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Abstract: Street vitality has become an important indicator for evaluating the attractiveness and
potential for the sustainable development of urban neighborhoods. However, research on this
topic may overestimate or underestimate the effects of different influencing factors, as most studies
overlook the prevalent nonlinear and synergistic effects. This study takes the central urban districts
of humid–hot cities in developing countries as an example, utilizing readily available big data sources
such as Baidu Heat Map data, Baidu Map data, Baidu Building data, urban road network data, and
Amap’s Point of Interest (POI) data to construct a Gradient-Boosting Decision Tree (GBDT) model.
This model reveals the nonlinear and synergistic effects of different built environment factors on
street vitality. The study finds that (1) construction intensity plays a crucial role in the early stages
of urban street development (with a contribution value of 0.71), and as the city matures, the role
of diversity gradually becomes apparent (with the contribution value increasing from 0.03 to 0.08);
(2) the built environment factors have nonlinear impacts on street vitality; for example, POI density
has different thresholds in the three cities (300, 200, and 500); (3) there are significant synergistic
effects between different dimensions and indicators of the built environment, such as when the POI
density is high and integration exceeds 1.5, a positive synergistic effect is notable, whereas a negative
synergistic effect occurs when POI is low. This article further discusses the practical implications of
the research findings, providing nuanced and targeted policy suggestions for humid–hot cities at
different stages of development.

Keywords: built environment; street vitality; threshold effect; synergistic effect; humid–hot climate;
gradient boosted decision trees (GBDTs) model; multi-source data

1. Introduction

Since Jane Jacobs first introduced the concepts of urban vitality and street vitality,
there has been widespread theoretical exploration and empirical research into urban vitality
and its influencing factors [1,2]. However, whether these theories or empirical results are
applicable to humid–hot cities in developing countries remains unknown, and collect-
ing and quantifying the multidimensional factors of the built environment still poses a
challenge [3]. Streets, as the main public space of urban life where people walk, socialize,
work, shop, and seek entertainment, support the diversity and vitality of a city [4]. Vi-
brant urban spaces support diverse human activities, fostering social communication and
interaction, thereby benefiting long-term sustainable development [5]. Similarly, as the
material carriers of human activities, street spaces are closely linked to urban vitality [6–8].
Therefore, understanding the impact of the built environment on street vitality is necessary
for city managers and urban planners [9].

Urban vitality can be seen as a social process closely related to the built environ-
ment [10]. Many empirical studies have explored the strong correlation between the built
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environment and street vitality [11]. However, most scholars use traditional regression
models, assuming linearity or predefined models, overlooking the generally present non-
linear and synergistic effects [12,13]. From this perspective, they may overestimate or
underestimate the impact of certain factors in the built environment. Meanwhile, the com-
bination of variables at different values could either amplify or diminish these impacts [14].
Wang Zimeng and others have already discovered the pervasive nonlinear relationship
between built environment indicators and street vitality in the main urban areas of Wuhan,
but they did not explore the synergistic effects among these indicators [15]. Wu and others
have found that the threshold effect of built environment variables has more practical
guidance for active travel [16,17].

This study aims to quantitatively explain the nonlinear and synergistic effects of var-
ious indicators of the street-built environment on street vitality. Based on multi-source
open big data from the central urban areas of Haikou, Nanning, and Guangzhou, contin-
uous one-week data from the Baidu Heat Map (or Baidu Huiyan) were collected as the
representation data of street vitality. Jane Jacobs emphasized the importance of urban
construction intensity and diversity for urban vitality and community interaction in “The
Death and Life of Great American Cities”, highlighting mixed-use, walkability, and community
interaction in cities [18]. Jan Gehl advocates for accessibility and pedestrian-friendly urban
planning [19]. Richard Florida proposed the concept of “Creative Cities”, considering the
diversity, cultural environment, and innovative capacity of cities as crucial for attracting
talent and driving economic growth [20]. Jan Brueckner studied the impact of urban in-
tensity and accessibility on the real estate market and housing choices, emphasizing their
influence on urban economics and society [21]. The research and theories of these experts
and scholars emphasize the importance of intensity, accessibility, and diversity in urban
planning, contributing to creating more livable cities with social interaction and economic
vitality. Thus, this paper analyzes the main characteristics of the street-built environment
from four dimensions: construction intensity, diversity, functionality, and accessibility.
Moreover, we used an advanced machine learning method to construct the model, namely
Gradient Boosting Decision Trees (GBDTs), and we applied the SHapley Additive exPla-
nations (SHAP) model to interpret the GBDT model, which is very helpful in explaining
the decision-making process and features the importance of the model. This approach has
been widely used in the data science and machine learning community [22–24]. Based on
game theory, SHAP can provide the relative importance of each factor in the built environ-
ment, local explanations, and the interaction effects between factors. Based on this, we can
provide some scientific suggestions for creating more vibrant streets. The contributions
of this study are as follows: (1) it demonstrates the nonlinear effects of various factors in
the built environment on street vitality; (2) quantitatively analyzes the synergistic effects
between different indicators of the street-built environment; and (3) provides nuanced
recommendations for enhancing street vitality in humid–hot cities at different development
stages in developing countries.

