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Abstract: To monitor air pollution on roads in urban areas, it is necessary to accurately estimate
emissions from vehicles. For this purpose, vehicle emission estimation models have been developed.
Vehicle emission estimation models are categorized into macroscopic models and microscopic models.
While the calculation is simple, macroscopic models utilize the average speed of vehicles without
accounting for the acceleration and deceleration of individual vehicles. Therefore, limitations exist in
estimating accurate emissions when there are frequent changes in driving behavior. Microscopic emis-
sion estimation models overcome these limitations by utilizing the trajectory data of each vehicle.
In this method, the total emissions in a road segment are calculated by adding together the emis-
sions from individual vehicles. However, most research studies consider the total vehicle emissions
in a road section without considering the difference in vehicle emissions at different locations of
a selected road section. In this study, a road segment between two intersections was divided into
sub-sections, and energy consumption and emission generation were analyzed. Since there are
unique driving behaviors depending on the section of the road segment, energy consumption and
emission generation patterns were identified. The findings of this study are expected to provide
more detailed and quantitative data for better modeling of energy consumption and emissions in
urban areas.

Keywords: MOVES; emission; energy; signalized intersection; sub-section; microscopic analysis

1. Introduction

At signalized intersections in urban areas, large amounts of emissions are generated
due to frequent vehicle stops and delays, so air pollution management is required [1,2]. In
air pollution mitigation plans, it is necessary to estimate accurate vehicle emissions gener-
ated at signalized intersections. Recent studies have been conducted to calculate and moni-
tor emissions at signalized intersections using vehicle emission estimation models [3–5].
Vehicle emission estimation models are categorized into macroscopic models and micro-
scopic models. While the calculation is simple, macroscopic models utilize the average
speed of vehicles without accounting for the acceleration and deceleration of individual ve-
hicles. Therefore, limitations exist in estimating accurate emissions when there are frequent
changes in driving behavior [6–8]. Microscopic emission estimation models overcome
these limitations by utilizing the trajectory data of each vehicle. In this method, the total
emission amount in a road segment is calculated by adding together the emissions from
individual vehicles.
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However, most research studies consider the total vehicle emissions in a road section
without considering the difference in vehicle emissions at different locations of a selected
road section. At signalized intersections, vehicles often change their driving behavior due
to traffic signals [9,10]. For example, driving behavior before a signal is different from
driving behavior after a signal, resulting in different emission and energy consumption
patterns [11]. In addition, emissions increase during acceleration, deceleration, and stop-
ping compared with constant-speed driving. Additionally, driving behavior depends on
traffic conditions [12]. In this study, a road segment between two intersections was divided
into sub-sections, and energy consumption and emission generation were analyzed. Since
there are unique driving behaviors depending on the section of a road segment, energy
consumption and emission generation patterns were identified. In this paper, vehicle emis-
sions and energy consumption in each sub-section were compared. Correlations between
traffic flow characteristics and emissions were analyzed. A cluster analysis of emissions
by sub-section was also conducted. Xu et al. (2016) integrated VISSIM simulations with
MOVES to analyze the sensitivity of emissions to simulation parameters. They found
that emissions are sensitive to the vehicle type distribution in the fleet. It was also found
that the range of the look-ahead distance in the car-following model and the range of
the accepted deceleration rate can impact emissions [13]. Hatem Abou-Senna (2013) in-
tegrated a micro-traffic simulation model with the latest US Environmental Protection
Agency mobile source emissions. He estimated CO2 emissions based on vehicle operation
data expressed in seconds [14,15]. Haobing Liu (2019) analyzed traffic simulations, the
MOVES emission inventory, and the AERMOD dispersion model. He explored the impacts
of three alternative truck shifting strategies on PM2.5 emissions and concentrations [16].
Lim et al. (2005) analyzed factors affecting vehicle emissions and suggested that different
methodologies provide different outputs depending on the level of traffic volume [17].
Kim et al. (2012) suggested that different models should be applied according to the type
of road facilities. In addition, they suggested that different emission parameters should be
applied according to traffic conditions [18]. Heo et al. (2020) proposed a link-based method
for estimating microscopic emissions and suggested that microscopic emissions and macro-
scopic emissions show a large difference [6,7]. Yunlong et al. (2022) analyzed emissions and
energy consumption according to different driving behaviors and suggested the existence
of an emission reduction effect due to eco-driving [19]. Christos et al. (2019) analyzed the
emissions and energy consumption of aggressive driving at signalized intersections and
suggested that higher emissions are due to higher acceleration/deceleration [20]. Shaheen
et al. (2015) utilized a microscopic estimation model to analyze the effect of reducing the
emissions and energy consumption of autonomous vehicles. They suggested that emissions
can be reduced thanks to the platooning of autonomous vehicles [21]. Fangfang et al. (2017)
analyzed emissions and energy consumption at a signalized intersection. They found that
driving with lower acceleration/deceleration deviation results in lower emissions and
energy consumption [22].

