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Abstract: Global warming may have a complex effect on soil carbon mineralization across mountain
elevations. Elevational zonation governs the soil natural composition of mountain ecosystems
due to different temperature conditions. Understanding the response of carbon mineralization to
climate change, particularly the temperature sensitivity (Q1), is crucial for assessing the effects
within mountain vertical zones. Despite this, the spatial variation and influencing factors of organic
carbon mineralization at these zones remain unclear. We conducted a microcosm study in Changbai
Mountain, Northeast China, to examine the response of soil carbon mineralization to warming
across six different elevations (1000, 1400, 1600, 1800, 2000, and 2200 m). The soil samples were
incubated at 5 °C, 15 °C, and 25 °C for 71 days. The results showed a significant elevation-dependent
increase in the rate of soil organic carbon mineralization (C,,;,,), with the birch forest exhibiting the
highest values. Qg varied across elevations, with the highest value (1.57) in the coniferous forest
(1400 m), and the lowest (1.32) in the tundra (2200 m). The potential of organic carbon mineralization
(Co) demonstrated an increasing trend from 5 °C to 25 °C across the six elevations. Elevation and
soil properties, especially pH, bulk density (BD), and dissolved organic carbon (DOC), emerged as
critical factors influencing organic carbon mineralization; notably, elevation played a crucial role. In
summary, our findings highlight the common regulatory role of elevation and soil properties in soil
carbon mineralization dynamics within the vertical zones. Future research should pay attention to
the distinctive features of vegetation zones to analyze how mountain carbon pool function responds
to global climate change.
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1. Introduction

Since the Industrial Revolution, human activities have significantly affected green-
house gas emissions, ultimately leading to global warming. It is estimated that the global
temperature will increase by 1.5 °C from 2021 to 2040 [1]. Temperature, a crucial envi-
ronmental factor, profoundly impacts the carbon cycle, with global warming expected
to stimulate organic carbon mineralization, potentially triggering potential positive feed-
back [2,3]. Some studies have demonstrated that warming may promote soil microbial
activity, accelerate organic decomposition, and lead to a decline in soil carbon storage [4,5].
Notably, a mere 1 °C temperature rise could result in an approximately 6% reduction in
soil organic carbon across the global surface (0-30 cm) [6]. This complex interaction results
in multi-level and regional differences in carbon mineralization, significantly impacting
the global carbon cycle. In the meantime, warming may also change the distribution of

Sustainability 2024, 16, 1350. https:/ /doi.org/10.3390/s5u16031350

https:/ /www.mdpi.com/journal/sustainability


https://doi.org/10.3390/su16031350
https://doi.org/10.3390/su16031350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16031350
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031350?type=check_update&version=3

Sustainability 2024, 16, 1350

2 of 14

vegetation and the growing season, which in turn affects the carbon absorption capacity
of global vegetation [7]. Forest soils, serving as an important organic carbon pool within
the global ecosystems, play a crucial role in regulating the carbon balance and preserving
climate stability [8,9]. However, carbon stored in forest soil has the potential to re-release
into the atmosphere as CO, and CHy, thus contributing to greenhouse gas emissions.
Consequently, the process of soil organic carbon mineralization in response to warming is
believed to be a key mechanism influencing the carbon cycle and the overall carbon pool
function in forest ecosystems.

Temperature sensitivity (Qjp) is crucial to assess the impact of warming on soil or-
ganic carbon and to determine the gas emission rate at 10 °C warming. In mountainous
ecosystems, Q9 may be regulated by the elevation and vegetation type [10-12]. Warm-
ing can potentially alter soil properties, such as nutrition, texture, and mineral content,
significantly affecting the quantity and quality of organic carbon. These changes lead to
various responses in the rate of carbon mineralization and Q19 across the different vertical
zones [13,14]. Current evidence indicates that the Qj¢ of organic carbon mineralization
exhibits temperature dependence, showing variability at different temperatures [15,16].
Generally, Q19 tends to increase with an elevated temperature. Furthermore, it has been ob-
served that low-temperature warming induces a higher Q19 compared to high-temperature
warming for the same temperature increase [17,18].