1.1. Definition and Quantification of Street Vitality

The concept of “vitality” originates from biology, characterizing the capacity for
vigorous life and sustained development [25]. Jane Jacobs believed that the diversity of
urban life fosters urban vitality; Jan Gehl pointed out that street vitality stems from slow
traffic. For a long time, research on streets in China from the perspective of architectural
design and urban planning primarily focused on visual aesthetics, spatial form, and traffic
efficiency, often overlooking human activities on the streets. A street’s vitality depends on
the presence and activities of people; the activities of people on a street are the source of its
vitality, and the essence of street vitality lies in the diverse activities engaged by people
on the street. There have been two prevailing views in explaining the concept of urban
vitality: urban sociology and architecture [26]. Urban sociology generally believes that
economic, social, and cultural vitality are intertwined with urban vitality. Urban vitality
is the spatial representation of economic, social, and cultural activities [27]. Conversely,
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architects consider urban spatial vitality as a form of urban activity based on urban spatial
form, which can be created through design [28,29].

From the existing descriptions of street vitality, it is clear that there is no definitive
definition yet [10], but street vitality can be understood as the interaction between people,
their behaviors, and the physical space of the street [10,30]. The behaviors of people in
street spaces create corresponding social, ecological, and economic benefits. The behav-
ioral activities of people in the physical space of the street are considered the external
representation of street vitality, which are reflected in two dimensions: time and space.
Temporally, it is represented by the variability in people’s activities at different times and
their duration; spatially, it is demonstrated by the mobility and density of people within
the spatial carrier. In this paper, street vitality primarily focuses on its social aspect, related
to the characteristics of street space. It can be measured by examining the density of people
engaged in a series of activities on the streets [30].

1.2. The Impact of the Built Environment on Street Vitality

Sociologists and architects have proposed various theories on how the urban built
environment promotes urban vitality. Jane Jacobs emphasized the importance of diversity,
density, and mixed-use in cities for urban vitality, as well as pedestrian-friendly urban
design, street hierarchy, community involvement, and the significance of urban public
spaces [30]. Jan Gehl focused on humanistic urban design, advocating for creating urban
environments where people want to live, work, and play. His theory underscores urban
sustainability and walkability [19]. Kevin Lynch highlighted that urban vitality is related to
diversity, social connections, and openness within a city. He focused on social interactions
and collaborations in cities, influencing research in urban sociology and urban planning,
and emphasized the close link between urban vitality and social interaction [31]. Mont-
gomery focused on the historical, cultural, and architectural aspects of cities, emphasizing
the impact of cultural and social backgrounds on urban vitality [2].

These qualitative studies have inspired a series of quantitative research. For instance,
many studies have empirically tested the theories of Jacobs and others in non-American
contexts. Liu Mei and Li Qian’s research suggests that increasing the social function density
and the mix of social functions on streets might be more realistic for enhancing street
vitality [32,33]. However, Wu and others noted that for high-intensity areas, increasing
the mix of building functions and the intensity of surrounding blocks does not necessarily
enhance street vitality, and this was not further explored in their study [34].