Relevant studies in the literature have mainly analyzed vehicle emissions according
to driving behavior. However, not many studies have focused on the difference in vehicle
emissions at different locations of a selected road section. In this study, a road segment
between two intersections was divided into sub-sections, and energy consumption and
emission generation were analyzed.

2. Methodology

In this study, an arterial road network was established using VISSIM. Second-by-
second trajectory data of individual vehicles were extracted using VISSIM COM [23,24].
Vehicle emissions in each sub-section were calculated using the MOVES OP mode.

OpMode is a method for estimating micro-emissions by classifying vehicle trajectory
data values expressed in seconds into 23 operating modes based on velocity, acceleration,
and VSP (vehicle-specific power). Using MOVES Tool to analyze emissions from multiple
vehicles necessitates a long calculation time, so the MOVES-Matrix method can be used as
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an alternative. MOVES-Matrix is a model developed by the Georgia Institute of Technology
research team. It presents the same results as MOVES, and calculations are performed
200 times faster than when using the MOVES model. MOVES-Matrix is a method to
minimize excessive calculation time by calculating emission factors per unit length and unit
time according to road environment, vehicle type, and vehicle model year using MOVES. In
this study, emissions were calculated by multiplying the calculated emission factor, traffic
volume, and section length. Figure 1 shows the analysis process of this study.
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In previous studies, microscopic emission analysis has mainly been conducted by
estimating the total emission amount by calculating the ratio of driving behavior in all
sections. With the total micro-emission estimation method, the total amount of micro-
emissions can be obtained by calculating the operating mode ratio using the acceleration
and deceleration data of vehicles passing through the entire section [25–28]. However,
when estimating the total emissions, the emissions in the entire section are counted as one,
so there is a limit to deriving the emissions and energy consumption generated in a specific
part of the road.

In addition, there is a limit to not considering the change in the driving behavior of
vehicles within the intersection and the difference in emissions in detailed sections. In
general, emissions increase in sections where acceleration/deceleration and stopping are
frequent compared with constant-speed driving, and this pattern changes according to
traffic conditions [29–34]. Therefore, existing methods have limitations in deriving air
pollution hotspots within intersections. The objectives of this study were as follows: The
first was to derive emissions and energy consumption by sub-section and to derive the
deviation of each sub-section. In addition, by deriving the traffic flow characteristics of each
sub-section, the factors of the deviation of each sub-section were analyzed by performing
a correlation analysis of emissions. Next, a cluster analysis of emissions by sub-section was
employed to derive air pollution severity levels and analyze occurrence patterns. Through
this, air pollution hotspots within intersections could be derived.

2.1. Simulation Network

In this study, a network of arterial roads in Ansan, Korea, was established using
VISSIM. The network includes 15 intersections, and for the analysis, 6 segments between
intersections were selected (Table 1). This is an area requiring emission management due
to nearby residential areas. In this study, the section with a speed limit of 50 km/h was set
as the analysis range in order not to consider the difference in emissions according to the
speed limit.
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Table 1. Scope of analysis.