The sustainable management of the carbon pool in mountain soil is a central and chal-
lenging focus of current research. The elevational zonation of mountains exerts a significant
influence on the spatial distribution of organic carbon [19], displaying an extreme sensitiv-
ity to climate change [20,21]. The mountain ecosystem exhibits distinct vertical gradients
in vegetation and soil properties, with the stability of the mountain carbon pool influenced
by factors such as vegetation and soil properties [22,23]. The vertical zonal vegetation
pattern of Changbai Mountain is typical in northern China, including four vegetation zones:
coniferous and broad-leaved forests, coniferous forests, birch forests, and tundra. Elevation
induces variations in environmental factors, resulting in a natural diversity in organic
carbon distribution [24]. Our previous research found an initial increase in soil carbon
storage with elevation, reaching its peak in coniferous forests before declining [25]. How-
ever, the temperature sensitivity of soil organic carbon mineralization and its vertical zonal
variation under warm conditions remain unclear. We conducted a warming incubation
experiment using soil samples of six elevation gradients in Changbai Mountain to examine
the vertical distribution of organic carbon mineralization and its temperature sensitivity.
Our hypotheses were as follows: (i) the rate of soil carbon mineralization decreases with
increasing elevation; (ii) the change in the soil carbon mineralization rate was the most
significant in birch forests under an increasing temperature; and (iii) soil properties regulate
soil carbon mineralization.

2. Materials and Methods
2.1. Study Area

The study area is located on the northern slope of Changbai Mountain (Figure 1),
which belongs to a continental mountain climate with cold—dry weather in winter and
warm-rainy weather in summer. The temperature on Changbai Mountain varies with the
elevation gradient. The mean annual temperature ranges from —4.17 to 3.15 °C and mean
annual precipitation ranges from 655 mm to 955 mm. More than 60% of the precipitation is
concentrated during the period from June to September. The vertical variation in vegetation
across Changbai Mountains is distinct (Table 1); from top to bottom, the vegetables are
found in the tundra (>2000 m), birch forest (1700-2000 m), coniferous forest (1100-1700 m),
and coniferous and broad-leaved mixed forest (500-1100 m), respectively.
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Figure 1. Distribution of sampled sites on Changbai Mountain.
Table 1. Summary of the main characteristics of sampled sites.
Elevation (m) Latitude-Longitude Vegetation Zone Vegetation Type (Main Composition)

1000

1400
1600
1800
2000

2200

; Korean pine, White birch, Quercus mongolica, Acer
Coniferous and pine, Q golica,

128.15 E, 42.24 N mono, Tilia amurensis, Ulmus propinoua, and

broad-leaved forests . .

Fraxinus mandshurica

128.13 E, 42.14 N Conif ‘ Picea jezoensis, Abies nephrolepis, Pinus koraiensis,
128.07 E, 42.09 N oniferous forest Korean pine, and Betula costata
128.06 E, 42.06 N . ..
128.07 E, 42.06 N Birch forest Betula ermanii, and Rhododendron aureum
128.07 E, 42.04 N Tundra Rhododendron aureum, Dryas octopetala, Vaccinum

uliginosum, and Rhododendron redovoskianum

2.2. Experimental Design and Soil Sampling

In July 2021, six sample sites were set at elevations of 1000, 1400, 1600, 1800, 2000,
and 2200 m along the northern slope of Changbai Mountain. At each sampling point,
five quadrats were established, measuring approximately 20 m x 20 m with a horizontal
interval of about 50 m; there was a total of 15 samples at each elevation. From each point,
three soil samples were collected using a stainless steel soil drill, ensuring representative
sampling. After removing surface litter, the samples were placed into sealed bags and
transported back to a laboratory. The soil samples at the same elevation were fully mixed;
one portion was utilized for the incubation experiment and determination of soil water
content (SWC), and the other portion was air-dried and passed through a 100-mesh sieve
for a soil properties analysis.