Moreover, with the advent of big data, there has been a significant increase in research
related to the built environment and urban vitality in recent years. For instance, Wang Bo,
Zhong Weijing, and their colleagues have analyzed the spatio-temporal dynamics of urban
vitality using 1 km × 1 km grid cells and 2-h time intervals. They found that the impact of
the built environment on street vitality exhibits patio-temporal heterogeneity [35,36]. Tana
and colleagues, utilizing big data, investigated the relationship between the built environ-
ment and urban vitality in central Shanghai. Their findings suggest that the influence of
block-scale built environment features on vitality varies. They observed that increased POI
density, road network density, and diversity of POIs enhance urban vitality. Conversely,
a higher number of building floors and greater building density tend to decrease social
vitality while bolstering economic vitality in blocks. Additionally, improved transport
accessibility is beneficial for economic vitality [37]. However, Yun Han, employing machine
learning methods, discovered that high accessibility around streets with low functional di-
versity might lead more to external travel than to local social activities. He also highlighted
that due to interactions between the built and socioeconomic environments, similar studies
show considerable variation across different cities. Therefore, planning practices should
meticulously consider local environment-related thresholds [38].
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2. Conceptual Framework

Urban street vitality is a pivotal aspect of urban development, necessitating a deep
understanding and precise calibration of four essential dimensions of the built environment:
construction intensity, diversity, functional nature, and accessibility. Construction intensity,
defined as the density of population and buildings, engenders a bustling, diverse urban
milieu, thereby invigorating urban streets [38]. Diversity, encompassing cultural, commer-
cial, social, and economic facets, enriches urban streets by offering a variety of activities
and choices [39]. The functional nature signifies the primary purposes and characteristics
of a street. Meanwhile, accessibility, as another critical dimension, ensures that urban
centers of activity are easily and efficiently reachable, fostering social interactions and
economic undertakings on urban streets [40,41]. Through meticulous measurement and
harmonization of these four dimensions’ key indicators, vibrant, socially engaging, and
appealing urban streets can be realized. This not only furthers the sustainable development
of cities but also elevates the quality of life for residents, thereby shaping the city’s unique
identity and attractiveness.

Jane Jacobs, in her seminal work “The Death and Life of Great American Cities”, empha-
sized the critical role of high construction intensity in urban areas. She contended that
substantial population and building density are necessary to sustain vibrant street life
and social interactions. Jacobs was a proponent of mixed-use buildings and advocated
for small-block urban designs, arguing that these elements promote construction intensity,
thus contributing to the vibrancy of cities. Additionally, Jacobs highlighted the significance
of urban diversity, advocating for a blend of cultural, commercial, and social activities. She
believed this mix attracts diverse groups of people, fostering social interaction. Her oppo-
sition to monofunctional urban planning was rooted in her support for a combination of
mixed-use developments and multiculturalism [18]. Jan Gehl, another influential urbanist,
champions the importance of diversity and functionality in streets. His work advocates for
multifunctional land use, embracing multiculturalism, and enriching public spaces. Gehl
argues that cities should cater to a broad spectrum of cultural, entertainment, commercial,
and social activities, meeting the diverse needs of their inhabitants and thereby enhanc-
ing social interaction and urban vitality. He also emphasizes the necessity of accessible
urban environments, particularly focusing on walkability and cyclability. Gehl is a strong
advocate for pedestrian-friendly urban design in central areas, emphasizing well-designed
sidewalks, intersections, and public transit systems. These elements facilitate easier access
to urban centers, promoting social engagement and vitality [19]. The synergistic effect of
these four dimensions—construction intensity, diversity, functionality, and accessibility—is
crucial for fostering urban street vitality. This interplay warrants deeper exploration and
research to fully understand and enhance the dynamics of urban life.

3. Research Area and Data Acquisition
3.1. Study Area

The humid subtropical region defined in this paper is classified based on the system de-
veloped by the German climatologist Wladimir Peter Köppen, primarily using temperature
and precipitation as key indicators and incorporating the Köppen climate classification [42].
Dr. Haiyan Yan from Xi’an University of Architecture and Technology further utilized
typical temperature and humidity combinations in winter and summer as the classification
criteria, designating cities such as Guangzhou, Nanning, and Haikou in China as represen-
tatives of the temperate–humid subtropical region. This translation is intended for use in a
scientific paper submission and emphasizes precision and accuracy [43].

