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Abstract: Assessing technological advancements is crucial for the formulation of science and tech-
nology policies and making well-informed investments in the ever-evolving technology market.
However, current assessment methods are predominantly geared towards mature technologies, limit-
ing our capacity for a systematic and quantitative evaluation of emerging technologies. Overcoming
this challenge is crucial for accurate technology evaluation across various fields and generations.
To address this challenge, we present a novel approach that leverages bibliometrics, specifically
paper citation networks, to gauge shifts in the flow of knowledge throughout the technological
evolution. This method is capable of discerning a wide array of trends in technology development
and serves as a highly effective tool for evaluating technological progress. In this paper, we showcase
the accuracy and applicability of this approach by applying it to the realm of mobile communication
technology. Furthermore, we provide a comparative analysis of its quantitative results with other
conventional assessment methods. The practical significance of our model lies in providing a nuanced
understanding of emerging technologies within a specific domain, enabling informed decisions, and
fostering strategic planning in technology-oriented fields. In terms of originality and value, this
model serves as a comprehensive tool for assessing technological progress, quantifying emerging
technologies, facilitating the evaluation of diverse technological trajectories, and efficiently informing
technology policy-making processes.

Keywords: technology assessment; emerging technologies; citation analysis; technological knowledge
flows; policy guidance

1. Introduction

In today’s rapidly evolving society, the emerging technologies are reshaping our lives
at an unprecedented pace. From artificial intelligence to advancements in the realm of
networking, modern breakthroughs are propelling us into uncharted territories, expanding
the possibilities of what we can achieve. This dynamic interplay between society and
technology is redefining the very fabric of our existence. Emerging technologies are widely
regarded as crucial drivers of societal and economic advancement. Accurately assessing the
progress and relative advantages of emerging technologies is instrumental in determining
optimal technological pathways, formulating rational resource allocation strategies, and
identifying key research priorities. As such, evaluating and forecasting various technolo-
gies, understanding technological progress and trends, and identifying dynamic areas
of technological development are essential. However, existing methods for technology
assessment often stem from the inherent characteristics of the technology itself, render-
ing them less adaptable when applied to different technologies. In contrast, data mining
methods utilize technology-related data to assess patterns within the data, offering a more
universally applicable approach that is not limited to addressing specific issues associated
with the technology. This paper introduces a novel method using technological knowledge
flows (TKFs) as a reliable proxy, leveraging citation information from technology-related
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scientific papers. Unlike traditional citation analyses that predominantly focus on patents,
this study emphasizes the magnitude of mutual citations between technologies, with a
specific emphasis on using scientific paper data for a more effective exploration of these
mutual citations. This innovative approach provides a solution to the challenges associated
with existing methods and presents a fresh perspective on technology assessment.

Section 2 comprises a comprehensive literature review. In Section 3, we delineate
the sources and data processing methods, culminating in the formulation of a technology
assessment model. Utilizing mobile communication technology (specifically, 2G–6G) as
an illustrative example, Section 4 delves into the analysis of the assessment model’s appli-
cability. Section 5 introduces alternative technology assessment methods for comparative
performance evaluation against our cross-citation-based assessment model. Section 6 syn-
thesizes the assessment results, providing a succinct summary of the assessment model
and a nuanced analysis of potential limitations and avenues for improvement.

2. Literature Review
2.1. Emerging Technologies Identification

Identifying the direction of emerging technologies is crucial for enterprises to achieve
“overtaking on curves” and reverse competitive situations. It also provides important
references and insights for technology planning management, recognition of high-tech
industries, and formulation of corporate development plans. Emerging technology iden-
tification methods can be broadly classified into four categories: domain expert analysis,
technological feature perspective, market product perspective, and scientific information
mining perspective [1].

Domain expert analysis is an essential and traditional subjective judgment method
widely used in current research. Based on the opinions of 58 experts, Ronzhyn et al. [2]
predicted that the development directions of future emerging technologies would include
the Internet of Things, artificial intelligence, virtual reality, augmented reality, and big
data technologies. Stoiciu et al. [3] in the field of energy technology, consulted experts to
construct potential emerging technology identification criteria, had experts from differ-
ent knowledge backgrounds score new technologies, and ultimately identified emerging
technologies in the energy sector.

Technological features are crucial differentiators between emerging technologies and
others. Several scholars propose various approaches to identify emerging technologies
by exploring computable features. Keller et al. [4] attempted a comprehensive method
based on multiple technological features to assess emerging technologies. Guo et al. [5]
constructed ten indicators representing technological multidimensional features from three
dimensions: technological features, market dynamics, and external environment. They
connected indicators, assigned weights based on their connectivity, and identified emerging
technologies by calculating composite scores.

Consumer and market demands drive technological development, determining the
direction and pace of innovation. Therefore, the dynamic changes in market, user, and prod-
uct performance requirements have a significant impact on implicit or explicit influences
on technological innovation and mutation. Sun et al. [6] based on the relationship between
product development and technological evolution, predicted emerging technologies by
deriving technological evolution paths and combining TRIZ evolutionary path theory.
Anderson et al. [7] proposed a TFDEA (Technology Forecasting using Data Envelopment
Analysis) model centered on product performance improvement to achieve technology
forecasting by predicting future breakthroughs in technological performance.

The perspective of scientific information mining for emerging technology identifica-
tion involves using relevant patents, scientific papers, and other data sources. Jia et al. [8]
through CiteSpace software analyzed keyword co-occurrence networks and keyword fre-
quency changes to construct an emerging technology identification framework from the
perspective of technological frontiers. Dotsika et al. [9] introduced a paper-based potential
emerging technology prediction method, identifying technology trends, discovering new
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themes, and tracking evolution through keyword co-occurrence and visualization analysis.
When statistically and visually analyzing data, attention is focused on themes, knowl-
edge structures, and temporal features, mainly utilizing network analysis for emerging
technology identification.