2.3. Sample Analysis
2.3.1. Organic Carbon Mineralization

Soil organic carbon mineralization was determined with the method of a laboratory
incubation—gas chromatograph. In total, 20 g soil samples were placed in a 250 mL conical
bottle, and the soil was adjusted to a water holding capacity (WHC) of 60%. Pre-incubation
was carried out for seven days under three temperature treatments (5 °C, 15 °C, and 25 °C,
to observe the response of the carbon cycle under low-, medium-, and high-temperature
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conditions) to stabilize soil microorganisms. After the pre-incubation, the soils were placed
in a constant-temperature incubator for 71 days (the CO, emission rate was constant,
without significant change on the 71st day, and the experiment was terminated). The bottles
were covered with sealing film with small holes to allow gas exchange while minimizing
water loss. The mineralization rate was measured on days 1, 3, 5, 7, 10, 13, 16, 20, 24, 28, 33,
38, 43, 49, 55, 61, and 71 using a gas chromatograph (Agilent 7890B, Santa Clara, CA, USA).
During each gas sampling event, the sealing film covering the conical bottle was removed,
and a silicone plug with a three-way valve was tightly sealed in place. The gas sample
was collected after 2 h. A 15 mL headspace gas sample was collected by pumping the
syringe three times to mix the gas inside the conical bottle. After sampling, the plug was
removed, and the conical bottle opening was covered with sealing film again [26]. Water
was supplemented regularly during incubation to maintain weight conservation.

The soil organic carbon mineralization rate was expressed via the CO; production rate

as follows:
M-P-Ty-V dc

C.. — iad
Vo Py-T-M dt

1)
where C,,;;, is the CO; production rate in soil (mg~kg_1 -h~1), M is the molar mass of CO,
(mg-mol~1), V is the molar volume (22.4 L-mol ') of CO, in the standard state (1103 hPa,
273 K), P is the actual pressure, Py is the standard state pressure (1103 hPa), P/Py = 1 without
considering the elevation, T is the actual temperature (K), Ty is the temperature of 273 K in
the standard state, V is the volume of the bottle above the liquid level (mL), m is the mass
of the dry soil (kg), and dc/dt is the CO, concentration per hour in the bottle (mL-L~1-h~1).

Organic carbon cumulative mineralization was obtained using the following equation:

Co=Y |  Frt 2)

where C, is the cumulative CO;, mineralization (mg-kg_l), F; is the CO, production rate
(mg-kg~!-h~1) at the time of the ith sampling, and ¢, is the time interval (h) between the ith
and (i + 1) samplings.
Temperature sensitivity (Qjp) of organic carbon mineralization was calculated accord-
ing to the following [27]:
Conin = 2" 3)

Q1o = ' 4)

where C,,;,, is the CO, production rate in soil at T (°C) temperature (mg-kg’1 h™1), ais the
CO; production rate at 0 °C, and b is the temperature response coefficient.

The following first-order kinetic equation was used to simulate the mineralization
process:

C = Co-(l—e’kt> (5)

where C; is the cumulative CO, mineralization (mg-kg~!), Cy is the potential of carbon
mineralization (mg-kg~!, the maximum amount of mineralization in the soil under certain
conditions), k is the mineralization rate constant (d’l), and ¢ is the incubation time. By
fitting the measured cumulative CO, mineralization accumulation, the parameters Cy and
k of the first-order reaction kinetic model of soil can be obtained at different temperatures.

2.3.2. Soil Properties

Total carbon (TC) and total nitrogen (TN) in soil were determined with an elemental
analyzer (Elementar, Hanau, Germany), and total phosphorus (TP) was determined with
a continuous flow analyzer (Skalar Scan++, Breda, the Netherlands). Dissolved organic
carbon (DOC) was determined with the elemental analyzer (Elementar, Hanau, Germany)
after deionized water extraction. Microbial biomass carbon (MBC) was extracted using
a 0.5 M K,SOy4 solution (K;SO4:s0il = 2:1) and then determined using the chloroform
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fumigation extraction method, and pH (water/soil = 5:1) was determined using a pH meter
(Mettler Toledo, Zurich, Switzerland).