Haikou, Nanning, and Guangzhou, provincial capitals in Southern China, each hold
distinct roles in the country’s urban landscape. Haikou, a budding free trade port city, is
poised to become a new economic growth engine, exemplifying the fusion of economy and
ecology. Nanning serves as a transitional city, linking China’s past and future. Guangzhou,
recognized as a significant central city and a global first-tier city by the State Council, plays a
crucial international role. The three cities mentioned are all located in the humid subtropical
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region of southern China, sharing similar climatic conditions. Their street vitality formation
mechanisms exhibit similarities as well. They serve as China’s gateways to Southeast
Asian cities. By exploring the mechanisms and subtle patterns underlying the formation of
street vitality in these cities, we can further uncover the crucial relationship between urban
development and economic growth in developing countries. This research can provide
valuable insights into the construction and development of cities in Belt and Road Initiative
countries, such as Southeast Asia. Please note that this translation is intended for use in a
scientific paper submission and is aimed at precision and clarity.

According to the “2023 City Business Attractiveness Ranking” by the First Finance
and Economics New First-Tier City Research Institute, Guangzhou, Nanning, and Haikou
epitomize China’s first-tier, second-tier, and third-tier cities, respectively. This ranking,
based on factors like city size, population, and economic vitality, positions Guangzhou
at the top, followed by Nanning and Haikou (Table 1). Consequently, this study selects
Haikou as an emblematic early-stage development city in China’s humid and hot region,
Nanning as a city in the midst of development, and Guangzhou as a more mature city.

Table 1. The comparative data of three cities.

City Built-Up Area (km2)
Year-End Permanent Resident
Population (Thousands)

Gross Regional Product
(CNY Billion)

Haikou 165.20 293.97 2134.77
Nanning 319.69 889.17 5218.34
Guangzhou 1380.60 1873.41 28,839.00

Finally, after an initial assessment using Baidu Heat Maps, the study areas were
delineated as follows: for Haikou City, the central high-vitality area extends from Haidian
Island in the north to the Ring Expressway in the south, from Old Town Station in the
west to the Nandu River in the east, encompassing the coordinates 19◦55′54.21′′ N to
20◦05′48.87′′ N and 110◦08′18.03′′ E to 110◦23′28.47′′ E. In Guangzhou City, the central
urban area is defined within 22◦52′14.20′′ N to 23◦18′03.86′′ N and 113◦09′52.97′′ E to
113◦33′28.68′′ E. For Nanning City, it is outlined between 22◦39′44.13′′ N to 22◦54′22.45′′ N
and 108◦26′09.45′′ E to 108◦08′49.82′′ E. The road networks of these study areas are depicted
in Figure 1.

3.2. Data Acquisition

Acquisition and Processing of Multi-Source Data:

(a) The road network data were sourced from Baidu Maps and mapped using ArcMap
10.8. Streets of different levels were identified and assigned unique attributes and
identifiers, resulting in a comprehensive vector road network database containing
various fields like length, street level, and identifier.

(b) Baidu Heat Map data (Baidu Huiyan) were acquired via Python web scraping tech-
niques. To reduce random errors, a continuous dataset of one-week heat map TIFF
images for Haikou’s central urban area was collected (from 24 December to 30 Decem-
ber 2022, from 05:00 AM to 11:00 PM, with an hourly frequency, totaling 126 images).
A similar dataset was gathered for the same area from 10 July to 16 July 2023. These
data were processed in ArcMap 10.8 to calculate the average heat values for each
street segment in the study area over a week.

(c) Amap (Gaode) POI data were obtained through an official paid service. The data for
Haikou were collected in April 2023, for Guangzhou in July 2023, and for Nanning in
October 2023. To ensure data freshness, the interval between acquiring the POI data
and the heat map data was kept under six months.

(d) Building contour data from Amap (Gaode), including building heights, were sourced
from Shuijing Weitu and updated in 2022 for Haikou, Nanning, and Guangzhou.
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4. Methods

A methodological framework has been established to investigate the nonlinear and
synergistic impacts of various built environment indicators on street vitality. As depicted in
Figure 2, this framework unfolds in four stages: (1) quantitative acquisition of thermal data
for each street segment in the three cities, utilizing Baidu Heat Map and Location-Based
Services (LBSs) data as proxies for external manifestations of street vitality; (2) collection
of 11 built environment indicators from Gaode building data and Baidu POI data, serving
as independent variables in the model; (3) the application of the GBDT modeling tech-
nique to delineate the relationship between each built environment indicator and street
vitality; and (4) the utilization of the SHAP model to interpret the GBDT model, enabling a
deeper analysis of how built environment indicators in cities at different stages of develop-
ment, especially in hot and humid climates, influence street vitality, as elaborated in the
subsequent sections.
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4.1. Variables

