
Citation: Kim, J.; Jeong, H.-r.; Park, H.

Key Drivers and Performances of

Smart Manufacturing Adoption: A

Meta-Analysis. Sustainability 2023, 15,

6496. https://doi.org/10.3390/

su15086496

Academic Editor: Pierluigi Rippa

Received: 30 January 2023

Revised: 30 March 2023

Accepted: 6 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Key Drivers and Performances of Smart Manufacturing
Adoption: A Meta-Analysis
Juil Kim 1 , Hye-ryun Jeong 2 and Hyesu Park 2,*

1 Center for Growth Engine R&D Coordination, KISTEP, Eumseong 27740, Republic of Korea
2 Department of Management of Technology, Konkuk University, Seoul 05029, Republic of Korea
* Correspondence: hsmot@konkuk.ac.kr

Abstract: This study focused on the smart factory, one of the critical paradigms in the digital trans-
formation in manufacturing, and attempted a meta-analysis to systematically integrate statistical
results from existing empirical analysis studies. An integration model, key factors—smart manufac-
turing adoption—performances, was established from collecting 42 Korean examples of literature. To
compare effect sizes between domestic and foreign empirical study results, 11 foreign articles were
added, and the moderating effect verification was conducted. As a result of the analysis, (1) the key
factors of the adoption and continuous use of smart manufacturing were the network effect, social
influences, finances, performance expectancy, facilitating condition, technological capabilities, and en-
trepreneurship. (2) The adoption and continuous use of smart manufacturing had a significant impact
on business performances, especially the financial performance. (3) The impacts of entrepreneurship
and the network effect as factors influencing the decision making of smart manufacturing adoption
in Korea can be seen to be significantly higher than those of foreign countries. (4) The impact of smart
manufacturing adoption on performances in Korea was higher than other countries. The findings
of this study will provide practical implications for practitioners optimizing digital transformation
manufacturing policies and supporting the adoption of smart manufacturing systems.

Keywords: smart manufacturing adoption; digital transformation adoption; smart factory; digital
transformation in manufacturing; industry 4.0; manufacturing industry; SMEs; technology acceptance
model; meta-analysis

1. Introduction

The Fourth Industrial Revolution emerged as a hot topic at the World Economic
Forum (WEF) in 2016, as efforts were being made to create hyper-connected and super-
intelligence-based added-value items by incorporating new innovative information and
communications technology (ICT) across industries. In the manufacturing sector, industrial,
academic, and research entities have been making joint efforts to move beyond process
automation and help the industry build intelligent factories that autonomously recognize
and control the work situation by incorporating technologies such as AI, cloud, big data,
and 5G with existing manufacturing processes. Providing a fillip to these efforts, the
government is making the distribution of smart factories to manufacturing small- and
medium-sized enterprises (SMEs) a national task, while expanding strategic support with
the aim of supplying 30,000 factories by the end of 2022 [1]. According to the Korea Federa-
tion of SMEs, SMEs account for 99.9% of all Korean companies and 82.7% of total, while
manufacturing accounts for 27.1% of Korea’s gross domestic product [2], ranking second
among Organization for Economic Co-operation and Development countries (OECD) [3].
Therefore, intelligence and high value-added manufacturing SMEs are important goals at
the national economic level.

The top priority of Korea’s manufacturing innovation strategy is the smartization of
factories. Since the launch of “Manufacturing Innovation 3.0 Strategy’” in 2014 to enhance
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the competitiveness of manufacturing SMEs, the Korean government has supported a huge
budget. In 2022, KRW 249.5 billion was supported to build intelligent and digitalized
factories, aiming to supply 30,000 units [4]. Contrary to the government’s expectations,
however, only 19,799 smart factory projects out of the targeted 30,000 were completed, and
its achievement rate has only been 66% [5]. Despite the large budget and efforts of the
government, the adoption of smart manufacturing by SMEs fell short of the target. If the
adoption of smart manufacturing is critical, it is imperative to conduct an in-depth analysis
of the decision-making process behind the adoption of smart factories at the manufacturing
sites, which is a policy consumer. The decision to adopt smart factories from a management
strategy perspective requires not only replacement and improvement of physical systems,
such as existing manufacturing equipment, facilities, and networks, but also large-scale
changes and investments in intangible assets, such as human resources, software, operating
systems, and research and development (R&D). An in-depth consideration of the decision-
making process on smart factories can form the basis for the successful implementation of
dissemination and diffusion policies.

Many researchers have attempted an empirical analysis of factors affecting the adop-
tion and use of smart factories, such as the unified theory of acceptance and use of technol-
ogy (UTAUT) or by considering various individual factors, such as technology, organization,
environment, and strategy. In this regard, there have been several studies analyzing the fac-
tors related to technology adoption in the context of the Fourth Industrial Revolution [6,7],
but studies focusing specifically on smart factories have been lacking. Furthermore, pre-
vious studies have addressed the factors influencing the adoption of smart factories in
Korea [8–10] but the results were somewhat fragmented or heterogeneous. Meanwhile, the
adoption of smart factories can bring not only quantitative benefits, such as cost savings,
production optimization, quality improvement, and flexibility, but also social influence
and ecological sustainability from an environmental perspective [11]. Several studies
have shown that the adoption of smart factories increases the financial performance of
SMEs [10,12] and creates nonfinancial performances, such as innovation performances, in-
ternal satisfaction, environmental performances, and corporate competitiveness [10,13–15].

Despite such various studies, no study has presented a comprehensive decision-
making framework that includes the factors that induce smart factory adoption and the
performance that comes from the adoption of smart factories. In addition, there is a
limitation that the individual empirical analysis results cannot be compared to which factor
has a higher effect within the overall decision-making framework. In this study, therefore,
previous empirical studies will be collected to derive the overall framework including the
factors and performances of smart factories. With this framework, meta-analysis, which is a
statistical technique that can systematically and quantitatively synthesize figures reported
by individual empirical analysis studies will be attempted to comprehensively show the
impact and the performances of smart factory adoption and statistically review the status of
smart factories in relation to practical strategies. Additionally, the study will investigate the
specificity of domestic smart factory factors and performances with an analysis of overseas
literature on this topic.