2.4. Statistical Analysis

The one-way ANOVA was employed to test the significance of the difference in
the single variable, and the Tukey method was used for multiple comparisons. Two-
way ANOVA was conducted to comprehensively examine the impacts of the elevation,
incubation temperature, and their interactions on soil organic carbon mineralization. The
71-day incubation data were fitted and analyzed using Origin 2021 to explore kinetic
characteristics and temperature sensitivity. The “Pearson correlation” was employed
to analyze the relationships between soil properties and organic carbon mineralization.
Furthermore, a “Random Forest analysis” and “Variance Partitioning analysis (VPA)”
were performed using R 4.3.0 to elucidate the relative contributions of elevation and soil
properties to organic carbon mineralization.

3. Results
3.1. Vertical Variation Characteristics of Soil Organic Carbon Mineralization

Cin was affected by the elevation (p < 0.001), incubation temperature (p = 0.001), and
their interaction (p < 0.001) (Table 2). At the same incubation temperature, C,,;;,, varied
significantly with the elevation, reaching a maximum in the birch forest (2000 m) and a
minimum in coniferous and broad-leaved forests (1000 m). C,,;, exhibited an increased
trend with the incubation temperature. When the temperature increased from 5 to 15 °C
and from 15 to 25 °C, Cy;,, increased by 12.07-65.15% and 16.23-52.48%, respectively.

Table 2. Results of two-way ANOVA for organic carbon mineralization and soil properties. C,;y;:
organic carbon mineralization rate; C,: organic carbon cumulative mineralization; Cy: carbon
mineralization potential; Cy/SOC: organic carbon mineralization capacity; Qpg: organic carbon
mineralization temperature sensitivity.

Temperature Elevation Temperature x Elevation
Index
F p F p F p
Cin 15.967 <0.001 658.177 <0.001 172.309 <0.001
Cn 13.267 <0.001 750.448 <0.001 219.932 <0.001
Co 7.450 0.002 119.077 <0.001 44.472 <0.001
Cp/50C 3.634 0.003 72.294 <0.001 46.275 <0.001
Q10 — — 60.321 <0.001 — —

The elevation gradient (p < 0.001), incubation temperature (p < 0.001), and their
interaction (p < 0.001) had significant effects on C,, (Table 2). When the incubation tem-
perature was from 5 to 15 °C and from 15 to 25 °C, C; increased by 4.92-51.90% and
21.94-77.48%, respectively. C, exhibited a rapid increase in the early stage of the incuba-
tion time and then gradually approached stability (Figure 2). At the same temperature,
Cn had significant variations at different elevations (p < 0.01), with the highest value in
the birch forest (2000 m) and the lowest value in the coniferous and broad-leaved forests
(1000 m). The rise in C,, was lower when the incubation temperature increased from 5 to
15 °C (AC, = 717.27-2382.04 mg-kg ') compared with when it increased from 15 to 25 °C
(AC,, = 1490.08-3679.95 mg-kg 1), while the greatest change was observed at 1400 m.

3.2. Vertical Variation Characteristics of Organic Carbon Mineralization Temperature
Sensitivity (Q10)

Q10 was affected by different elevations (p < 0.001, Table 2), showing an initial rise and
reaching the highest value (1.57) in the coniferous forest (1400 m). Significant variation
was observed in the same vegetation (coniferous forests at 1400-1600 m, Figure 3). There
is a minimum value (1.32) in the tundra (2200 m). Qjp in the birch forest was basically
consistent with the coniferous forest.
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Figure 2. Dynamics of soil organic carbon cumulative mineralization at different incubation tempera-
tures. The lowercase letters represent the difference of C;, at different vegetation zones at « = 0.05. Cy:
organic carbon cumulative mineralization.
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Figure 3. Dynamics of soil Qg at different elevations. The lowercase letters represent the difference
of Qj at different elevations. Qjp: organic carbon mineralization temperature sensitivity.