Traditional research on street vitality often depends on field surveys, questionnaires,
and interviews for data collection. This approach’s strength lies in its comprehensive
nature, allowing for the acquisition of specific, tailored information under researcher
supervision, thereby ensuring accuracy. This method is particularly effective for micro-
scale street studies. However, such data are inherently static, capturing the characteristics
of specific streets at discrete moments. Furthermore, due to resource constraints, it is
challenging to extend this approach to large-scale, cross-regional studies. In the information
age, the advent of LBSs and Baidu’s heat map data have mitigated these limitations.
Baidu’s population heat data, derived from the activities of millions of Baidu app users,
offers extensive spatial and temporal coverage [44,45]. These data enable a more robust
quantitative analysis of the complex, synergistic impacts of built environment factors
on street vitality. Utilizing ArcMap 10.8 for the quantitative analysis of this big data,
the average vitality of each street segment in the study areas over a continuous week is
ascertainable, as detailed in Table 2.

Table 2. Dependent variables of street vitality in three cities.

City Data Content Description Source Max Min Mean Sta

Haikou Baidu Heat
Map Grid Data

By vectorising 140 heat map grid
images and by processing Baidu’s
population LBS data at 80 time
points, the average heat value of
the corresponding streets
is obtained

a 4.83 0.30 2.69 1.05

Nanning Baidu Huiyan
LBS Data

By processing Baidu’s population
LBS data at 80 time points, the
average heat value of the
corresponding streets is obtained

b 7.47 1.16 4.16 1.12

Guangzhou Baidu Huiyan
LBS Data

By processing Baidu’s population
LBS data at 80 time points, the
average heat value of the
corresponding streets is obtained

b 7.79 1.00 3.27 0.96

Data sources: (a) Baidu Maps App; (b) Baidu Huiyan Maps.

This study establishes eleven indicators to assess the built environment of urban streets,
encompassing four key dimensions (Table 3). For construction intensity, four indicators are
utilized: POI density, number of buildings, building height, and building footprint area.
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Table 3. Eleven indicators of street-built environment across four dimensions.

Dimension Indicator Description Source

Mean
(Haikou/
Nanning/
Guangzhou)

Std
(Haikou/
Nanning/
Guangzhou)

Construction
intensity

POI density Linear density of the number of POIs within
the range of each street segment (per km) a

221.01/
156.83/
225.27

181.02/
128.54/
169.27

Number of buildings
Linear density of the number of buildings
within the range of each street segment
(per km)

a
108.78/
79.18/
77.49

73.52/
57.15/
58.72

Building perimeter
Total perimeter of all buildings within the
range of each street segment divided by
street length (m/km)

a
10,887.96/
6003.80/
7535.20

6282.15/
3178.60/
3947.95

Building footprint
area

Total area of building occupation within the
range of each street segment divided by
street length (m2/km)

a
58,638.65/
250.90/
40,366.44

35,694.24/
130.40/
25,871.39

Building height
Total height of all buildings within the range
of each street segment divided by street
length (m/km)

b, c
5110.82/
2316.21/
1516.46

3646.70/
1694.71/
1518.69

Diversity Diversity Shannon diversity index (the larger the
value, the richer the diversity) a 2.00/2.04/1.93 0.31/0.30/0.36

Functional Properties

Recreational facility
density

Number of recreational facilities divided by
street length a 16.40/10.98/

14.48
16.39/10.66/
13.78

Residential facility
density

Number of residential facilities divided by
street length a 15.90/7.40/

12.22
15.19/8.99/
12.04

Office facility density Number of office facilities divided by
street length a 23.92/15.27/

29.22
28.37/18.07/
30.29

Accessibility

choice

Standardized angular choice through Depth
map, formula = log((choice (radius)) + 1)
divided by log((total depth (same radius as
numerator)) + 3)

d 0.94/0.89/0.90 0.18/0.17/0.19

Integration
Standardized angular integration through
Depth map, formula = 1.2th 2nd power of
node count divided by (total depth + 2)

d 0.09/0.11/0.09 0.01/0.01/0.14

Data source:(a) Amap open platform; (b) Baidu Map Open Platform; (c) Water Economic Map; (d) Baidu Map.