2.2. Technology Assessment

Currently, the methods employed for identifying emerging technologies primarily
rely on qualitative approaches. The research objective of this paper is to quantitatively
assess emerging technologies through a technological evaluation methodology. This not
only allows for cross-validation of results obtained using current qualitative methods for
identifying emerging technologies, but also enables the quantitative measurement of the
technological gap between emerging and traditional technologies after their identification.

Technology assessment has long been a major concern in various fields and is one
of the core research directions in technology management. The main methods currently
used for technology assessment include the Delphi method, scenario analysis, and decision
analysis. The Delphi method is a questionnaire-based method that organizes and shares
opinions through feedback. It has four distinct characteristics: anonymity, iterative nature,
feedback, and statistical “group response”. Breiner et al. [10] discussed the significance
of evaluation and forecasting, and reviewed the historical development of the Delphi
method as a representative method of evaluation and forecasting, and briefly described
the general process of Delphi method. As time goes by, some new Delphi methods have
gradually evolved. Dawood et al. [11] developed a fuzzy Delphi method consisting of three
steps: usability criteria analysis, fuzzy Delphi analysis, and usability evaluation model
development. Alharbi et al. [12] proposed a variant of the Delphi method using triangular
fuzzy numbers with a similar communication method to experts but a different evaluation
process. Salais-Fierro et al. [13] established a hybrid approach combining expert judgment
with demand forecasting generated from historical data for use in the automotive industry.
Štilić et al. [14] presented an expert-opinion-based evaluation framework, utilizing Z-
numbers and the fuzzy logarithm methodology of additive weights (LMAW), to assess the
sustainability of TEL approaches. Wang et al. [15] employed a mixed multi-criteria decision-
making (MCDM) framework based on the Delphi method, analytic network process (ANP),
and priority sequence technique to investigate the functionality of artificial intelligence
tools in the construction industry. This research utilized a fuzzy scenario and assessed
similarity to the ideal solution through the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS). Suominen et al. [16] emphasized the significance of contextual
factors in expert responses, even in the context of extremely global issues such as the
development of science and technology. It was proposed that quantitative data can serve
as a crucial contextual tool for interpreting the outcomes of expert opinions.

Scenario analysis is a widely used method for technology assessment in many man-
agement fields and is particularly valuable for assessing technology. Winebrake et al. [17]
applied a analytic hierarchy process (AHP) in conjunction with perspective-based scenario
analysis (PBSA) to assess five fuel processor technology alternatives across multiple criteria
and perspectives of decision-makers. Banuls et al. [18] argued that traditional approaches
to assessing technological opportunities often considered the future impact of each technol-
ogy in isolation. In response, they proposed a scenario-based assessment model (SBAM)
that enables decision-makers to measure the impact of technology interactions within a
technology portfolio. The methodological framework of SBAM incorporates elements of
AHP, cross-impact method (CIM), and the Delphi Method. More recently, Guo et al. [19]
developed four distinct scenarios incorporating different policy considerations: a baseline
scenario, a subsidy scenario, a low carbon price scenario, and a high carbon price scenario.
The objective was to assess and determine energy-efficient technology pathways across
the entire supply chain. Hussain et al. [20] constructed five scenarios using end-user and
econometric approaches. Gómez-Sanabria et al. [21] included key governance variables
in their analysis of different scenarios to assess the potential impacts of greenhouse gases
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from seven wastewater treatment options in the Indonesian fish processing industry. To
make scenarios more realistic, de Gelder et al. [22] proposed a scenario representativeness
(SR) metric based on Wasserstein distance that quantifies how well generated parame-
ter values represent real scenarios while covering actual changes found in real scenarios.
Ghazinoory et al. [23] categorized evaluations into three types: pre-assessment, mid-term
assessment, and post-assessment. Pre-assessment occurs during scenario generation, mid-
term assessment during scenario transition, and post-assessment after scenario transition.
Kanama et al. [24] developed and evaluated a novel technology foresight method by com-
bining a focused approach on the Delphi method and scenario writing. This method proves
beneficial for decision-making in the development of strategic initiatives and policies.

Decision analysis methods have also been applied to technology assessments. The
decision analysis approach for technology assessment typically involves two steps: devel-
oping a decision analysis framework and ranking the performance of each technology in
the study area using the constructed framework. Lough et al. [25] pioneered a synthesis
of TA, group idea generation techniques, and decision analysis within the context of elec-
tricity utility planning. Nguyen et al. [26] introduced a five-task methodology designed
to evaluate information technology, with the aim of elucidating the societal controversies
surrounding technological innovations. Berg et al. [27] introduced a value-oriented policy
generation methodology for TA, consisting of a six-step assessment procedure involving
goal clarification, goal realization status, analysis of conditions, projection of develop-
ments, identification of policy options, and synthesis and evaluation of policy options.
McDonald et al. [28] conducted assessments of energy technologies based on learning curve
dynamics. More recently, Liang et al. [29] developed a fuzzy group decision support frame-
work for prioritizing the sustainability of alternative fuel-based vehicles. Dahooie et al. [30]
used a fuzzy multi-attribute decision-making (F-MADM) method to rank interactive televi-
sion technologies. To enhance the credibility of decision analysis results, other tools can be
incorporated into the decision analysis framework. Zeng et al. [31] proposed a fuzzy group
decision support framework and introduced a Pythagorean fuzzy aggregation operator
to compensate for existing shortcomings and enhance credibility. They demonstrated the
complete process of their multi-criteria decision-making (MCDM) model by evaluating
unmanned ground transportation technology and conducting comparative and sensitivity
analyses. Dahooie et al. [32] proposed an integrated framework based on sentiment analy-
sis (SA) and MCDM technology using intuitionistic fuzzy sets (IFS). They evaluated and
ranked five cell phone products using online customer reviews (OCR) on Amazon.com
to illustrate the usability and usefulness of OCR. Lizarralde et al. [33] proposed an assess-
ment and decision model for one or several technologies based on the MIVES (Integrated
Model of Value for Sustainability Evaluations) method. Huang et al. [34] introduced a
novel three-way decision model designed to address decision problems involving multiple
attributes. Du et al. [35] proposed a dynamic multi-criteria group decision-making method
with automatic reliability and weight calculation.