Providing policy supports and incentives for companies that are still using traditional
manufacturing technologies to adopt smart factories is a desirable direction for national
economic growth and sustainability. If the factors that motivate companies to adopt smart
factories are comprehensively identified, especially in countries with high value-added
manufacturing industries, such as Korea, the results can provide important insights for
latecomer countries in the manufacturing industry.

The structure of this paper is as follows: Section 1 serves the background information
and the purpose of the study; Section 2 reviews previous studies and derives research
questions related to this topic; Section 3 introduces the research framework, empirical
analysis models, and data collection and covers the meta-analysis methodology; Section 4
presents the meta-analysis results, including verification of publication bias, effect sizes
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of factors, and performances of smart factory adoption; Section 5 discusses the research
results; and Section 6 proposes policy recommendations based on the results.

2. Literature Review and Research Question
2.1. Smart Factory

The concept of smart factories emerged in the late 1990s in the wake of the rapid
growth of information technology (IT) presenting the basis for further discourse by naming
the entire variable hardware, software, and structure that can rapidly reconfigure manu-
facturing capabilities and functions in response to sudden changes in the market and the
regulatory environment [16]. In the 2010s, the paradigm expanded to intelligent smart
factories with the advancement of technologies such as artificial intelligence (AI), sensor
networks, big data, and cloud. When Internet of Things (IoT) technology, which connects
all objects at the manufacturing site to a network, was applied to intelligent technology,
which can make autonomous judgments and controls, the concept of “factory-of-things”
was proposed [17]. Furthermore, by applying the idea of ubiquitous access to a network
anytime anywhere, the concept of ubiquitous factory was proposed [18]. Here, ubiquitous
factories have certain key requirements, such as transparency that can collect, exchange,
and monitor a wide range of data in real time, autonomy that can judge and control itself,
and sustainability that can manage energy in real time.

Recently, a smart factory referred to a factory that extends the concept of factory au-
tomation and is modularized for each individual process to enable active production of cus-
tomized products. The public–private joint smart manufacturing innovation team, Korea
Smart Manufacturing Office (KOSMO), which oversees policies related to the dissemination
and advancement of smart factories, defines smart factories as “people-centered intelligent
factories that produce customized products at minimum cost and time by integrating all
production processes from product planning to sales with information communication
technology (ICT)” [19]. Here, “smartization” can be applied to all areas, including premanu-
facturing stages such as planning, design, production, distribution, and sales. Furthermore,
it is applied to application systems, control automation, and field automation. In terms of
the level of “smartization,” the scope of smart factories includes the basic stage of process
logistics management or performance aggregation automation to the advanced stage of IoT
and Internet of Services-based Cyber-Physical System (CPS) and big-data-based diagnosis
and operation. Nevertheless, there are minimum requirements to form a smart factory,
and the Smart Manufacturing Innovation Promotion Team considers digitalization of
4M + 1E (Man, Machine, Material, Method, and Energy), algorithm or AI-based intelli-
gence, horizontal and vertical integration, creation of data-based engineering knowledge,
and connection with smart systems. These smart factory concepts and standards are con-
structed by public–private experts based on domestic and foreign manufacturing status
and previous studies, so these concepts and standards are widely accepted, and this study
will also apply these to concepts and standards to develop related discussions.

In Korea, smart factories are divided into five stages according to the level of manufac-
turing innovation capabilities [19]. Stage 1 is the nonapplied stage in which all manufac-
turing processes are performed manually; Stage 2 is the basic stage with the application
of point of production (POP), individually operated corporate resource management sys-
tems, etc.; Stage 3 is the first intermediate stage that applies a real-time decision-making
operation system, automatic facility data aggregation system, etc.; Stage 4 is the second
intermediate stage with the application of a facility control automation system, real-time
factory control system, integrated operation system, etc.; and Stage 5 is an advanced stage
that enables Internet of Things (IoT)- and Internet of Service (IoS)-based big data diagnosis
and operation. It is reasonable that the adoption of smart factories should be implemented
gradually depending on the level of a company’s manufacturing abilities. However, com-
panies’ decision making on smart factory adoption by companies can be influenced by
various other factors, such as management and environmental situations. In addition, it
will be possible to attract more companies considering the transition to smart factories
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only when the feasibility of smart factory adoption is increased by confirming the high
performances of using smart factories. Therefore, it is more necessary to identify factors
that affect the decision making on adoption and effects caused by the adoption of smart
factories to induce their adoption.

From a management perspective, research related to smart factories is focused not
only on factors that affect decision making, but also the management performance due
to adoption of smart factories. This study includes both subjects and derives research
questions from the previous literature.

2.2. Factors of Smart Factory Adoption

Internal and external factors can affect the adoption of smart factories and attempts
have been made to identify the factors through various empirical analyses and case studies.
These studies generally identified the internal and external motives of the analysis unit
based on the Technology Acceptance Model (TAM) proposed by Davis [20,21] and its
subsequent models. The usefulness and ease of specific technologies are at the core of TAM.
The degree to which a specific technology is found useful or easy to use is a decisive factor
in the acceptance of technology by a specific entity. This model has been supplemented by
TAM2 [22] and TAM3 [23] and has recently been developed as an integrated technology ac-
ceptance model (UTAUT) by combining and extending eight prominent models, including
motivational models, planned behavioral theory, and social cognition theory. In this model,
performance expectancy, effort expectancy, social influence, and facilitating conditions
are considered major factors in technology acceptance, and demographic factors, such as
gender and age, and experience and voluntariness of use intervene as control variables
in the technology acceptance process. Recently, UTAUT2 with the addition of hedonic
motivation, price value, and habit has been proposed for the existing UTAUT model [24].
Studies that applied TAM to organizational units, such as companies, cited competition
and industrial environment [25,26] as external factors and the pursuit of efficiency and
competitive advantages as internal factors [27,28].

