robustness parameter of WT has a greater impact on the output planning of thermal power
units during the above time period.

As can be seen from Figure 9, in the initial planning model, the microgrid mainly sells
power to the distribution network to ensure economic operation and power balance. With
the increase of renewable energy’s robustness parameter, the power sold at 9:00–11:00 and
the night peak hours decreases; especially for WT, as shown in (b) in Figure 9, the microgrid
needs to plan to purchase power to maintain power balance during peak hours at night.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 24 
 

  

(a) (b) 

Figure 9. Power sold planning by microgrid to distribution network. (a) Results of microgrid plan-
ning for dynamic Γpv. (b) Results of microgrid planning for dynamic Γwt. 

As can be seen from Figure 10, with the increase of renewable energy’s robustness 
parameter, the switching frequency of charging and discharging state of the ESS increases, 
which greatly affects the life of the ESS and reflects the intensified instability of the mi-
crogrid operation; and the results are especially reflected in the discharging power from 
15:00 to 18:00 and the switching frequency of charging-discharging state from 0:00 to 5:00. 

 

 

(a) (b) 

Figure 10. Discharging power of ESS by microgrid in different scenarios. (a) Results of microgrid 
planning for dynamic Γpv. (b) Results of microgrid planning for dynamic Γwt. 

The above results show that the types and values of each renewable energy’s robust-
ness parameter have different impacts on planning results; that is, the relation between 
renewable energy’s robustness parameters and the change trend of the planning scheme 
cannot be ignored. 

5.4. Calculation and Analysis of Relational Degrees 
Based on the data in Table 5, the relational degrees rii, rem and reg, which represent 

the relation between initial investment cost, equipment maintenance cost and environ-
mental treatment cost and total cost, respectively, are calculated by using Equations (43)–
(51) and (58). Then, the entropy weight relationship between each cost and total cost is 
calculated by Equations (52)–(56). Finally, the weighted total relational degrees r can be 
obtained according to Equation (59). 
(1) Relational analysis between the robustness parameter and each cost. 

Through horizontal comparison of the data in Table 6, the orders of relational degree 
are as follows: rii,wt >  reg,wt > rem,wt and rii,pv >  reg,pv > rem,pv. The results represent that 
the fluctuation of each renewable energy has a greater impact on initial investment cost, 
but little impact on maintenance cost. 

Figure 9. Power sold planning by microgrid to distribution network. (a) Results of microgrid
planning for dynamic Γpv. (b) Results of microgrid planning for dynamic Γwt.

As can be seen from Figure 10, with the increase of renewable energy’s robustness
parameter, the switching frequency of charging and discharging state of the ESS increases,
which greatly affects the life of the ESS and reflects the intensified instability of the microgrid
operation; and the results are especially reflected in the discharging power from 15:00 to
18:00 and the switching frequency of charging-discharging state from 0:00 to 5:00.
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planning for dynamic Γpv. (b) Results of microgrid planning for dynamic Γwt.

The above results show that the types and values of each renewable energy’s robust-
ness parameter have different impacts on planning results; that is, the relation between
renewable energy’s robustness parameters and the change trend of the planning scheme
cannot be ignored.

5.4. Calculation and Analysis of Relational Degrees

Based on the data in Table 5, the relational degrees rii, rem and reg, which represent the
relation between initial investment cost, equipment maintenance cost and environmental
treatment cost and total cost, respectively, are calculated by using Equations (43)–(51) and (58).
Then, the entropy weight relationship between each cost and total cost is calculated by
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Equations (52)–(56). Finally, the weighted total relational degrees r can be obtained according
to Equation (59).

(1) Relational analysis between the robustness parameter and each cost.

Through horizontal comparison of the data in Table 6, the orders of relational degree
are as follows: rii,wt > reg,wt > rem,wt and rii,pv > reg,pv > rem,pv. The results represent that
the fluctuation of each renewable energy has a greater impact on initial investment cost,
but little impact on maintenance cost.

Table 6. Relational degrees between robustness parameter and microgrid-planning costs.

Renewable Energy rii rem reg r

PV 0.932 0.413 0.865 0.730
WT 0.951 0.527 0.929 0.798

Through vertical comparison of the data in Table 6, the orders of relational degree
are as follows: rii,wt > rii,pt, rem,wt > rem,pt and reg,wt > reg,pt. The results represent that
the relational degree between the robustness parameter of WT and each economic cost is
greater than that of PV.

(2) Relational analysis between the robustness parameter and total cost.

As can be seen from Table 6, the order of relational degree between the robustness
parameter of renewable energy and the total cost is as follows: rwt > rpt. The relational
degree indicates that the comprehensive relation of WT is greater than that of PV.

5.5. Comparative Analysis of the Planning Cost

According to the relational degree obtained, the robustness parameter of the WT has a
higher relational degree with microgrid planning, so it is necessary to expand its robustness
parameter to improve the ability of WT to adjust the planning cost; the robustness parameter
of PV has a lower relational degree with microgrid planning. Based on the data in Table 5,
the modified total cost under the corresponding scenario is normalized; the robustness
parameter of WT is multiplied by 0.789/0.730, and the robustness parameter of PV is
multiplied by 0.730/0.789. The proportions of the revised total cost in the original total cost
are shown as Figure 11.
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As can be seen intuitively from Figure 11, the total decline of WT is higher than that of
PV; particularly, the average decline of WT and PV are 6.57% and 4.61%, respectively; the
modified results are in agreement with the theoretical analysis.

In other ways, when the values of Γpv are 0.070 and 0.075, respectively, with Γwt = 0.050,
the total costs are very similar; when the values of Γwt are 0.070 and 0.075, respectively,
with Γpv = 0.050, the total costs are very similar too. As for the modified planning, the
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declines of the same scenarios are similar. The results show that the magnitude of decline
is consistent with the characteristics of renewable energy in the model.

6. Conclusions

In the background of large-scale grid connection of renewable energy, it is necessary to
focus on the relation between the differences of renewable energy and microgrid planning.
In this paper, a robust microgrid-planning model and its modification strategy based on
improved grey relational theory are proposed. The planning model achieves the joint
planning of wind-PV-ESS; particularly, the life model of ESS is introduced; and IGRA
is constructed with the idea of weight distribution and dynamic values of identification
coefficient; the robustness parameters of renewable energy are modified by using the
obtained relational degree.

In the analysis section, the dynamic value of identification coefficients can effectively
improve the relational degree between indexes; the types and values of renewable en-
ergy’s robustness parameters have different impacts on planning results. In particular,
the relational degree can identify the key renewable energy that influences the costs of
grid planning and can modify the renewable energy’s robustness parameters to reduce
the total cost. In the results section, the total cost is reduced by substituting the modified
robustness parameters into the planning model. The subsequent work following this paper
will continue to explore the optimal value of the modification coefficients based on GRA.
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Abbreviations

PV Photovoltaic ESS Energy storage system
IGRA Improved grey relational analysis RO Robust optimization
DRO Distributionally robust optimization GRA Grey relational analysis
AHPD Analytic hierarchy process with Delphi F-GRA Fuzzy-Grey Relational Analysis
EWM Entropy weight method AHP Analytic hierarchy process
KKT Karush–Kuhn–Tucker C&CG Column-and-Constraint Generation
WT Wind turbine MT Microturbine
SOC State of charge MILP Mixed integer linear optimization
TF Triangle fuzzy
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