Through a review of the three technology assessment methods (i.e., the Delphi method,
scenario analysis, and decision analysis), it is clear that these methods have been applied in
various fields. However, they still have some inherent limitations. The Delphi method lacks
communication of ideas and may be subject to subjective bias and a tendency to ignore
minority opinions. This can lead to assessment results that deviate from reality and are
influenced by the organizer’s subjectivity. Scenario analysis is time consuming and costly
and relies on assumptions that are still in flux, which can affect the reliability of results.
Although this method has an objective basis, it relies heavily on the analyst’s assumptions
about data and is therefore influenced by their value orientation and subjectivity. The
decision analysis method has a limited scope of use and cannot be applied to some decisions
that cannot be expressed quantitatively. The determination of the probability of occurrence
of various options is sometimes more subjective and may lead to poor decisions.

All the three methods, the Delphi method, scenario analysis, and decision analysis,
belong to technology mining methods. Technology mining methods assess technology
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from the perspective of the technology itself, while data mining methods use data related
to the technology for assessment. The key difference between these two approaches is that
technology mining is problem-oriented and past studies have focused on the technology
itself [36,37] rather than directly searching for patterns in data. In this work, we intro-
duce technology-related data for use in technology assessment analysis. Of course, some
scholars have tried to use bibliometric methods [38–41], but the methods involve too many
indicators and may only be applicable to some fields, which is not conducive to extending
to other fields.

To overcome the aforementioned limitations, a concept of technological knowledge
flows (TKFs) can be utilized because the citation information on the scientific paper or
patent has been considered a reliable proxy for TKF [42]. Analyzing technology through
citation analysis is a common practice, with past scholars typically utilizing patent data
for this purpose. By examining the correlation between highly cited patents and emerging
technologies, researchers have sought to uncover the developmental trends of technol-
ogy [43,44]. Additionally, some scholars have observed that in citation analysis, scientific
paper and patents convey remarkably similar information regarding technology, whether in
terms of temporal distribution or the degree of association with specific technologies [45,46].
In recent years, a substantial number of scholars have continued to investigate technol-
ogy through the concept of knowledge flow in their research [42,47–49]. Park et al. [42]
proposed a future-oriented approach to discovering technological opportunities for con-
vergence using patent information and a link prediction method in a directed network.
Chen et al. [47] tested the hypothesis that patent citations indicate knowledge linkage by
measuring text similarities between citing-cited patent pairs and finds that examiner cita-
tions are a better indicator of knowledge linkage than applicant citations. Żogała-Siudem
et al. [48] introduced a reparametrized version of the discrete generalized beta distribution
and power law models that preserve the total sum of elements in a citation vector, resulting
in better predictive power and easier numerical fitting. It is worth noting that, when em-
ploying citation analysis to explore mutual citations among technologies, both patents and
scientific paper hold equal importance. However, this article diverges from conventional
citation analysis approaches, focusing instead on the interplay of mutual citations between
technologies. Notably, scientific papers prove to be the more effective resource for studying
mutual citations. Consequently, this study relies on the selection of scientific paper data to
drive its research objectives.

The interconnectedness between science and technology stands as a symbiotic relation-
ship that mutually reinforces their progress. Fundamental scientific research constitutes a
pivotal pursuit, serving as the foundational bedrock for the advancement of technology.
Conversely, technology plays a profound role in shaping scientific research. Modern tech-
nology empowers scientists with high-resolution instruments and precision equipment,
granting access to intricate data that was once inaccessible. For instance, astronomers can
plumb the depths of the universe through sophisticated telescopes and detectors, while
biologists accelerate genome analysis via high-throughput sequencing techniques. This
dynamic interplay between contemporary science and technology initiates a virtuous cycle,
with each propelling the other forward, thereby enhancing our understanding of the natural
world and fostering technological innovation.

Within this context, scholarly papers assume a pivotal role in communicating the
outcomes of scientific research. By disseminating their discoveries, insights, methodologies,
and results through academic journals and conference proceedings, researchers contribute
to the dissemination of cutting-edge scientific insights and the expansion of technological
boundaries. As research extends beyond mere journal articles, its comprehensive knowl-
edge structure takes form through the intricate web of references between these articles.
These cross-citation relationships can reflect technological development to some extent [50].
In this paper, we explore technology advancement assessment from the perspective of
knowledge flow by analyzing paper data and their cross-citation relationships.
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3. Data and Models

The research methodology employed in this study is shown in Figure 1 and comprises
two main components: (1) Data collection and pre-processing, and (2) Cross-citation
calculation and model formulation. The initial stage involves retrieving potentially relevant
papers from the Web of Science core database using key search terms pertaining to the
specific technical domain. Subsequently, the collected papers are refined using a binary
classifier that employs term frequency to differentiate between relevant and irrelevant
sources. The initial step encompasses retrieving potentially pertinent papers from the Web
of Science core database by employing key search terms aligned with the specific technical
domain of interest. The collected paper is then refined using a binary classifier, which
utilizes term frequency to discern between relevant and irrelevant papers. The subsequent
step involves computing cross-citations among corresponding papers for each technology
within the domain, resulting in the creation of a cross-citation matrix. Subsequently, a
technology assessment model is proposed that incorporates the cross-citation matrix to
generate advanced assessment results for each technology.
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3.1. Data Collection and Pre-Processing