Scope of Analysis Direction

Section

Clothing Town Intersection
→

Ansan Jeil Church Intersection

Ansan Jeil Church Intersection
→

Clothing Town Intersection

Songho High School Intersection
→

KEPCO Intersection

KEPCO Intersection
→

Songho High School Intersection

KEPCO Intersection
→

Ansan 5th Bridge Intersection

Ansan 5th Bridge Intersection
→

KEPCO Intersection

The input values for the simulation were as follows:

• Desired speed range: speed limit of 50 km/h, 47 km/h~53 km/h.
• Vehicle type ratio: passenger cars, 100%.
• Average standstill distance: 2 m.
• Minimum headway (front/rear): 0.5 m.
• Lane change distance: 100 m.
• Look-ahead distance: 0 m (minimum) to 250 m (maximum).
• Look-back distance: 0 m (minimum) to 150 m (maximum).
• Simulation time: peak hours, 6 pm~7 pm; off-peak hours, 3 pm~4 pm.

The default values of VISSIM Link behavior were used, and the simulation network
was calibrated by comparing differences between actual traffic volume and traffic volume
derived from the simulation. In this study, seven traffic flow characteristics were selected
for further analysis, as shown in Table 2.

Table 2. Traffic flow characteristics.

Variable Unit Definition

Average speed km/h Average speed of vehicles within sub-section
Average acceleration m/s2 Average acceleration of vehicles within sub-section
Average deceleration m/s2 Average deceleration of vehicles within sub-section
Occupancy rate % Length of time vehicles stayed in the sub-section
Average delay S Average vehicle time delay to pass sub-section
Speed deviation km/h Difference in speed between vehicles in the sub-section
Acceleration deviation m/s2 Acceleration difference between vehicles in the sub-section

2.2. Emission Calculation

In this study, energy consumption and emissions were analyzed by utilizing VISSIM
traffic flow simulations and the MOVES emission estimation model. Vehicle energy con-
sumption and emissions by sub-section were estimated using acceleration and deceleration
data derived from the trajectory data of individual vehicles (Figure 2).

The MOVES OpMode method was utilized for microscopic analysis. OpMode is
a method for estimating microscopic emissions by classifying second-by-second vehicle
trajectory data into 23 operating modes based on velocity, acceleration, and VSP (vehicle-
specific power). Since the computational load is extreme when using MOVES Tool to
analyze emissions from multiple vehicles, the MOVES-Matrix method can be used as
an alternative.
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MOVES-Matrix is a model developed by the Georgia Institute of Technology research
team. It presents the same results as MOVES but 200 times faster than the MOVES model. For
emission calculation, VSP (vehicle-specific power) can be calculated using following formula:

VSP (STP) = (
A
M

) v + (
B
M

) · v2+(
C
M

) · v3 + (
m
M

) · (a + g · sin θ) · v (1)

where A = rolling resistance coefficient (kW·/m); B = rotational resistance coefficient
(kW·/m2); C = aerodynamic drag coefficient (kW·3/m3); m = mass of individual test
vehicle (metric ton); M = fixed mass factor (metric ton); v = instantaneous vehicle velocity
at time t (m/s); a = instantaneous vehicle acceleration (m/s2); g = gravitational acceleration
(9.8 m/s2); and u = fractional road grade in percent grade angle (in this study, u = 0).

Year, temperature, humidity, fuel, etc., are required to calculate emissions. For tem-
perature and humidity, 80 F and 70%, i.e., the average values in June in Ansan, were used.
The default fuel ratio value of MOVES was used. In summary, the following settings
were chosen:

• Calendar year, 2021; month, June.
• Temperature: 80 F (average temperature in Ansan).
• Humidity: 70% (average humidity in Ansan).
• Fuel: default for MOVES.