3.3. Kinetic Characteristics of Organic Carbon Mineralization

The process of soil organic carbon mineralization followed the first-order kinetic model
(Table 3). Cy was significantly affected by the elevation (p = 0.002), incubation temperature
(p < 0.001), and their interaction (p < 0.001) (Table 2), exhibiting an increasing trend with
the incubation temperature. The change in Cy from 15 to 25 °C was greater than that from
5to 15 °C. The maximum of Cy occurred at 1800 m when the temperature increased from 5
to 15 °C. However, when the temperature increased from 15 to 25 °C, Cy at 1400 m showed
the highest value, followed by 1800 m.

Co/SOC was affected by the elevation (p < 0.001), incubation temperature (p = 0.003),
and their interaction (p < 0.001) (Table 2). There was a gradual increase in Cy/SOC at all
elevations with the incubation temperature (Figure 4). Cy/SOC increased by 1.38-90.00%
(from 5 to 15 °C) and 21.25-216.02% (from 15 to 25 °C) with an increasing temperature.
However, at the three incubation temperatures, Cy/SOC showed similar changes following
the elevation gradient.
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Table 3. First-order kinetic equations for organic carbon mineralization.

Temperature (°C) Elevation (m) Ci = Co(1—ekt) R?
1000 Ct = 2378.52(1—e 003t 0.996
1400 Ct = 4277.07(1—e~002t) 0.996
5 1600 Cy = 4349.18(1—e 003ty 0.998
1800 Cy = 4895.36(1—e 002t 0.998
2000 Ct = 4605.27(1—e0-03t) 0.998
2200 Ct = 6232.53(1—e0-02t) 0.999
1000 Ct =2919.59(1—e—0-03t) 0.997
1400 Ct = 6300.08(1—e 002t 0.997
15 1600 Ct = 6537.09(1—e~0-02t) 0.994
1800 Ct = 9314.89(1—e 002ty 0.997
2000 Ct =7978.83(1—e 003t 0.980
2200 Ct = 8730.68(1—e 002t 0.993
1000 Ct = 7314.00(1—e 001t 0.998
1400 Ct =18,121.29(1—e 003t 0.997
25 1600 C = 9707.66(1—e 002ty 0.997
1800 Ci =17,412.72(1—e 001ty 0.999
2000 Ct =11,357.59(1—e 003t 0.997
2200 Ct = 10,583.67(1—e—0-02t 0.993

30
5°C

15°C
B 25°C
20 -
Ab Ca
10
Cbc
0

1000 1400 1600 1800 2000 2200

Elevation (m)

C,/SOC (%)

Figure 4. Dynamics of soil Cy/SOC at different elevations. The lowercase letters represent the
difference of Cy/SOC at different elevations under the same incubation temperature, and the capital
letters represent the difference of Cy/SOC at different incubation temperatures at the same elevation.
Co/SOC: organic carbon mineralization capacity.

3.4. Influence Factors of Organic Carbon Mineralization

Elevation significantly affected soil properties (p < 0.01), while the incubation temper-
ature had no significant impact on soil properties. pH, BD, TN, TP, and MBC showed a
decreasing trend with increasing elevation, while TC and DOC exhibited an increased trend.

The VPA analysis (Figure 5) indicated that the elevation and soil properties explained
79.00% of the total variation of organic carbon mineralization, showing a positive influence
on the soil organic carbon mineralization, and the effect of elevation (69.00%) was the most
significant. The Random Forest analysis results (Figure 6) demonstrated that soil C,,;,,, Cy,
Co, and Cy/SOC were markedly explained by elevation and soil properties, explaining
67.94%, 70.42%, 58.15%, and 63.87%, respectively. The elevation gradient was identified as
the primary variable for organic carbon mineralization. In addition to the elevation, DOC,
pH, and BD are also important explanatory variables for C,,;,, and C,,. TP, DOC, and pH
have significant impacts on Cy, and MBC, TP, and BD are important indicators for Cy/SOC.
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Soil properties Elevation

0.41 0.69

Residuals=0.21

Figure 5. VPA of the contribution of elevation and environmental factors to soil carbon mineralization.
The residuals reflect unexplained variance.