Web of Science, maintained by Clarivate Analytics, is a citation database encompass-
ing over 34,000 peer-reviewed journals worldwide across a diverse range of academic
disciplines, including natural sciences, social sciences, and humanities. For this paper, all
research data is sourced from the Web of Science database due to its comprehensiveness
and reliability. The way to obtain paper data in this paper is by keyword search. All
papers retrieved from the database was exported as txt files for further data processing.
However, the paper obtained by keyword search alone will have a lot of interfering data,
which is because many articles simply mention that the keyword will also be retrieved or
some keywords have multiple layers of meaning, and the papers with all the meanings
involved in the keyword will be retrieved by keyword search. The authenticity of the
data has a great impact on the data processing results and also on the final conclusions.
Therefore, it is a critical task to filter the target papers from the papers obtained by keyword
search. Here, we improve a support vector machine (SVM) approach [51] to perform the
relevant/irrelevant dichotomous classification of the papers retrieved through keywords:

Step 1: Text Preprocessing. In this stage, the abstract section of the paper is exclusively
extracted and subjected to a series of preprocessing steps such as division, deactivation,
and normalization. This process aims to enhance the quality and readability of the text.

Step 2: Feature Extraction. The text information is transformed into numerical vectors
using the bag-of-words model, Term Frequency-Inverse Document Frequency (TF-IDF),
and other techniques. These numerical vectors serve as input features for the SVM model.

Step 3: Model Training. Researchers manually annotate a subset of paper to facilitate
model training. It should be noted that during the labeling process, we encountered
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instances where certain documents were associated with multiple technologies. This
phenomenon arose due to the fact that some documents addressed multiple topics within
their scope. However, it is important to emphasize that this situation does not exert any
influence on the findings or conclusions presented in this paper. In the second round of
testing, randomly selected annotated papers ensure the accuracy of the labeled papers
dataset. The ratio of relevant papers to irrelevant papers is 1:1, and 80% of the papers are
selected randomly for training, while the remaining 20% is reserved for classification effect
evaluation. The SVM model is trained using the labeled paper dataset to determine the
hyperplane with the maximum interval on the feature space for separating the relevant
and irrelevant paper. The kernel function is chosen as the linear kernel function, with a
penalty factor of C = 1.0.

Step 4: Model Evaluation. The performance of the SVM model in terms of classification
and generalization abilities on unknown data is evaluated using cross-validation, confusion
matrix, accuracy, recall, and other relevant metrics.

Step 5: Document Classification. The trained SVM text classification model is ap-
plied to all the papers, and papers judged as relevant are labeled with “1”, while those
deemed irrelevant are labeled with “0”. Only papers labeled “1” are retained for later
cross-citation calculation.

The training sample size in Step 3 also has a great impact on the model training, so the
sample size for SVM classifier learning is determined before the parameters are determined.
In this paper, the SVM classifier is trained using different number of sample sizes for
each technique separately. The resulting classifiers are then used to classify all papers
corresponding to each technique separately. The selection of the sample size is determined
by the stability of the classification situation, and the formula for quantifying the stability
of the classification effect is shown in Equation (1):

σn = |ωi(n)− ωi(n − 100)|/Pi, n > 100 (1)

where σn denotes the degree of classification stability of papers using the SVM classifier.
ωi(n) notes the number of target paper obtained after classification using SVM classifier
when the training sample size is n. Pi denotes the initial amount of papers corresponding
to technology i.

In this paper, we assume that the classification effect is sufficiently stable and meets
our requirements when σn is less than 0.01.

3.2. Cross-Citation Calculation and Model Formulation

In the previous step, we preprocessed the target paper for cross-citation analysis. To
obtain cross-citation data between papers corresponding to two technologies, we developed
a Python script. Firstly, we extracted the DOI for each paper corresponding to technology
i and placed them all into set Si. Next, we extracted the DOIs for all references in papers
corresponding to technology j and placed them all into set Sj. Si(m) represents the m-th
element in the set Si, and Sj(n) represents the n-th element in the set Sj. The citation
relationship between papers associated with technology i and technology j is expressed by
Equation (2), where dij

mn denotes the citation link between the two technologies. dij
mn = 1

signifies that papers on technology j cite papers on technology i. Conversely, dij
mn = 0

indicates no citation relationship, as papers and DOIs have a one-to-one correspondence.
The fundamental premise of the technology assessment method presented in this paper is to
evaluate the progress of specific technologies by examining the mutual citation relationships
between documents related to them. Therefore, while the primary focus of this study is
paper analysis, the ultimate purpose is to assess the technological advancement of specific
technologies cited in the papers.

dij
mn =

{
1
0

,
if Si(m) = Sj(n)

otherwise
(2)
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According to the citation relationship between technology i and technology j shown
in Equation (2). The citation number Cj

i of technology j from technology i is calculated
as follows:

Cj
i = Σ|Si |

m=1Σ|Sj |
n=1dij

mn (3)

The concept of cross-citation is key to our approach: the frequency with which technol-
ogy i cites technology j is calculated, providing a measure of interconnectivity. Employing
the formula outlined in Equation (3), we extrapolate this two-way cross-citation to en-
compass multiple technologies within a particular field. Consequently, we assemble a
cross-citation matrix for all technologies under investigation (Table 1). In this matrix, ti

represents technology i, while Cj
i indicates the number of times all relevant documents

derived from technology j are cited by all relevant documents derived by technology i
through keywords in the web of science. The subsequent analysis of this matrix facilitates a
comprehensive assessment of technological advancement.