According to Stocker et al. [6], who qualitatively reviewed previous studies on condi-
tions for successful introduction of technologies related to the Fourth Industrial Revolution
on a wider scale than smart factories, social factors, such as culture and working envi-
ronment, and organizational factors, such as management and process, are believed to be
important for the successful adoption of technologies. In terms of culture, communication,
openness, and innovation-friendly culture are important and, with regard to the working
environment, digitalization capabilities should be built and developed. Regarding manage-
ment, efforts should be made to establish and disseminate digital strategies and establish
a company-wide digital culture. As for the process, incorporating digital processes into
the working environment is important. Touriki et al. [29], who analyzed the integration
trend of smart, eco-friendly, resilient, and lean production, analyzed that the rise in reg-
ulatory and environmental issues, innovation of business models, changes in the labor
market, and efforts to enhance corporate image are some of the factors that encourage the
integration of smart factories. Expectations of efficiency and competitive advantages in
accepting technologies related to the Fourth Industrial Revolution have a positive effect,
while competitor and supplier factors have no statistically significant effect [30]. In Japan,
relative advantages as technological factors, support from top executives as organizational
factors, and market uncertainty as environmental factors were found to be the main factors
in SMEs’ acceptance of technologies for the Fourth Industrial Revolution [7].

Empirical studies on factors affecting the adoption and continuous use of smart facto-
ries in Korea were actively conducted with various variables. In many studies, among the
factors considered in UTAUT, performance expectancy and social influence were positive
variables in the decision-making process for introducing smart factories [8,31–33]. It was
confirmed that the expectation of effort was generally not statistically significant, except
in some studies [12,34]. Other variables that UTAUT include are the relative advantages
of smart manufacturing technology [35], technology readiness [36], and supplier tech-
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nology [34], while entrepreneurs’ willingness and support level were also confirmed as
elements for introducing smart factories [8,34]. Other external factors, such as government
support [8,13,35,36] and co-operation with external entities [37,38], were also confirmed as
components for the adoption of smart factories. These analysis results show that various
factors within and outside the organization are closely involved in the introduction of smart
factories by SMEs. Therefore, it is necessary to review the importance of various factors
and strategically focus and support the adoption of smart factories. In addition, the need
for meta-analysis arises, as there have been no statistical attempts to analyze the factors
systematically and comprehensively behind the adoption of smart factories, despite the
diversity of various empirical analyses.

Q1: What factors affect the adoption and continuous use of smart factories and what level
of influence does each factor have?

2.3. Performances of Smart Factory Adoption

For companies, the ultimate purpose of converting manufacturing processes into
ICT-based smart factories, despite budget and time constraints, is to maximize productivity
and streamline costs to generate profits. There are various ripple effects at the mid to
long term and it may impact a firm’s financial performance. Consequently, smart factory
performance can be broadly defined as achieving production efficiency or creating and
propagating social value. According to Kamble et al. (2020) [11], who developed a Smart
Manufacturing Performance Measurement System (SMPMS) for small- and medium-sized
enterprises by combining 98 previous studies and two surveys at industrial sites, smart
factory performance can be redefined in 10 big-picture ways: cost, real-time diagnosis, pro-
duction optimization, quality, integration, flexibility, computing, time, social performance,
and ecological performance. By applying 59 detailed performance indicators, performance
can be diagnosed in multifaceted ways according to the perspective and purpose that is
desired to be measured.

Previous empirical studies in Korea also reported that smart factories at manufacturing
SMEs had a statistically significant effect on multidimensional management performance.
In general, many studies have confirmed that the promotion of smart factories had a
positive effect on management performance by integrating financial and nonfinancial
performance [10,12,39]. Some studies have integrated productivity performance, such as
cost reduction, automation facility introduction, quality improvement, and visibility, into
management performance [15]. Furthermore, it presented environmental performance as
an indicator, considering that sustainability and social responsibility had become significant
topics of interest at manufacturing sites. In addition, there were studies that presented net
benefits [35] or corporate competitiveness [14] as performance indicators, which signify
the degree to which a company’s productivity and flexibility have improved, driven by
smart factories.

Various performance indicators and measurement methodologies have been proposed,
but many studies suggest that smart factories generally have a positive effect on manage-
ment performance, which can serve as empirical evidence for the government to promote
these factories. However, a generalized conclusion has not been drawn as to which factors
smart factories contribute more among the multidimensional performance indicators of a
company, and there is a need for meta-analysis that integrates existing studies.

Q2: What is the level of impact of smart factories on management performance, and is there
a difference by performance type?

3. Research Model, Data, and Methodology
3.1. Research Model and Variables

As a result of extracting the factors of adoption and continuous use of smart factories
by synthesizing individual empirical analysis studies, it was determined that internal and
external factors affect the adoption of smart factories. Specifically, organizational character-
istics, technology recognition, and external environment can be classified as higher-level
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factors and sub-factors can be extracted from these higher-level factors. However, since
many studies have adopted the theoretically established UTAUT model, UTAUT factors
were classified into independent higher-level factors for empirical investigation of this
model. Accordingly, 13 sub-factors from the four higher-level factors were defined as
factors for smart factory adoption and continuous use. In addition, significant achieve-
ments were made following the adoption of smart factories and empirical analysis studies
were synthesized, and these achievements were classified into financial and nonfinancial
achievements. Therefore, the overall framework of this research model includes variables
of input, output, and performance. Input includes factors that affect the adoption of smart
factories, output is the adoption and use of smart factories, and performance refers to
business performance resulting from the adoption and use of smart factories. A schematic
expression of this model is shown in Figure 1.
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Figure 1. Research model.