(a) Coin (b) Ca
Elevation | Elevation ]
DOC poc [
pH pH {
BD R?=67.94 BD 1 R?=70.42
TC TP 1
MBC MBC |
TP TC |
N ™l
0 10 20 30 40 50 60 0 3x107 6x107 9x107 12x107
) (d) Co/SOC
Elevation Elevation _
TP vec [
DOC TP |
pH BD
MBC ™ R?=63.87
BD DOC |
TN TC |
TC rH [
0 1x10% 2x10% 3x10% 4x10® 0 2,000 4,000 6,000 8,000
IncNodePurity IncNodePurity

Figure 6. Random Forest analysis of relative effects of soil properties on carbon mineralization.
Cin: organic carbon mineralization rate; Cyp: carbon mineralization potential; BD: bulk density;
TC: total carbon; TN: total nitrogen; TP: total phosphorus; DOC: dissolved organic carbon; MBC:
microbial carbon. The color is used to characterize the scores of different indicators in the Random
Forest analysis.

Pearson correlation analysis results showed that C,,;,, was significantly negatively
correlated with pH, BD, and MBC, while significantly positively correlated with DOC
(Figure 7). pH, BD, TP, and MBC had a negative effect on C,;, while DOC had a positive
effect on it. Cy was negatively correlated with pH, TN, TP, and MBC, and positively
correlated with DOC. pH, BD, TN, TP, and MBC had significantly negative effects on
Co/SOC.
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Figure 7. Random Forest analysis of relative effects of soil properties on carbon mineralization.

04 06 08 1.008 1.0 1.2 1.4 1.6° 2

* k%
7 7

*** represent statistical significance at the level of p < 0.05, p < 0.01 and p < 0.001, respectively. BD:
bulk density; TC: total carbon; TN: total nitrogen; TP: total phosphorus; DOC: dissolved organic
carbon; MBC: microbial carbon.

4. Discussion

The results showed that Q1o had a significant difference across elevations and was
regulated by elevation, incubation temperatures, and their interaction. With increasing
elevation, C,;, first increased and then decreased, and C, showed the largest value in
the birch forest (2000 m) and the lowest value in the coniferous and broad-leaved forests
(1000 m). Meanwhile, C,,;, and C, exhibited an increasing trend with the incubation
temperature. Q19 reached its peak (1.57) in the coniferous forest (Figure 3), indicating more
sensitivity to warming. Furthermore, significant differences in Q19 were observed in the
same vegetation zone (p < 0.01, between coniferous forests at 1400 m and 1600 m, Figure 3).

4.1. Responses of Soil Organic Carbon Mineralization to Warming in Vertical Zones

A significant increase in C,,;;, and C, was observed at all elevations in response to
warming. Additionally, the results of the Random Forest analysis (Figure 6) showed that
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elevation is the most crucial factor for organic carbon mineralization. The alterations in soil
factors caused by elevation, with the temperature being the most prominent factor, could
influence carbon mineralization. Previous research has indicated that the temperature has
a direct impact on soil microorganisms, leading to an increase in the microbial respiratory
quotient and the subsequent release of more CO, [28]. Significant differences were found
in the response of soil organic carbon mineralization to the temperature along the different
elevations. Qg in the tundra was the lowest (Figure 3), possibly related to the lower
microbiological activity. The varying responses at each elevation to the temperature may
stem from differences in microbial community composition [29,30]. Soil microorganisms,
serving as primary catalysts for soil mineralization, could influence the underground
carbon mineralization process through organic carbon decomposition [31,32]. In a low-
temperature environment, the metabolic process of microorganisms is slow, and low
temperatures may affect the soil enzyme activity, further limiting the carbon mineralization
process [33]. This phenomenon is especially significant at high altitudes and latitudes in
cold regions. In a previous study, Kang et al. (2023) [34] found that compared to other
vegetation zones, the tundra has a greater peat soil content and exhibits a less sensitive
response to temperature changes due to lower microbial diversity resulting from the colder
temperatures in the tundra.