Table 1. Cross-citation matrix of paper corresponding to technology.

t1 t2 . . . ti . . . tj

t1 - C2
1 . . . Ci

1 . . . Cj
1

t2 C1
2 - . . . Ci

2 . . . Cj
2

. . . . . . . . . - . . . . . . . . .
ti C1

i C2
i . . . - . . . Cj

i
. . . . . . . . . . . . . . . - . . .
tj C1

j C2
j . . . Ci

j . . . -

Scientific paper plays an indispensable role in portraying scientific and technolog-
ical evolution, serving as the building blocks of human knowledge. Each subsequent
publication references its predecessors, embodying the progressive accumulation of knowl-
edge over time. Citation count within scientific publications not only acknowledges the
intellectual debt to previous works but also establishes the context for the knowledge
continuum [52,53]. Consequently, citations have become the backbone of bibliometric
studies, enabling the appraisal of technological development, research performance, and
the mapping of knowledge evolution or technological trajectories.

Cross-citation relationships, in particular, capture the dynamics of technological con-
vergence and diffusion. Technological convergence manifests through backward citations
(references), while diffusion is mirrored through forward citations (cited paper). The extent
of knowledge integration and dissemination is thus represented by the degree of entry and
exit within the citation-constructed knowledge network [54].

In-degree index r(i) refers to the number of times paper i cites other papers. A higher
in-degree indicates that paper i cites more other papers, representing a greater momentum
of knowledge convergence from other sources to paper i

r(i) =
k

∑
j=1, j ̸=i

Cj
i (4)

where k denotes number of technologies.
Out-degree index c(i) refers to the number of times paper i is cited by other papers.

A higher out degree indicates that paper i is cited more by other papers, representing a
greater momentum of knowledge diffusion from paper i to other sources.

c(i) =
k

∑
j=1, j ̸=i

Ci
j (5)
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Hypothesis 1. For any two technologies i and j, if Cj
i (the citation count from technology i to

technology j) exceeds Ci
j, it implies that technology i may be more advanced than technology j. This

is mathematically represented as:
Zi > Zj, if Cj

i > Ci
j (6)

where Zi, Zj denotes the advancement value of technology i and j, respectively.

This assumption takes its cue from the inherent properties of knowledge fusion and
diffusion reflected in the out-degree centrality of citation networks. If technology i cites
technology j more frequently than vice versa, then technology i is deemed more advanced.
This observation is attributed to the premise that technology i harnesses the salient features
of technology j to instigate a technological leap, thereby engendering a more sophisticated
and advanced technology.

Following Hypothesis 1, we measure the level of technological advancement by
analyzing the citation ratios within the papers associated with each technology. When
assessing the technological advancement of two individual technologies, the ratio can
be directly employed for quantification. However, in the case of multiple technologies,
considering the mutual influence among them, quantifying the technological advancement
of a specific technology entails summing the ratios of pairwise mutual citations between the
corresponding paper of that technology and all other technologies. Moreover, to account
for potential disparities in citation volumes among technologies and mitigate the impact of
scale effects, we have introduced the logarithmic function.

When considering two technologies, their respective advancement can be discerned
by their cross-citation ratio. However, for three or more technologies, the advancement
measure cannot be deduced from the cross-citation ratios alone. Instead, a matrix of cross-
citations is formed, as depicted in Table 1. To take advantage of the collective information
of all technologies, the technological advancement index Zi is derived as follows:

Zi =
1
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, k ≥ 2 (7)

In this study, we account for the scale effect of a technology by computing the number
of associated articles, while self-citation effect is omitted. Note that the value of parameter
a does not influence the final outcomes of the technological advancement.
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As a result, Zi remains the same regardless of the value of a. □

Parameter b is used to prevent negative scale effects when the reference between
technologies is 0. For ease of calculation, both a and b are set to 2 in the formula.

4. Results

In this paper, we analyze the field of mobile communication technology for technology
assessment. We chose this field for two main reasons. First, mobile communication
technology has been a significant achievement in the development of electronic computers
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and the mobile internet. Over the past half-century, it has profoundly impacted various
aspects of society including lifestyle, production, work, entertainment, politics, economy
and culture. It is one of major technologies that have changed the world. Second, mobile
communication technologies include 2G, 3G, 4G, 5G, and 6G technologies. The progression
of these five technologies is relatively intuitive and clear which makes it convenient to
verify the technology assessment method presented in this paper.

For this article, we selected data from published papers in the category of mobile
communication technologies. The data was sourced from the Web of Science core database.
The keywords used in the search were “2G”, “3G”, “4G”, “5G”, and “6G”. We acknowledge
the potential for increasing the recall rate by incorporating keywords for each technology.
However, after experimenting with the addition of keywords, we have opted to maintain
the current approach using a single keyword. This decision is primarily based on the
following considerations: Firstly, the existing retrieval strategy has already provided a
sufficient dataset to fulfill the requirements of our experimentation. Secondly, the inclusion
of additional keywords carries the risk of introducing a substantial amount of irrelevant
data, which in turn significantly complicates the data preprocessing phase. It is important
to emphasize that the quality of data preprocessing directly impacts the quality of the
final technical evaluation results; the types of paper selected were conference proceedings,
review papers, and online publications; the web of science categories selected were Engi-
neering Electrical Electronic and Telecommunications; the publishers selected were IEEE,
Elsevier and Springer Nature; the period from 2000 to 2022. The data was exported on 30
August 2022. Table 2 shows the amount of data collected using a search style for mobile
communication technologies.

Table 2. The initial volume of papers was retrieved by search formula for mobile communication technology.