A meta-analysis uses a statistical approach to derive pooled estimates close to the
common truth of existing studies. The patterns of results of previous studies can be
provided. The following research process is conducted to perform a meta-analysis. First,
previous empirical analysis studies are searched and collected. Among them, statistical
estimate values related to variables of this research model are extracted. The collected data
are analyzed according to the above framework in Figure 1. Here, the framework is divided
into two analytical models. Model 1 is the relationship between the factors influencing the
adoption and use of smart factories and Model 2 is about the impact of the adoption and
use of smart factories on management performances.

In Figure 1, each variable is defined as shown in Table 1. The variables were defined
by applying the verbatim definitions provided by previous studies subject to meta-analysis.
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Table 1. Definition of variables.

Variables Definition Research

Input

UTAUT

Performance
expectancy

The degree to which the use of smart factory technology is
expected to be introduced into individual and organizational
business performance (; usefulness, relative advantage)

[8,9,31–36,40–47]

Effort
expectancy

Expected level of ease of use of smart factory technology
(ease of use) [8,9,31–34,41–43,45,48]

Social influence Awareness level of stakeholders on the use of smart factory
technology [8,9,31–34,44–46]

Facilitating
condition

The level of trust that the necessary resources, technology,
organization, and environment are available or suited for the
introduction of smart factories

[8,9,31–34,45,46]

Organizational Characteristics

Entrepreneurship Competency levels such as knowledge, support, leadership,
and entrepreneurship of the CEO [8,12,13,34–37,43,48–50]

Open innovation Tendency and level of activity to collaborate with external
actors [37,38,51,52]

Technology
capability

Level of technological capabilities, such as IT utilization
capabilities, technological readiness, R&D capabilities,
and activities

[8,36–38,53]

Finance Level of financial capacity for new investments (financial
readiness) [8,35,36,49]

Absorption
capacity

The level of competency to learn while responding quickly to
external changes and to change the organizational
temperament and capabilities

[35–38,43,54]

Technology Awareness

Resistance to
innovation Degree of avoidance or rejection of smart factory technology [8,9,32,33,44–46]

Perceived risk Level of awareness of the possibility of loss due to smart
factory technology acceptance [31,32,44,46]

External Environment

Government
support

Extent of government support as a financial/nonfinancial
policy tool to promote the establishment and spread of smart
factories

[8,13,35,36,48,49]

Network effect
As the acceptance of technology by competitors, suppliers,
and related companies increases, the benefits and utility of
smart factory introduction tend to increase

[9,32,33,44–46]

Output Adoption and use of smart
factories

The level of intention to introduce a smart factory, actual
introduction behavior, or intention to continuously use or
upgrade an already built smart factory

[8–10,13,15,31–59]

Performance

Financial
performance

Business performance at the financial level, such as sales and
operating profit [10,39,43,47,54–58]

Non-financial
performance

Nonfinancial management performance such as satisfaction
level, job creation, production efficiency, and time reduction [10,13,15,39,47,53,56–59]

3.2. Data Collection

This study statistically integrated previous studies on factors for the adoption of
smart factories and examined the relationship between smart factories and management
performance. To analyze the statistics reported by individual empirical studies in an
integrated way and to integrate them so that they are not biased to a specific type of study,
an objective document securing procedure that is not biased must be secured.

To systematically collect domestic academic literature, four representative academic
databases in Korea were used, including RISS (www.riss.kr accessed on 30 December
2021 to 11 January 2022), DBpia (www.dbpia.co.kr accessed on 30 December 2021 to 11
January 2022), Korean journal Citation Index (KCI: www.kci.go.kr accessed on 30 December
2021 to 11 January 2022), and ScienceOn (scienceon.kisti.re.kr accessed on 30 December
2021 to 11 January 2022). Search engines such as Google were also used, considering that
various policy research reports and certain publications would not be available in academic
databases. The search phrases included “smart factory or smart manufacturing”.

www.riss.kr
www.dbpia.co.kr
www.kci.go.kr
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The first research list compiled by academic databases and search engine included
8937 items, but 1482 unique research lists were built because of consolidating the lists to
exclude duplicate items. Here, studies unrelated to meta-analysis were excluded through
title and abstract review, and a total of 218 texts were secured by additionally excluding
studies with no original text or inappropriate form and content. Coding was conducted
on each one through consensus among researchers, and studies that were unrelated to
the content, involved qualitative research, or had empirical analysis without statistical
values were additionally excluded. Consequently, 58 empirical analysis studies were coded
and, by reidentifying studies with analyzable variables after constructing a research model,
42 studies were selected for meta-analysis.

For coding, information such as researchers, year of publication, sub-research classifi-
cation, factor variables, smart factory adoption and continuous use variables, performance
variables, effect size, and number of samples in the targeted analysis literature were entered.

3.3. Methodology

This study performed meta-analysis by integrating Pearson’s momentum correlation
coefficient r among the effect sizes reported by various empirical analysis studies. r is
the most intuitive statistic showing the linear relationship between two variables and is
widely used in various empirical analysis studies. However, this value basically has the
characteristic of indicating an asymmetric distribution, so, in meta-analysis, it is common to
convert it to Fisher’s Z to calculate the average effect size. Fisher’s Z is considered suitable
for integrating correlation coefficients reported in different studies, because it tends to
follow a normal distribution in comparison to r. The effect size calculated by Fisher’s Z was
converted back to Pearson’s correlation coefficient r and reported to enhance the reader’s
understanding [60]. The equations for calculating Fisher’s Z (1) and converting it back to
r (2) are as follows [61]:

Z = 0.5× ln
(

1 + r
1− r

)
(1)

r =
e2z − 1
e2z + 1

(2)

The formulas for calculating the variance (3) and standard deviation of Fisher’s Z (4)
are as follows:

Vz =
1

n− 3
(3)

SEz =
√

Vz (4) (4)

If the analyzed study did not report the correlation coefficient, the regression coefficient
β was converted to r using the following Formula (5) and then analyzed [62]:

r = β + 0.05λ (λ : β ≥ 0, 1; β < 0, 0) (5)

In calculating the average effect size, studies with a larger number of samples were
weighted to individual effect sizes on the premise that they were reliable statistics that
could better represent the population. Here, the inverse variable weight (Wi, 6) and the
weighted average (M, 7) were calculated according to the following equations [63]:

Wi =
1

VYi

(6)

M =
∑k

i=1 WiYi

∑k
i=1 Wi

(Yi : effect size) (7)

For coding and the calculation of effect size, “Comprehensive Meta-analysis (CMA)
3.0”, a statistical package specialized for meta-analysis, was used. In accordance with
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Cohen [64], the calculated effect size was interpreted as a minor effect size when it was 0.1
or lower, an intermediate effect size if it was around 0.3, and a large effect size if it was 0.5
or more.