2.3. Calculation of Emissions by Road Sub-Section

The trajectory data extracted from the simulation were processed. In this study,
a road segment between two intersections was divided into 25 m sub-sections, and energy
consumption and emissions were analyzed. The sub-section length was selected based on
the average queue length of 22 m at intersections during off-peak hours. The microscopic
emissions in each sub-section were calculated using the MOVES OP mode (Figure 3).
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3. Results
3.1. Analysis of Energy Consumption and Emissions by Sub-Section

In this study, a section of 300 m between intersections was divided into 12 sub-sections
of 25 m, and vehicle emissions and energy consumption in each sub-section were calculated
(Figure 4). ANOVA was performed to verify the statistical significance of the differences
in vehicle emissions and energy consumption by sub-section. Based on the analysis, it was
confirmed that energy consumption and emissions were different in the various sub-sections.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 
Figure 3. Emissions estimation process. 

3. Results 
3.1. Analysis of Energy Consumption and Emissions by Sub-Section 

In this study, a section of 300 m between intersections was divided into 12 sub-sec-
tions of 25 m, and vehicle emissions and energy consumption in each sub-section were 
calculated (Figure 4). ANOVA was performed to verify the statistical significance of the 
differences in vehicle emissions and energy consumption by sub-section. Based on the 
analysis, it was confirmed that energy consumption and emissions were different in the 
various sub-sections. 

 
Figure 4. Sub-sections (each sub-section is numbered from upstream to downstream). 

3.2. Energy Consumption and CO2  
The average and variance of energy consumption and emissions in each sub-section 

were analyzed. The results are shown in Table 3. It was demonstrated that energy con-
sumption and emission increased significantly in sub-sections that were located immedi-
ately before the signal, as shown in Figure 5. 

Table 3. Energy and CO2 by sub-section. 

Sub-Section 
Energy (KJ/section·h) CO2 (Kg/Section·h) 
Average Variance Average Variance 

Upstream Sub-section 1 637 11,590 46 599 

↓ 

Sub-section 2 546 8954 39 463 
Sub-section 3 458 62,172 33 321 
Sub-section 4 363 39,856 26 206 
Sub-section 5 366 46,642 26 241 
Sub-section 6 386 61,106 28 315 
Sub-section 7 425 88,734 31 459 
Sub-section 8 545 228,459 39 1180 
Sub-section 9 751 584,323 54 3019 
Sub-section 10 927 793,587 67 4101 
Sub-section 11 1166 775,257 84 4006 

Downstream Sub-section 12 1739 1,097,776 125 5673 

Figure 4. Sub-sections (each sub-section is numbered from upstream to downstream).

3.2. Energy Consumption and CO2

The average and variance of energy consumption and emissions in each sub-section
were analyzed. The results are shown in Table 3. It was demonstrated that energy consump-
tion and emission increased significantly in sub-sections that were located immediately
before the signal, as shown in Figure 5.

Table 3. Energy and CO2 by sub-section.

Sub-Section
Energy (KJ/Section·h) CO2 (Kg/Section·h)

Average Variance Average Variance

Upstream Sub-section 1 637 11,590 46 599

↓

Sub-section 2 546 8954 39 463
Sub-section 3 458 62,172 33 321
Sub-section 4 363 39,856 26 206
Sub-section 5 366 46,642 26 241
Sub-section 6 386 61,106 28 315
Sub-section 7 425 88,734 31 459
Sub-section 8 545 228,459 39 1180
Sub-section 9 751 584,323 54 3019
Sub-section 10 927 793,587 67 4101
Sub-section 11 1166 775,257 84 4006

Downstream Sub-section 12 1739 1,097,776 125 5673
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3.3. NOx and CO

The average and variance of NOx and CO emissions in each sub-section are shown in
Table 4.

Table 4. NOx and CO by sub-section.