C,, exhibited a rapid increase in the initial phase, eventually reaching a state of stability
(Figure 2). This finding is likely attributed to the higher organic carbon content and the
introduction of water into the soil during the initial incubation period, which increases
microbial activity and leads to an increase in CO, release [35]. Previous research has
shown that in the early stages of a warming incubation, the active substrate in the soil is
rapidly utilized without the introduction of external organic carbon. Excessive substrate
consumption may lead to insufficient carbon sources in the soil, which becomes a critical
limiting factor for microbial activity, limiting the growth and metabolic activities of mi-
croorganisms, and resulting in a decline in the mineralization rate [36-38]. Over time, the
mineralization rate stabilizes at a lower level. It is noteworthy that during this process,
the absence of additional organic carbon hinders microbial activity and contributes to the
observed stabilization of CO, release.

At the same incubation temperature, C,,;;, showed an initial decline followed by an
increase as elevation increased. Additionally, C;, exhibited a notable elevation-dependent
pattern, with higher values observed at higher elevations compared to lower elevations
(Figure 2). Notably, C,,;, and Cj, in the coniferous forest (1400 m) changed more significantly
in response to the temperature shifting from 5 to 25 °C. Qjg reached its highest value in
coniferous forests, suggesting a greater sensitivity to temperature changes. This increased
sensitivity may be attributed to the abundance of soil fauna, known contributors to organic
carbon mineralization. Soil fauna plays a crucial role in enhancing soil carbon decline
through ecological processes such as organic matter decomposition, excreta decomposition,
and respiration [39]. In our previous studies, Liu et al. (2023) [40] found a significant
decrease in both the abundance and diversity of soil oribatid mites with increasing elevation
in Changbai Mountain. The abundance displayed a hump-shaped distribution along the
elevational gradient, peaking in the coniferous forest. This finding highlights the interaction
between elevation, temperature, and soil fauna dynamics, shaping carbon dynamics in
Changbai Mountain ecosystems.

Cp serves as an indicator of the soil’s organic carbon mineralization potential, reflecting
the capacity of microorganisms to utilize organic carbon. In our study, Cy exhibited a re-
sponse to the temperature akin to that of C;;. Across all elevations, Cy displayed an upward
trend as the temperature increased (Table 3), suggesting that higher temperatures could
enhance the potential for carbon mineralization. Previous research has indicated that the
increase in the temperature stimulates microbial metabolic activity, thereby promoting car-
bon utilization efficiency by microorganisms and accelerating the process of organic carbon
turnover in soil, which may not be beneficial for carbon sequestration [18]. The Cy/SOC
ratio is the standard to measure the capacity of soil mineralization and carbon sequestration,
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with a higher C(/SOC ratio indicating greater soil mineralization ability [41]. Our findings
showed a steady increase in organic carbon mineralization capacity in Changbai Mountain
in response to warming (Figure 4). This trend is consistent with the elevation-dependent
pattern observed for DOC. It implies that soil microorganisms in Changbai Mountain could
more efficiently decompose organic carbon in response to warming. Notably, the coniferous
forest exhibited the highest values for both Cy and Cy/SOC at 25 °C (Table 3 and Figure 4),
underscoring its higher sensitivity to warming.

4.2. Analysis of Driving Factors of Soil Organic Carbon Mineralization

Mountain forest soil is an important component and nutrient pool of terrestrial ecosys-
tems, and alterations in soil nutrient elements along elevation gradients mirror diverse
ecological strategies in mountain systems. The biogeochemical process of organic carbon
mineralization is intricately influenced by numerous factors, with nutrient availability
emerging as a critical determinant affecting the quantity and quality of organic carbon, as
well as the efficacy of microbial substrate utilization [42,43]. Our investigation in Changbai
Mountain revealed varying degrees of an increase or decrease in soil properties correspond-
ing to changes in elevation. VPA (Figure 5) showed that soil properties account for 41% of
the variability in organic carbon mineralization, underscoring the direct/indirect effects of
elevation-induced changes in soil properties on carbon mineralization. These findings em-
phasize the dynamic interaction between soil properties and organic carbon mineralization
in the unique context of mountainous terrain in Changbai Mountain. A study has shown
that an ample supply of nutrients essential for microorganisms can substantially enhance
their biological activity, thereby promoting the mineralization of organic carbon [44].