4. Results
4.1. Verification of Publication Bias

Publication bias was analyzed in Figure 2 to verify that empirical analysis studies
subject to meta-analysis were collected without bias to specific trends. First, a funnel plot
was plotted to visually verify the convenience of publication, and it was judged that the
bias was low because the effect size was generally distributed in a symmetrical form. By
calculating the safety coefficient to numerically verify the convenience of publication, 10,587
were identified in Model 1 and 3356 in Model 2. This figure is sufficiently larger than the
5K + 10 in each model, so it can be evaluated that the concerns of publication convenience
are generally low [65].
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4.2. Homogeneity Verification and Average Effect Size

In Table 2, homogeneity verification was attempted to understand the level of het-
erogeneity of the average effect size (ES) calculated by synthesizing individual empirical
analysis studies. The size of the test statistic Q value, which is the total variance of all
effect sizes included in the analysis model, is significant enough, and the I2 value was more
than 75%. Therefore, the heterogeneity of the model was substantial [66]. In a model with
substantial heterogeneity in effect size, it is appropriate to analyze it as a random effect
model, which assumes heterogeneity in effect size and recognizes variance between studies,
rather than a fixed effect model [61].

Table 2. Results of homogeneity verification and average effect size.

Model K 1 ES 2 −95% CI 3 +95% CI Q 4 P 5 I2 6

Model 1
FE 7

100
0.548 0.538 0.557

1257.565 0.000 92.128RE 8 0.562 0.527 0.594

Model 2
FE

17
0.450 0.423 0.477

150.754 0.000 89.387RE 0.456 0.368 0.536
1 K: number of effect size, 2 ES: effect size, 3 CI: confidence interval, 4 Q: total variance (Cochran’s Q value),
5 P: significance level, 6 I2: percentage of variation across studies, 7 FE: fixed effect model, 8 RE: random
effect model.
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The average effect size was 0.562 in Model 1, which was larger than Model 2 (0.456).
The impact of internal and external factors on the adoption of smart factories was greater
than the impact of smart factories on management performance. However, the difference
was not significant and it can be interpreted that both models showed a large effect size.

4.3. Factors Affecting Adoption of Smart Factories

Table 3 compiles the meta-analysis results of how much internal and external factors
affect the adoption and continuous use of smart factories. Thirteen detailed factors were
identified across four larger factors, which included UTAUT, organizational characteristics,
technology recognition, and external environment. The analyses of 21,211 samples from
100 research models were incorporated into the meta-analysis model. Among the 13 factors,
innovation resistance and perceived risk corresponding to technology recognition had a
negative (−) sign. However, if they were merged into the models, they were distorted
in the direction of decreasing the overall average effect size due to the offset effect. The
calculated average effect sizes were distributed over the range of 0.145 to 0.714, and all
effect sizes were statistically significant within the 95% confidence interval.

Table 3. Results of factors affecting adoption and use of smart factories (Model 1).

Factors K 1 N 2 ES 3 −95% CI 4 +95% CI P 5 Q 6 I2 7

Overall 100 21211 0.562 0.527 0.594 0.000 1257.565 92.128

UTAUT

Performance expectancy 16 3679 0.627 0.556 0.689 0.000 164.166 90.863

Effort expectancy 12 2639 0.518 0.464 0.568 0.000 35.016 68.586

Social influence 10 1953 0.672 0.565 0.757 0.000 133.168 93.242

Facilitating condition 9 1817 0.606 0.475 0.711 0.000 124.784 93.589

Organizational
characteristics

Entrepreneurship 11 2744 0.547 0.429 0.646 0.000 165.054 93.941

Open innovation 4 582 0.439 0.356 0.516 0.000 4.273 29.786

Technology capability 5 1078 0.573 0.465 0.664 0.000 22.884 82.521

Finance 4 1092 0.628 0.529 0.711 0.000 18.419 83.712

Absorption capacity 6 1379 0.427 0.305 0.535 0.000 32.094 84.421

Technology
Awareness

Innovation resistance * 7 1098 0.426 0.316 0.525 0.000 26.119 77.029

Perceived Risk * 4 669 0.145 0.058 0.230 0.001 3.932 23.708

External
environment

Government support 6 1692 0.526 0.371 0.653 0.000 80.169 93.763

Network effect 6 789 0.714 0.514 0.841 0.000 106.516 95.306

1 K: number of effect size, 2 N: number of samples, 3 ES: effect size, 4 CI: confidence interval, 5 P: significance level,
6 Q: total variance (Cochran’s Q value), 7 I2: percentage of variation across studies. * Note: “innovation resistance”
and “perceived risk” were analyzed by switching the effect size sign, (−)→ (+).

Considering the influential factors based on effect size, it was found that network
effect (0.714), social influence (0.672), finance (0.628), performance expectancy (0.627),
facilitating condition (0.606), technology capability (0.573), and entrepreneurship (0.547)
had a significant impact on the adoption and use of smart factories. These factors were
interpreted as having a large effect size of 0.5 or more. In addition, government support
(0.526) and effort expectancy (0.518) were confirmed to have a large effect size. At the policy
level, appropriate management of these factors is necessary to promote the conversion of
SMEs to smart factories.