Technology 2G 3G 4G 5G 6G

Volume of
Papers 5152 7967 7866 33,050 5281

Since the number of papers for the five technologies from 2G to 6G varies significantly,
this paper first determines the sample size to be used for SVM classifier learning. We trained
the SVM classifier using different sample sizes for each of these five technologies. The
resulting classifiers were then used to classify all paper corresponding to each technology.
We calculated the variation of classification effect with sample size for paper corresponding
to each technology using Equation (1). Figure 2 shows a schematic diagram of how the
number of classified documents stabilizes with training sample size.
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From Figure 2, we found that the classification effects of all five technologies stabilize
(i.e., σn < 0.01) when the sample size exceeds 700 (350 relevant papers and 350 irrelevant
papers). In this paper, we uniformly chose a classification sample size of 1000 for all five
technologies. We conducted 10 randomized experiments for each technology and calculated
the average accuracy of these classifications. Table 3 shows the average accuracy of the
10 classifications for each technology.

Table 3. Average of 10-test accuracy of the five technologies on the SVM classifier.

Technology 2G 3G 4G 5G 6G

Accuracy 0.9867 0.9367 0.9960 0.9767 0.9965

Table 3 shows that using SVM to classify relevant and irrelevant paper for the five
technologies is very effective. The classified paper can be used for subsequent cross-
citation analysis.

We calculated the two-citation intercalation between each technology in the field of
mobile communication technology using Equation (3). After obtaining the two-citation
intercalation between all technologies, we generated a paper cross-citation matrix for
mobile communication technology as shown in Table 4.

Table 4. Matrix of paper cross-citations corresponding to mobile communication technologies.

2G 3G 4G 5G 6G

2G - 417 231 259 6
3G 451 - 742 730 24
4G 403 1427 - 4132 110
5G 739 2271 13,729 - 2159
6G 17 54 525 5819 -

The matrix of interleaved quantities is entered from Table 4 into the technology
assessment model corresponding to Equation (7) in this paper. This allowed us to obtain
quantitative results for the advancement of each mobile communication technology as
shown in Figure 3. When quantified using all years of papers, the results for technological
advancement of mobile communication technologies align with our expectations in terms
of size relationships. Additionally, we found that the technology assessment gap between
4G, 5G, and 6G is significantly higher than that between 2G, 3G, and 4G. This is because our
paper quantifies relative technological sophistication and the latest mobile communication
technologies (5G and 6G) are much more sophisticated than earlier generations (2G, 3G,
and 4G).

To discern the temporal development trend of each technology, we conducted a year-
by-year quantification of mobile communication technologies, initially counting the volume
of relevant papers as displayed in Figure 4a. To mitigate the instability in technology
assessment results due to sparse paper data, the commencement year for the assessment
was set at 2010, where papers spanning 2000–2010 was considered. Moreover, the inception
year needed to satisfy the condition that the annual volume of papers reached at least 1%
of the technology’s total papers volume. Upon fulfilling these criteria, the assessment’s
inception year was thus established as 2010 for 2G, 3G, and 4G, 2014 for 5G, and 2019 for
6G. The ensuing technology assessment results for mobile communication technologies
over time are depicted in Figure 4b.
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As inferred from Figure 4a, the paper volume for 2G to 4G technologies has peaked
and is currently in decline, whereas the paper volume for 5G and 6G continues to exhibit
a year-on-year growth. The diminished volume of paper in 2022 can be attributed to the
data cut-off point on 30 August 2022, which precludes a full year’s worth of paper for 2022.
Presently, the research interest in 5G markedly outstrips that of other technologies.

Turning to Figure 4b, we executed the technology assessment for the five technologies
from 2010–2021, yet the 2010 technology assessment results are only applicable to 2G, 3G,
and 4G. This limitation is rooted in the non-simultaneous emergence of the five technolo-
gies; only 2G, 3G, and 4G were accessible in 2010, with subsequent technologies entering
the scene as time progresses (5G in 2014 and 6G in 2019). When a nascent technology is
introduced into the assessment, it typically gains an immediate edge. This phenomenon
stems from our cross-citation-based methodology, which lends an advantage to emerging
technologies that frequently cite pre-existing ones. Concurrently, the introduction of an
emergent technology may impact (typically negatively) the assessment of extant technolo-
gies. For instance, upon the entry of 5G in 2014, a sharp decline was observed in 4G’s
assessment results, and a similar trend followed in 2019 when 6G entered the assessment,
causing a significant dip in 5G’s results.
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This pattern can be attributed to our methodology, which hinges on technology cross-
citation as a quantitative metric. Intriguingly, the impact of emerging technologies on
varying technological advancement values is not uniform. This variation is due to the fact
that emerging technologies predominantly cite the most recent generation of technologies
in their research, influencing the assessment results of preceding generation technologies
in the process. Despite this, our methodology maintains a high accuracy in identifying the
most advanced technologies. In fact, the highest technological assessment values from 2010
to 2021 consistently align with the most advanced technologies in practical use.

The following quantitative analysis of technological advancement using other rele-
vant bibliometric methods further validates the reliability of the quantitative approach in
this paper.

5. Comparative Analysis

To better analyze the characteristics of our proposed method, several technology
assessment methods based on citation analysis are introduced to quantitatively analyze
mobile communication technology. We compared the quantitative results to illustrate the
advantages of our proposed method and its implications for technology assessment and
forecasting work.

5.1. Method Introduction

Citation analysis has emerged as a prevalent tool in bibliometric research, serving
to evaluate technological advancements, research performance, and the progression of
knowledge or technological trajectories. Gutiérrez-Salcedo et al. [55] employed the h-index
and g-index to delineate research focal points and technological trends. Acosta et al. [56]
examined the relationship between scientific and technological growth across Spain’s
regions by analyzing the links between science and technology through scientific citations
in patent. Hall et al. [57] posited that, among all patent-related indicators, patent citations
offer a more suitable measure for appraising market value. Stuart et al. [58] utilized patent
citations to gauge technological progress and technology transfer within companies.