Sub-Section
NOx (g/Section·h) CO (g/Section·h)

Average Variance Average Variance

Upstream Sub-section 1 10.5 30.1 466.3 54,804.8

↓

Sub-section 2 8.6 13.5 371.8 24,769.6
Sub-section 3 4.5 4.1 148.2 5076.5
Sub-section 4 2.5 1.9 79.5 2888.0
Sub-section 5 2.6 2.6 86.4 3974.7
Sub-section 6 2.9 3.2 96.9 5713.4
Sub-section 7 3.0 5.0 106.8 7640.1
Sub-section 8 3.2 5.9 114.7 7798.9
Sub-section 9 4.3 12.8 151.8 16,082.8
Sub-section 10 5.6 26.4 203.6 36,770.7
Sub-section 11 7.2 41.4 272.3 71,489.6

Downstream Sub-section 12 10.1 55.1 379.7 92,994.1

Unlike CO2, NOx and CO showed the largest emissions in sub-sections where vehicles
accelerated. After acceleration, emissions gradually decreased, as shown in Figure 6.
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3.4. Analysis of Variance Results

Analysis of variance was performed to statistically verify that energy consumption
and emissions were different in the various sub-sections. Levene’s equal variance test was
performed, and the null hypothesis was rejected at a significance level of less than 0.05
(significance probability of 0.00), indicating that equal variance was not assumed (Table 5).

Table 5. Equal variance test results.

Homogeneity of Variance Results

F df1 df2 P

Energy 11.31 11 132 0.000
CO2 11.49 11 132 0.000
NOx 8.81 11 132 0.000
CO 6.18 11 51.657 0.000
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Next, robustness testing was performed. The significance probability was less than
0.05, meaning that energy consumption and emissions were statistically different in the
various sub-sections, as shown in Table 6.

Table 6. Robustness test results.

Robustness Test Results

F df1 df2 P

Energy 3.37 11 51.72 0.001
CO2 3.35 11 51.72 0.002
NOx 6.18 11 51.65 0.000
CO 7.04 11 51.66 0.000

3.5. Correlation Analysis of Traffic Flow Characteristics and Emissions by Sub-Section

In this study, the differences in energy consumption and emissions according to the
location were derived, and it was confirmed that emissions increased rapidly in specific
sections, such as right before and after the signal. Therefore, in order to derive the cause of
the variation in emissions by sub-section, the traffic flow characteristics of each sub-section
according to the signal were derived, and the correlation between energy consumption and
emissions was analyzed. In this study, seven traffic flow characteristics were selected as
traffic flow characteristic analysis indicators: average speed (km/h), average acceleration
(m/s2), average deceleration (m/s2), occupancy rate (%), average delay (s), speed deviation
(km/h), and acceleration deviation (m/s2). In this study, correlations were identified using
Pearson’s correlation coefficient and two-tailed test results.

In this study, the correlation between energy consumption and each emission type
was analyzed, and the analysis results are shown in Table 7. As a result of the correlation
analysis, it was confirmed that the correlation coefficient between energy consumption and
CO2 had a high positive correlation of 1, and the correlation coefficient between NOx and
CO had a high positive correlation of 0.91.

Table 7. Results of correlation analysis of energy consumption and emissions.

Correlation Analysis Results

ENERGY CO2 NOx CO

Energy - - - -
CO2 1 - - -
NOx 0.79 0.79 - -
CO 0.72 0.72 0.91 -

As a result of the correlation analysis, average speed and average deceleration showed
negative correlations with energy consumption and CO2 emissions, while average accel-
eration, occupancy rate, average delay, speed deviation, and acceleration noise showed
positive correlations.

Three traffic flow characteristics that were highly correlated with energy consumption
and CO2 were average speed (km/h), average delay (s), and occupancy rate (%). Among
them, the correlation coefficient of average delay (s) was 0.76, as shown in Table 8, which
was the highest positive correlation. It was found that energy consumption and CO2
generation increased in the sections where the average speed was low, and that delay
occurred with a high occupancy rate, as shown in Figure 7.
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Table 8. Results of correlation analysis of energy, CO2, and traffic flow characteristics.