4.4. Performances of Smart Factory Adoption

Table 4 compiles meta-analyses of the effect of adoption, use, and advancement
of smart factories on management performance. The results of 17 analysis models and
3387 samples were incorporated. Six models were compiled for financial performance and
seven for nonfinancial performance. In cases where financial performance is analyzed for
each study, in cases where nonfinancial performance was analyzed, and in cases where
multiple models are presented at the same time, simple compilation violates the assumption
of independence, so the shifting unit of analysis was applied so that the analytical sample
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was not redundant [67]. Consequently, the sum of the number of studies and samples of
financial and nonfinancial performance is not consistent with the compiled model.

Table 4. Results of performances of smart factory adoption (Model 2).

Factors K 1 N 2 ES 3 −95% CI 4 +95% CI P 5 Q 6 I2 7

Overall 17 3387 0.456 0.368 0.536 0.000 150.754 89.387

Financial performance 6 1225 0.464 0.392 0.531 0.034 12.089 58.641

Nonfinancial performance 7 1515 0.340 0.139 0.514 0.000 100.173 94.010
1 K: number of effect size, 2 N: number of samples, 3 ES: effect size, 4 CI: confidence interval, 5 P: significance level,
6 Q: total variance (Cochran’s Q value), 7 I2: percentage of variation across studies.

As a result of the analysis, the adoption and continuous use of smart factories had
a positive effect on management performance (0.456), which was less than 0.5, but it
nevertheless had a relatively large effect size. For all types of management performance, the
magnitude of the effect size was above average and all figures were statistically significant
in the 95% confidence interval.

The adoption and continuous use of smart factories had a greater impact on financial
performance between the two types of performance, and this effect size (0.464) was larger
than that of compiled management performance (0.456). In addition, this effect size had
intermediate I2 value (58.641), which showed heterogeneity. Therefore, it demonstrated
that many studies consistently support large effect sizes.

4.5. Further Analysis: Comparison of Domestic and Foreign Literatures

The meta-analysis of this study is basically limited to domestic empirical analysis
literature, but additional analysis was attempted by comparing the effect size in overseas
empirical analysis literature to compare the analysis results.

The collection of overseas literature was conducted by consulting with literature in-
formation experts, selecting search databases, securing search terms and search formulas,
obtaining the literature databases suitable for analysis, determining literature candidates
for analysis through content review, and coding. For literature databases, Scopus and
Web of Science (WoS) were selected owing to the range of research topics, public confi-
dence, volume of literature secured, and possibility for redundancy. Furthermore, search
formula was set in consideration of research topics and methodologies. The first search
literature was 4915 in Scopus and 2554 in WoS, and a total of 7469 documents were secured.
Furthermore, 5561 first overseas literature databases were established by deleting the re-
dundant literature in both databases. Among the 5561 publications, 11 were secured by
eliminating studies with unrelated topic matter (3437), engineering-based modeling and
simulation studies (1221), qualitative (562) and systematic literature reviews (173), and
studies without variables that can be analyzed (157). Overseas literature that was subject to
analysis included surveys, comprising the results of analysis from eight countries: China (3),
India (3), Germany (1), Pakistan (1), South Africa (1), Saudi Arabia (1), Malaysia (1), and
Iran (1).

Among the analyzed literature, five factor variables—performance expectancy, effort
expectancy, entrepreneurship, technology capability, and network effect—could be put
through meta-analysis, since the number of effect sizes corresponding to Model 1 were two
or more (Table 5).

After classifying the countries of origin in each literature as domestic or foreign,
whether the country of origin of the literature was domestic or foreign act as regulatory
variables, as shown in Table 6 below.

Since the result of Cochran’s Q test indicates that the effect size of each model is
statistically heterogeneous, it suggests that there are significant differences between the
domestic and foreign models in four variables (effort expectancy, entrepreneurship, techno-
logical capability, and network effect). In other words, the effect sizes of these variables
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differ between the two models. The foreign literature suggests a larger effect size for effort
expectancy, while the domestic literature shows a larger effect size for entrepreneurship,
technological capability, and network effect. These characteristics are likely unique to Korea
and may differentiate it from other countries in terms of introducing smart factories, among
other factors.

Table 5. Variables of foreign literature.

Variables Research Country

Performance expectancy [68–71] China, Pakistan, Malaysia, Iran

Effort expectancy [68,69] China, Pakistan

Entrepreneurship [72,73] China, South Africa

Technology capability [71,74–76] China, India

Network effect [73,76–78] India, South Africa, Saudi Arabia, Germany

Table 6. Comparison of Model 1 between domestic and foreign literatures.

Factors K 1 N 2 ES 3 −95% CI 4 +95% CI P 5 Q 6

Performance expectancy 20 4633 0.609 0.549 0.662 0.000 183.146 ***

• Domestic 16 3679 0.627 0.556 0.689 0.000
0.873• Foreign 4 954 0.569 0.455 0.665 0.000

Effort expectancy 14 3068 0.599 0.559 0.636 0.000 99.219 ***

• Domestic 12 2639 0.518 0.464 0.568 0.000
62.874 ***• Foreign 2 429 0.751 0.699 0.795 0.000

Entrepreneurship 13 3169 0.315 0.240 0.386 0.000 237.431 ***

• Domestic 11 2744 0.547 0.429 0.646 0.000
18.216 ***• Foreign 2 425 0.213 0.120 0.302 0.000

Technological capability 9 2249 0.493 0.403 0.574 0.000 100.343 ***

• Domestic 5 1078 0.573 0.465 0.664 0.000
5.261 *• Foreign 4 1171 0.365 0.204 0.507 0.000

Network effect 10 1894 0.321 0.238 0.399 0.000 264.846 ***

• Domestic 6 789 0.714 0.514 0.841 0.000
12.225 ***• Foreign 4 1105 0.280 0.191 0.363 0.000

1 K: number of effect size, 2 N: number of samples, 3 ES: effect size, 4 CI: confidence interval, 5 P: significance level
(* p < 0.05, *** p < 0.001), 6 Q: total variance (Cochran’s Q value).