In knowledge networks developed via citation connections, increased centrality signi-
fies a greater number of connections to network participants. Brass et al. [59] contended
that, from an organizational behavior standpoint, an individual with higher centrality in
a social network wields greater power. The network nodes directly linked to a specific
node reside within that node’s domain. The quantity of neighboring nodes is termed node
degree or connectivity degree. Brooks et al. [60] asserted that node degree is proportional
to the likelihood of acquiring resources. Node degree represents the extent of a node’s
participation in the network, serving as the foundational concept for measuring centrality.
In his 2010 study, Lee evaluated the significance of technology by constructing a patent
citation network to compute out-degree and in-degree centrality [54]. In the present paper,
we adopt Lee’s methodology to assemble a complex network of paper citations encom-
passing five technologies (2G to 6G). Subsequently, we calculate the degree centrality for
each technology to quantify it, and compare our findings with those obtained using our
proposed method.

(1) h-index. The retrieved papers for a specific technology are ordered based on their
citation frequencies. The h-index associated with the technology is defined as the value of
h, such that the top h papers each have a citation frequency of at least h, while the citation
frequency of the (h + 1)th paper is less than (h + 1). Denoting the citation frequency of the
h-th paper as xi, the mathematical representation of the h-index can be expressed as

h = max(i) : xi ≥ i (8)

The h-index adeptly merges two key indicators, namely the number of publications
associated with a particular technology and the citation frequency reflecting the paper’s
quality. This approach overcomes the limitations of relying solely on a single indicator to
quantify technological advancement.
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(2) g-index. Similarly, the g-index considers the retrieved paper of technology ranked
by citation frequency. The g-index is defined for a given technology such that the total
number of citations garnered by the top g papers is no less than g2, while the total number
of citations for the (g + 1)th paper is less than (g + 1)2. The mathematical representation
of the g-index can be expressed as

g = max(i) : xi ≥ i2 (9)

(3) In-degree centrality. The ratio of the number of references to other paper in paper
i to the total number of references to other papers in all paper. The higher the centrality
of entry, the greater the momentum of knowledge integration from other paper to paper
i. The higher the centrality of entry, the greater the momentum of knowledge integration
from other papers to paper i.

r′(i) = r(i)/
k

∑
i=1

r(i) (10)

(4) Out-degree centrality. The ratio of the number of citations of paper i by other
papers to the total number of citations of all paper. The higher the centrality, the greater the
momentum of knowledge dissemination from paper i to other papers.

c′(i) = c(i)/
k

∑
i=1

c(i) (11)

(5) Modified Xiang’s index. Xiang employs novelty, technological breakthrough, and
potential scientific impact as three metrics for measuring emerging technologies, combining
the normalized values of these three indicators to derive the technology assessment results.
It is important to note that the potential scientific impact metric involves expert ratings of
the technology topic; therefore, we only consider the normalized values of the first two
indicators for comparison. Additionally, for enhanced comparability, this study selects
paper data consistent with the data type chosen in this research. The specific formula is as
follows [61]:

DT = α× 1
t − Fγ+ 1

+ β ×
np

∑
i

CTi
np

(12)

where DT represents the outcome of the technical assessment, and α and β are adjustment
coefficients for tuning the weights of each indicator. This study adopts the recommended
weights by Xiang, with α set to 0.25/0.65 and β set to 0.4/0.65. t represents the current
year, Fγ represents the starting year of the target technology. paper i is the target paper,
and paper p is the backward citation paper of paper i. CTi represents the count of citations
in paper p that reference paper i, and np represents the total number of paper p.

Although the h-index, g-index, out-degree centrality, and in-degree centrality are
typically not directly employed for technical evaluations, they do hold relevance. The h-
index and g-index are commonly utilized to gauge academic influence, while the centrality
metrics within the scientific paper citation network reflect the importance of research
contributions, a factor closely intertwined with technological progress. This allows us
to assess the advanced nature of a specific technology based on its academic influence
and the significance of associated paper. The modified Xiang’s index approach involves
selecting indicators relevant to the technology and conducting a comprehensive calculation
by allocating weights to the chosen indicators. In light of our technology evaluation
results, we can now compare them with the outcomes obtained through the five methods
mentioned above.

5.2. Results Comparison

The assessment outcomes employing the h-index and g-index are illustrated in
Figure 5a,b. To enhance comparability, we transformed the h-index and g-index for
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each technology into percentages relative to the collective h-index and g-index for all
five technologies.
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Figure 5a,b indicate that the h-index and g-index provide accurate technological
progression measures for technologies with a longer developmental duration, such as
2G to 5G. Nevertheless, for 6G, a technology with a shorter developmental timeline, the
outcomes diverge from reality due to the restricted volume of paper. The quantification
results of mobile communication technology using in-degree centrality are delineated
in Figure 5c,d. These figures reveal that while in-degree centrality proves effective in
quantifying technologies like 2G, 3G, and 4G, it underperforms for 5G and 6G, as evidenced
by marked discrepancies with the actual situation. When resorting to out-degree centrality
solely for the quantification of mobile communication technologies, the size relationship of
the quantification outcomes over time appears distorted, leading to subpar quantification.