(a) POI density indicates the concentration of functional points in an area, with high
values suggesting a rich and vibrant urban functionality, reflecting urban development
intensity [46]. The number of buildings quantitatively represents the construction
volume in an area, often correlating with economic growth and population density,
thereby serving as a direct measure of urban construction intensity.

(b) Building height serves as an indicator of urban modernization and vertical expan-
sion. High-rise structures typically denote business hubs and dense residential zones,
signifying efficient urban space usage and construction intensity. Building footprint
area measures the land coverage by buildings, reflecting urban planning efficiency
and land use in areas with limited land resources, thus contributing to the assessment
of urban construction intensity. These four indicators collectively provide a multi-
faceted view of urban street construction, encompassing land use efficiency, building
distribution and scale, and urban functionality.

(c) Diversity is measured using the Shannon Index, a concept from biology, to evaluate
the variety and distribution uniformity of the urban street ecosystem.

(d) Functional Nature is assessed through the density of recreational, residential, and
office facilities. Recreational facility density indicates the ratio of leisure-oriented
amenities to the length of a street segment, reflecting the street’s role in leisure and
cultural life. Residential facility density, showing the concentration of living spaces,
indicates the residential aspect of the street. Office facility density, denoting the pres-
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ence of commercial and business spaces, reflects the street’s economic function. These
indicators collectively shed light on the primary usage and functional characteristics
of urban spaces.

(e) For connectivity, two indicators, choice and integration, are chosen. Choice measures
the availability of different routes from a point, indicating the ease of reaching various
destinations. Integration reflects a point’s centrality within the network, with high
values suggesting better accessibility. Enhanced choice and integration potentially
increase pedestrian and traffic flow, thereby boosting street vitality and appeal.

4.2. Modeling Approach

The GBDT is an ensemble learning method combining decision tree algorithms with
gradient boosting. GBDT utilizes a sequence of decision trees as base models [47,48], each
functioning as a weak learner that improves predictive accuracy iteratively. In this study,
model development utilized the LightGBM and Scikit-learn packages in Python 3.7. The
dataset was randomly divided into a training set (80% of the data) and a test set (20%).
Mean Squared Error (MSE) served as the loss function. To enhance model performance
and mitigate overfitting, Grid Search with 5-fold cross-validation (GridSearchCV) was
employed for hyperparameter tuning, resulting in the optimal parameter set (detailed
in Table 4). Subsequently, the model underwent sequential training. For a thorough
evaluation, various metrics such as Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and the R-squared value were applied. Moreover, an ensemble-based approach
was used to assess the model’s predictive uncertainty.

Table 4. Parameters specified in this study.

Hyper-Parameters Descriptions
Optimal Hyperparameters

Haikou Nanning Guangzhou

Num_Leaves Determines the number of leaves in
each tree 21 15 29

Learning_Rate The magnitude of model parameter
updates in each iteration 0.004 0.001 0.001

Feature_Fraction
Specifies the proportion of features
considered when splitting each
tree node

0.707 0.769 0.773

Bagging_Fraction Determines the fraction of data used for
training in each iteration 0.727 0.761 0.697

Bagging_Freq Specifies how often data sampling is
performed during training 10 2 8

Max_Depth Limits the depth of each tree to
prevent overfitting 5 12 5

Min_Child_Weight Defines the minimum sum of sample
weights required in a leaf node 2.758 3.546 9.911

Num_Boost_Round Specifies the number of boosting rounds
or trees in the ensemble 1071 4495 7997

Local explanation methods play a crucial role in providing targeted explanations for
individual predictions, enhancing our understanding of the intricate, nonlinear interactions
between various components of the built environment and street vitality. SHAP, a key local
interpretative method, is grounded in the principles of classic cooperative game theory and
involves computing Shapley values [49,50]. In the context of machine learning, predictions
can be somewhat likened to a game, where each prediction is influenced by a combination
of variables. Shapley values distribute the ‘credit’ or ‘impact’ of explanatory variables fairly
by assessing their average marginal contribution across all conceivable combinations of
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variables. Essentially, Shapley values provide an equitable and detailed method to account
for the influence of each variable in the prediction process:

Φk( f , x) = ∑s∈ϕ

1
K!

[
fx

(
Ps

k

⋃
k)− fx(Ps

k )
]

(1)