Average
Speed Average Acc Average Dec Occupancy

Rate
Average
Delay

Speed
Deviation

Acc
Deviation

Energy
CO2

−0.69 0.58 −0.57 0.61 0.76 0.36 0.36
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Two traffic flow characteristics correlated with NOx and CO emissions were average
acceleration (m/s2) and average delay (s). Average acceleration (m/s2) showed the highest
positive correlation, as shown in Table 9. It was found that the amount of NOx and CO
generation increased in the sections where the acceleration of vehicles was high, as shown
in Figure 8.

Table 9. Results of correlation analysis of NOx, CO, and traffic flow characteristics.

Average
Speed Average Acc Average Dec Occupancy

Rate
Average
Delay

Speed
Deviation

Acc
Deviation

NOx −0.41 0.55 −0.22 0.36 0.46 0.22 0.24

CO −0.36 0.61 −0.14 0.29 0.45 0.08 0.23
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3.6. Emissions and Energy Consumption Levels by Sub-Section

Cluster analysis was performed to investigate emissions and energy consumption
levels by sub-section. The K-means technique was used for cluster analysis. Silhouette
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analysis was conducted to select the optimal number of clusters, and six clusters were
selected; energy consumption and air pollution levels by sub-section were classified into
six levels, as shown in Table 10.

Table 10. Cluster analysis results.

Cluster N Average Variance Minimum Maximum

Energy
(KL/25 m·h)

1 27 71.9 10,122.1 32.8 99.4
2 43 171.3 14,621.8 125.1 224.4
3 29 320.2 41,962.8 242.2 397.2
4 19 488.4 47,179.7 418.8 573.0
5 15 770.5 391,088.1 610.1 1066.0
6 11 1448.2 441,535.6 1224.9 1817.2

CO2
(Kg/25 m·h)

1 27 5.2 516.3 2.3 7.1
2 43 12.3 755.6 8.9 16.2
3 29 23.2 2119.8 17.4 28.6
4 19 35.1 2437.9 30.1 41.2
5 15 55.3 20,208.8 43.8 76.6
6 11 104.1 44,793.2 88.0 130.6

NOx
(g/25 m·h)

1 25 0.5 0.03 0.3 0.9
2 19 1.5 0.15 1.1 2.5
3 29 2.9 0.17 2.6 3.9
4 35 5.5 0.93 4.2 7.2
5 23 9.8 1.6 7.8 11.4
6 13 15.8 3.5 12.7 18.8

CO
(g/25 m·h)

1 35 2.9 2.3 6.6 52.1
2 33 7.6 3.1 54.2 106.8
3 30 15.9 10.1 113.3 218.2
4 20 29.8 10.3 231.8 345.1
5 9 42.2 21.3 376.1 481.3
6 17 67.1 145.2 482.6 885.0

Analysis of variance (ANOVA) was performed to verify the statistical significance
of cluster analysis. It was found that there were significant differences in both energy
consumption and emissions by cluster, as shown in Table 11.

Table 11. Cluster analysis ANOVA results.

ANOVA

Cluster Error
F Sig.

Mean Square Df Mean Square df

Energy 12,702,064 5 3,063,407.3 138 571.857 0.000
CO2 65,594,661 5 15,826.116 138 571.953 0.000
NOx 647.05244 5 180.99542 138 493.345 0.000
CO 114,956.91 5 33.565867 138 472.621 0.000

The severity of emissions and energy consumption was investigated. Energy con-
sumption and CO2 showed similar outputs, as they gradually increased in sections closer
to the signal. In addition, it was demonstrated that they increased during peak hours, as
shown in Tables 12 and 13. The color of the tables represents the severity of emissions and
energy consumption. It can be seen that emissions and energy consumption is higher in
downstream locations and peak hours, compared to upstream locations and off-peak hours.