Regarding the impact of the adoption and continuous use of smart factories on man-
agement performance, the effect size was compared by inputting domestic and foreign
literature as control variables (Table 7).

Table 7. Comparison of Model 2 between domestic and foreign literature.

Factors K 1 N 2 ES 3 −95% CI 4 +95% CI P 5 Q 6

Business performance 21 6498 0.420 0.341 0.492 0.000 318.705 ***

• Domestic 17 3387 0.456 0.368 0.536 0.000
2.747• Foreign 4 3111 0.304 0.131 0.459 0.001

1 K: number of effect size, 2 N: number of samples, 3 ES: effect size, 4 CI: confidence interval, 5 P: significance level
(*** p < 0.001), 6 Q: total variance (Cochran’s Q value).

Domestic literature was 0.456 and overseas literature was 0.304, and the impact of
smart factories on management performance was higher for domestic companies. However,
the p-value, which shows the statistical significance of the difference in effect size, was
0.097, and the statistical difference was recognized at 90% confidence level but there was no
statistically significant difference at the 95% confidence level. Under the assumption that
statistical significance has not been sufficiently secured, in Korea, smart factories contribute
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to management performance significantly in comparison to those seen in overseas analyses.
This is a result that supports the legitimacy of domestic policies pursuing the distribution
of smart factory technology.

5. Discussion

In the results of Model 1 Table 3, this phenomenon in which network and social
effects have the greatest influence, rather than internal organizational factors, suggests that
manufacturing SMEs, the main topic of smart factory research, closely influence companies
in terms of value chain. It is estimated that more than 60% of Korean SMEs conduct
management activities through direct and indirect subcontracting relationships with larger
companies [79]. Considering this, relationships with other companies connected by the
value chain, such as suppliers, competitors, customers, and partners, have a profound
impact on management decision making. Regarding the adoption of smart factories,
decisions by partners and competitors can lead one to conform to another. Furthermore,
decisions by related companies can lead to expectations for network effects, and customers
may directly or indirectly demand the adoption of smart factories for reasons such as
cost reduction and reliability. The fact that the influence of external players is significant
suggests that consortium-type distribution policies at the corporate level may be more
useful than smart factory distribution policies at individual companies.

Usefulness can be considered more important but the difference is not significant
because the error range of the effect size partially overlaps. Companies are likely to
introduce smart factories when they recognize that smart factories will improve their
production efficiency and finances. Consequently, the prospect of ease of adoption of
technology and proficiency is a secondary factor. In terms of policies that supply and
distribute smart factories, it is necessary to focus on the practical effects more so than the
ease of application.

Among the variables of organizational characteristics, the influence of finances, en-
trepreneurship, and technology capability were significant. Companies with sufficient
financial capacity could seek to upgrade their technology capabilities, and the expansion
of technology capabilities could lead to further financial performance, creating a positive
cycle. Companies that have generated results based on technology are likely to introduce
innovative new technologies and solutions for smart factories. Furthermore, the leadership
and strategic will of top executives—the founders of the company—could serve as a catalyst
in these decisions.

Conversely, innovation resistance (0.426) and perceived risk (0.145), which were factors
hindering the adoption of smart factories, had actual negative (−) signs, and the effect size
was relatively small. Furthermore, perceived risk was interpreted to have a relatively low
effect size. As innovation resistance had an intermediate effect size, efforts to improve the
understanding and acceptability of new technologies for smart factories for management
and the public should be continued.

Among the external environmental variables, the network effect that demonstrated
the relationship among companies was the most influential factor. Although government
support (0.526) had a large effect size, it only had intermediate-to-low influence. This
suggests that policy support only plays an auxiliary role in the decision-making process of
smart factory introduction, and it is not a decisive factor. The most important factors were
the interaction among companies on the value chain, level of readiness to accept technology
within the company, and strategic decision making.

In the comparative analysis results of Model 1 (Table 6), in terms of performance
expectancy and effort expectancy, the effect size of performance expectancy was not statisti-
cally significant. However, for domestic companies, the expectation that smart factories
would affect performance had great influence on whether smart factories were introduced.
For foreign companies, the expectation that it would be easy to introduce and utilize smart
factories had a great influence on whether smart factories were introduced.
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Entrepreneurship and network effects were significantly higher than those of overseas
companies as factors influencing domestic companies’ decision making to introduce smart
factories. This result reflects the tendency of domestic SMEs to rely heavily on decision
making of the entrepreneur and the interdependent influence with related companies.

In Table 4, the effect of smart factories on nonfinancial performance was found to have
a normal size effect, and heterogeneity was also substantial. This difference stems from the
fact that financial performance can be generalized to financial indicators, while nonfinancial
performance is a multi-layered concept that encompasses satisfaction, efficiency, value, and
efficacy. Since the nature of the two performance indicators is different, the comparison of
the two effect sizes does not have much significance. However, the analysis clearly shows
that smart factories have a significant impact on management performance, especially on
financial performance, which is critical for a company’s existence. These analyses can be
a source for empirical argument for a government to implement policies that supply and
distribute smart factories.

6. Conclusions
6.1. Research Conclusions and Policy Implications

This study focused on smart factories, one of the key digital transformation paradigms
in the manufacturing industry, and attempted a meta-analysis that systematically com-
piled statistical figures of existing empirical analyses on their factors and performance. A
comprehensive research framework of the impact of internal and external factors on the
adoption of smart factories and the impact of smart factories on financial and nonfinancial
management performance was constructed by compiling the correlation coefficient effect
size according to the protocol of meta-analysis. In addition, 11 overseas publications on the
research topic were additionally analyzed to investigate the specificity of domestic smart
factory factors and performance.