In our study, carbon mineralization ability could be attributed to the availability of
organic carbon. According to the kinetic theory, the “carbon quality-temperature” hypothe-
sis predicts that the decomposition of low-quality organic carbon in soil demands more
activation energy and is more temperature-sensitive [45]. Higher organic carbon content is
expected to increase microbial metabolism, thereby enhancing the process of carbon miner-
alization [46,47]. It is generally believed that soils with higher C/N exhibit lower organic
carbon quality and need greater activation energy for organic carbon mineralization, with
more temperature sensitivity [9,48]. In our study area, the soil with higher C/N demon-
strated a higher Qy9, aligning with established research conclusions. This relationship
reinforces the idea that the quality of organic carbon serves as a valuable indicator of soil
organic carbon mineralization, influencing the sensitivity of the soil microbial community
to temperature variations.

A significant positive correlation (p < 0.01, Figure 7) was observed between DOC and
Cin, Cn, and Cy. This correlation underscores the vital role of DOC as an easily decomposed
source for organic carbon mineralization, given the variability in bioavailability among
soil organic carbon components. Solid organic carbon, being less bioavailable, should be
dissolved before it can undergo mineralization into CO, and CHy [49]. According to kinetic
theory, the temperature sensitivity of soil organic carbon increases with higher activation
energy and lower solubility of organic matter [50-52]. However, our study did not find a
significant correlation between DOC and Qj¢. This observation may be attributed to the
inherent complexity of organic carbon mineralization, which is subject to be limited by
various environmental factors.

Soil pH and BD are important factors affecting soil organic carbon mineralization.
pH plays a crucial role in affecting the soil redox status and creating an environment that
influences substrates, microorganisms, and enzyme activities of organic carbon mineral-
ization [53,54]. In the present study, soil pH had a significantly negative effect on C,;,,,
Cy, and Cy (p < 0.01, Figure 7). Laboratory measurements indicated that soils at different
elevations in Changbai Mountain are weakly acidic (pH range: 4.53-5.45) with relatively
minor fluctuations. Further incubation experiments are needed to explore the coupling
relationship between pH and soil carbon mineralization, revealing the underlying mecha-
nisms. BD influences soil organic carbon mineralization primarily through its impact on
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soil aeration; the increased soil compaction may hinder microbial activity. The correlation
analysis showed that C,,;, and C,, were significantly negatively correlated with BD (p < 0.01,
Figure 7). Previous research has reported a substantial decrease in organic carbon mineral-
ization with rising BD. This decline could be attributed to the increase in soil compaction,
leading to reduced soil aeration and consequently inhibiting the decomposition of soil
organic carbon by microorganisms [55,56], consistent with our research. Nevertheless, the
effect of BD on carbon mineralization is largely reflected in soil aeration and its impact
may vary under the combined influence of different soil textures and water conditions [57].
Hence, further investigations are necessary to verify this complex mechanism.

5. Conclusions

Our results showed significant differences in the rate of organic carbon mineralization
and temperature sensitivity across the elevational zonation of Changbai Mountain. Con-
trary to our hypothesis, C,,;, generally tended to increase and then decrease with increasing
elevation. C;, demonstrated higher values at higher elevations, both C,,;;, and C,, increased
with a rising incubation temperature, and the highest Q19 was observed in the coniferous
forest. Additionally, during the warming incubation, Cy was higher at 1800-2200 m. Cy and
Co/SOC gradually increase due to warming. Our findings indicated the critical influence
of elevation on soil organic carbon mineralization, with other factors such as pH, BD, and
DOC acting as significant regulators. These results highlighted that global climate change
induces positive carbon—climate feedback through the accelerated mineralization of organic
carbon. Elevation played a pivotal role in affecting matrix availability and the intricate
process of organic carbon turnover by impacting soil properties. Our research contributes
essential insights for comprehending the temperature sensitivity of soil organic carbon
mineralization and understanding the potential impacts of climate change on soil carbon
dynamics in mountain ecosystems.
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