Sustainability 2023, 15, 4421 11 of 14

Table 12. Energy consumption.

Time

Sub-Section Upstream → Downstream
Stdev

1 2 3 4 5 6 7 8 9 10 11 12

Peak hours

(1) 797
(2) 535
(3) 824
(4) 900
(5) 263
(6) 237

Off-peak hours

(1) 265
(2) 185
(3) 386
(4) 579
(5) 151
(6) 83

Table 13. CO2 generation.

Time

Sub-Section Upstream → Downstream
Stdev

1 2 3 4 5 6 7 8 9 10 11 12

Peak hours

(1) 54
(2) 38
(3) 59
(4) 65
(5) 19
(6) 17

Off-peak hours

(1) 19
(2) 13
(3) 27
(4) 42
(5) 11
(6) 6

NOx and CO demonstrated similar outputs. They gradually increased in sections
closer to the signal, similar to energy consumption and CO2, as shown in Tables 14 and 15.
However, NOx and CO demonstrated increases in the section immediately after the signal,
where vehicles accelerated, unlike energy consumption and CO2. As expected, NOx and
CO were more abundantly generated during peak hours.

Table 14. NOx generation.

Time

Sub-Section Upstream → Downstream
Stdev

1 2 3 4 5 6 7 8 9 10 11 12

Peak hours

(1) 5.9
(2) 4.4
(3) 6.0
(4) 5.4
(5) 2.5
(6) 1.7
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Table 14. Cont.

Time

Sub-Section Upstream → Downstream
Stdev

1 2 3 4 5 6 7 8 9 10 11 12

Off-peak hours

(1) 2.5
(2) 2.3
(3) 3.1
(4) 3.5
(5) 1.4
(6) 0.8

Table 15. CO generation.

Time

Sub-Section Upstream Downstream
Stdev

1 2 3 4 5 6 7 8 9 10 11 12

Peak hours

(1) 247.1
(2) 189.3
(3) 263.1
(4) 245.2
(5) 97.9
(6) 98.9

Off-peak hours

(1) 113.9
(2) 107.2
(3) 119.5
(4) 139.9
(5) 66.9
(6) 51.2

4. Conclusions and Discussion

In this study, a road segment between two intersections was divided into sub-sections,
and energy consumption and emission generation were analyzed. Since there are unique
driving behaviors depending on the section of a road segment, energy consumption and
emission generation patterns were identified. It was found that there were differences
in energy consumption and emission generation in the various sub-sections according to
traffic flow characteristics such as speed, delay, and acceleration. In addition, emissions
and energy consumption were analyzed using cluster analysis. The findings in this study
are expected to provide more detailed and quantitative data for better modeling energy
consumption and emissions in urban areas. With the increase in the attention paid to
public health, air quality is considered one of the criteria for selecting locations for facilities
dedicated to vulnerable users, such as elementary schools and elderly care centers. This
paper offers traffic-related air pollution information. However, this study has the following
limitations: This analysis only considered passenger vehicles and did not include any
truck traffic. However, it is known that emissions from diesel trucks account for a large
proportion of road transport pollutants. Therefore, additional analyses, including other
vehicle types, would present more accurate outputs. In addition, a section with a speed
limit of 50 km/h was set as the analysis range in order to not consider changes in emissions
due to changes in the speed limit. However, roads around children’s facilities, which are
vulnerable to air pollution, tend to have lower speed limits. Therefore, in future studies,
it is necessary to implement various road conditions and analyze the emission patterns
that affect respiratory diseases. In addition, in this study, the unit of the sub-section was
assumed, considering the average queue length at the intersection to reflect the change in
vehicle delay and traffic flow characteristics. However, for more accurate pattern analysis,
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it is necessary to study the reasonable sub-section criteria that can derive the change in
driving behavior at signalized intersections through additional research.
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