According to the analysis, the key factors of the adoption and continuous use of smart
factories were network effect (0.714), social influence (0.672), finance (0.628), performance
expectancy (0.627), facilitating conditions (0.606), technology capabilities (0.573), and en-
trepreneurship (0.547). With respect to research question 1 (Q1), we can explain that the
above variables play a significant role in the adoption of smart factories within the Korean
context. While the significance of these variables has been established in prior individual
studies [8,9,31–34,38,46], this study is the first to provide a comprehensive and quantitative
comparison of their relative importance.

The analyses of overseas literature demonstrated that entrepreneurship, technology
capabilities, and network effects were important variables for introducing smart factories
in Korea in comparison to factories overseas. Conversely, the influence on effort expectancy
was relatively low for factories in Korea in comparison to factories overseas. The results
of the meta-analysis conducted to explore the relationship between smart factories and
performance, in response to research question 2 (Q2), indicated a positive impact of smart
factories on performance. The analysis revealed that the impact on financial performance
(0.464) was larger and more consistent than the impact on nonfinancial performance (0.340).
These findings lend support to the legitimacy of policies aimed at promoting the adoption
of smart factories by firms.

Policy implications of this analysis are as follows.
First, the most influential factor in companies’ decision to introduce smart factories

was network and social effects, suggesting that a policy approach considering these effects
is needed rather than individual company-level smart factory supply and distribution
policies. In particular, the profound influence of the network effect was prominent in
supplementary analysis when compared to results shown in overseas literature. Since
domestic manufacturing SMEs are greatly influenced by stakeholders in the value chain,
such as suppliers, competitors, and partners, it is possible to consider ways to support
the adoption of smart factory joint platforms, solutions, and technology development,
especially focusing on the value chain consortium. In addition, these results are in line
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with a previous study which suggests that the diversity of knowledge among actors
participating in innovation networks can be a key factor in driving positive collaborations
and partnerships among innovation partners [80].

Second, since the level of performance expectancy of smart factory technology has a
profound impact on decision making to accept smart factories, it is necessary to provide
companies with success stories of smart factories to raise expectations and further promote
the adoption of smart factories. The fact that smart factories have a positive effect on finan-
cial performance is firmly supported by the analysis results of Model 2 of this study. The
effort expectancy (0.518) was lower than performance expectancy (0.627), suggesting that,
if the technology is useful with a clear expectation of performance, the question of whether
it is easy to introduce the technology is a secondary consideration. Although statistical
significance for the moderating effect is yet to be established, the level of effect size of
performance expectancy in the analysis of domestic companies exceeded the analysis result
(0.569) shown in overseas literature. Therefore, it is necessary to focus policy capabilities on
strengthening the acceptability of high-level models that can achieve strong results rather
than exert policy efforts to spread a basic factory automation system, which is a low-level
smart factory.

Third, internal factors, such as strategic will, management support, financial capacity,
and technology capabilities have a profound impact on the decision to introduce smart
factories. Since policy-led support from the government has been identified as a secondary
factor, governments need to reorganize effective smart factory supply policies, and it is
necessary to focus on providing conducive conditions for smart factories rather than pro-
viding direct support. It is necessary to ease the requirements for public demonstration test
beds, expand financial support programs related to technology, facilities, and manpower,
and strengthen education and promotional communication on the usefulness of smart
factories. Since innovation resistance has a huge negative impact on the adoption of smart
factories, it is necessary to equip companies with technology, through job training support
on manufacturing innovation along with the spread of test beds. Among the variables of
organizational characteristics, the role of entrepreneurship is particularly important, which
is clearly shown through the analysis of the moderating effects in overseas literature. There-
fore, efforts should be made to promote success cases and factors through management
councils in respective regions, technologies, and industries.

From a managerial perspective, the following implications can be drawn. Firstly, the
positive impact of smart factories on business performance suggests that companies re-lying
on traditional manufacturing technologies should consider transitioning to smart factories.
Secondly, given the significant influence of network effects on the adoption of smart
factories, companies can facilitate a smoother transition by collaborating with other firms
in the value chain. Finally, the importance of executive capabilities and entrepreneurship in
the adoption of smart factories highlights the need for managers to prioritize manufacturing
innovation and allocate resources accordingly.

6.2. Limitations and Future Directions of Research

This meta-analysis is the first to deal with factors and performance of smart factories,
and it is significant that the effect size of various factors was empirically compiled and
identified. Based on this empirical compilation and identification, policy implications were
presented. However, this study has certain limitations.

First, domestic literature was used to analyze the factors and performance of smart
factories, and additional analysis was attempted by adding 11 overseas studies for compar-
ison between countries. However, the number of overseas studies and the distribution of
countries that were part of the analysis did not reach the level where academic generaliza-
tion was possible. Although 5,561 overseas studies were considered for meta-analysis, only
11 overseas studies included variables that could be compared in the same line as variables
in domestic literature used for analysis. In addition, there was difficulty in generalization
because the research target countries of overseas studies were developing countries.
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Second, no further analysis has been attempted to explain the heterogeneity of the
effect size. Effect sizes may vary depending on a company’s characteristics, such as type of
company and industry, analysis methodologies, etc.

Third, the research model was overly simplified into a three-step process. The in-
tention to introduce a smart factory, the actual adoption behavior, and the initial and
ultimate management performance in terms of production efficiency from the adoption
of smart factories can be precisely classified, but this classification was limited in this
study. This is because of a lack of previous studies that conducted domestic and foreign
empirical analysis.

Through the limitations found in this study, the following directions for future research
were derived.

First, the quantitative difference between domestic and foreign studies is due to
the difference in policy importance and methodological approach for the supply and
distribution of smart factories by country. This limitation can be overcome by verifying
regulatory variables by continent, industry, and company size after sufficient empirical
analysis studies related to overseas smart factories are accumulated in the future.

Second, it is necessary to supplement this through moderating effect analysis or meta-
regression analysis, which can identify differences in effect size according to research
characteristics, corporate and industry types, analysis methodologies, and data attributes.

Third, the factors of smart factory adoption considered in this framework were simpli-
fied due to the lack of previous studies. If enough previous empirical studies are added in
the future, the scope of the framework can be expanded.
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