The technology assessment results using the modified Xiang’s Index method are
illustrated in Figure 5e. The assessments for 2G and 3G appear reasonable, with 4G showing
a deceleration in development speed following the emergence of 5G. The development
trend for 5G exhibits a recent rapid growth. However, a notable deviation is observed in
the assessment of 6G technology. While it initially led the evaluation in the first year of
inclusion in 2019, it has since experienced a continuous decline. This discrepancy with
reality is primarily attributed to the relatively recent appearance of paper on 6G technology.
The technological breakthrough indicator for 6G is notably lower due to its limited citations
compared to other technologies, coupled with the explosive growth in the paper on 5G in
recent years.

Figure 6 contrasts the results obtained by each technology assessment method for
2G–6G technologies over the entire duration. The method proposed in this study yielded
reasonably accurate results; however, the assessment rankings obtained through the use
of five other methods failed to precisely reflect the actual scenario. This inaccuracy is
particularly notable in the 6G assessment results, which are deemed inferior among the
2G–6G technologies when gauged using the other five methods, i.e., h-index, g-index,
In-degree centrality, Out-degree centrality, and modified Xiang’s index. Specifically, 4G is
prioritized when using in-degree centrality for technology assessment, while the remaining
four methods consistently favor 5G. This inconsistency is ascribed to the five alternate
technology assessment methods’ reliance on the quantity of publications and citations (both
citation and cited quantities). Conversely, our study introduces a cross-citation method
that examines technology from the perspective of knowledge flow, yielding a more agile
and precise assessment.
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Figure 6. Comparison of the outcomes procured by each technology assessment method throughout
the entire duration.

Figure 7 illustrates the aggregate accuracy and mean annual accuracy of the ranking,
resulting from the implementation of our proposed method in conjunction with the other
four assessment techniques. As can be observed in Figure 7, the highest accuracy rates are
realized when employing the method proposed in this paper. Particularly, our method,
paired with in-degree centrality, delivers optimal results in terms of mean annual accuracy.
Of significance is the remarkable overall accuracy, reaching a 100% score, yielded by our
cross-citation-based method, a figure considerably superior to the other four methods.
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Upon utilizing the five methods of h-index, g-index, in-degree centrality, out-degree
centrality, and modified Xiang’s index for technology assessment, the average level of
overall and mean annual accuracy falls short when compared to our cross-citation-based
approach. This stems from the fact that an accurate measure of technological progression
using h-index and g-index requires an extended duration of technological development
and an ample corpus of papers. Conversely, the singular reliance on access centrality in
quantifying technological progress presents an inherent bias. More citations to a technol-
ogy’s papers signify stronger diffusion momentum, while more citations to other paper
suggest a stronger convergence momentum. Nevertheless, neither diffusion nor conver-
gence momentum directly corresponds with technological advancement. The modified
Xiang’s index method has introduced temporal indicators, the technology breakthrough
metric places greater emphasis on the citation count of the paper, neglecting the quantity of
paper citing other publications.
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Our proposed cross-citation-based approach addresses these issues by integrating
cited and citing data to measure technological advancement, employing a blend of diffusion
and convergence momentum. The primary innovation of our method lies in its ability to
identify the optimal technology in a given field for each period, boasting an impressive
100% accuracy rate and high stability, thereby outperforming alternative methods.

6. Conclusions and Prospect
6.1. Conclusions

In this paper, we conduct a technology assessment by analyzing the cross-citations
among the paper associated with each technology. This approach enables us to identify
the relative advantages of emerging technologies within a specific domain and forecast the
future development trends of various technologies in that field. The proposed technology
assessment model based on cross-citation integrates both out-degree and in-degree metrics,
addressing the limitations associated with solely using either out-degree or in-degree for
technological assessment. Simultaneously, it resolves challenges posed by the stringent
requirements for paper accumulation when employing h-index and g-index in technological
assessments. It is noteworthy that the relatively nascent modified Xiang’s index method,
despite introducing a temporal dimension to characterize technological novelty, encounters
similar limitations as using out-degree centrality alone when relying solely on the citation
quantity for the technological breakthrough metric. Cross-citation effectively mitigates
the drawbacks associated with the aforementioned five methods. While the technological
quantification approach presented in this paper exhibits significant advantages, it is not
without certain limitations.

On the one hand, the publication of paper generally appears several months later than
the technology recorded on the paper record, which creates a time gap between the paper
record and the technology development. On the other hand, technology development is
influenced by scientific, technological, social, economic, and policy factors. It’s important
to note that not all of these factors can be considered when evaluating the technology using
the method described in this paper.

The premise of quantifying technological advancement based on the amount of cross-
citation is that there are at least two technologies, and the quantification formula in this
paper cannot be quantified in the face of a single technology. In the future, we can try
to integrate more factors related to technological relevance in the quantification work to
optimize the quantification results of technological advancement.

Since the data source of this paper is the scientific paper, this leads to the fact that, the
technology quantification work done in this paper can only quantify the past tense, and the
method cannot be implemented for the quantification results of the existing technologies at
a certain period in the future.

6.2. Prospect

The quantification of technology through cross-citations among paper is not effective
in individual cases due to the reasons mentioned above, but it is one of the influential and
effective methods in technology quantification work. To overcome these limitations, other
evaluation indicators that have an impact on technological advancement can be considered
with cross-citation as the main indicator.

Time-series analysis. The novelty of technology, as a crucial indicator for assessing
technological advancements, can be incorporated into our technology evaluation through
time series analysis, enhancing the robustness and rationality of our assessment results.

Hot spots of technological development. Journals and magazines have collected
various technical paper according to the principle of discipline classification or theme, and
through the comparative analysis of the changes in the volume of its various types of paper
or to understand the increase or decrease in the category and the reasons, from which to
study the focus of technological development and the frontier of possible breakthroughs.
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In addition, this paper has analyzed the change in the quantitative results of mobile
communication technology with the year, and the next step can predict the technological
advancement of existing technologies after 5 years and 10 years based on the technology
assessment results of existing years.
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