In this context, Φk( f , x) represents the Shapley value, which reflects the average
impact of variable k compared to the overall mean prediction on an individual prediction.
s is the set of possible permutations of variables, and K represents the total number of
variables. In the permutation s, the set of variables preceding variable k is considered,
and x is the value of the explanatory variable. Subsequently, the f (x) explanation for an
individual prediction can be provided as follows:

f (x) = Φo( f , x) + ∑k
k=1 Φk( f , x) (2)

In this context, Φo( f , x) represents the overall predicted mean of the population. The
relative importance of variables is computed by averaging the absolute Shapley values for
each variable:

Ik =
1
n∑n

i=1

∣∣∣Φ(i)
k

∣∣∣ (3)

In this context, Ik represents the importance of variable k and Φ(i)
k denotes the Shapley

value of variable k for a single prediction i. In essence, Shapley values can estimate the local
impact of explanatory variables on the final prediction. The local impact of explanatory
variables (i.e., Shapley values) can be further decomposed into their primary local effects
and local interaction effects with other variables (i.e., Shapley interaction values). Shapley
interaction values capture local interaction effects by attributing credit among variable
pairs. The definition of Shapley interaction values is

Φi,j( f , x) = ∑T∈γ\{i,j}
|T|!(K−|T|−2)!

2(K − 1)!
∇i,j( f , x, T) (4)

When i ̸=j,

∇i,j( f , x, T) = fx(T ∪ {i, j})− fx(T ∪ {i})− fx(T ∪ {j}) + (T) (5)

In this context, Φi,j( f , x) represents the Shapley interaction value, reflecting the inter-
action effects between variables and variable i in a single prediction. K is the number of
variables, x is the set of input variables, and T is the set of potential variables.

5. Results and Discussion
5.1. Relative Importance of Indicators

We developed a GBDT model utilizing LightGBM, and applied SHAP for in-depth
model interpretation. The model incorporated various elements of the urban built envi-
ronment as input variables, with street thermal data functioning as the response variable.
Detailed performance metrics of the model are presented in Table 5. To ensure the model’s
reliability and stability, K-fold cross-validation was conducted. As depicted in Figure 3,
we obtained the Precision–Tradeoff (P–T) curve for the refined model, demonstrating its
predictive capability.

Table 5. Model performances.

MSE RMSE MAE R-Squared

Training Set Test Set Training Set Test Set Training Set Test Set Training Set Test Set

GBDT
(lightGBM)

Haikou 0.204 0.414 0.452 0.643 0.341 0.487 0.858 0.749
Nanning 0.334 0.486 0.578 0.697 0.425 0.516 0.792 0.755
Guangzhou 0.241 0.352 0.491 0.594 0.374 0.448 0.741 0.681
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Figure 4 presents the relative significance of different variables in the built environment.
On the left side, the variables are ranked in descending order of their overall importance.
The right side of the figure demonstrates the contribution of each variable’s values across
different Metropolitan Statistical Areas (MSA) to street vitality. This global importance is
determined by computing the average of the absolute Shapley values for each variable.

Table 6 summarizes the contribution values of each dimension for different cities. In
the construction intensity indicator, Haikou shows the most significant contribution (SHAP
value of 0.18), reflecting the typical necessity for extensive construction and infrastructure
development in the initial stages of urban growth. Guangzhou, as a more mature city, still
exhibits a high contribution in construction intensity (SHAP value of 0.17), suggesting
ongoing infrastructure and growth demands. Nanning, with a lower SHAP value of
0.15 in construction intensity, indicates a lesser dependence on construction in its urban
development strategy, possibly focusing more on other aspects.

Table 6. Importance data for 11 indicators across 4 dimensions.

Dimension Indicator Haikou Nanning Guangzhou

Functional density

POI density 0.31

0.71

0.37

0.58

0.43

0.69
Number of buildings 0.33 0.13 0.16
Building perimeter 0.02 0.01 0.02
Building footprint area 0.01 0.03 0.02
Building height 0.03 0.03 0.05

Diversity Diversity 0.03 0.03 0.07 0.07 0.08 0.08

Facility density
Recreational facility density 0.07

0.18
0.06

0.15
0.02

0.14Residential facility density 0.06 0.05 0.06
Office facility density 0.05 0.05 0.07

Accessibility Choice 0.02
0.09

0.04
0.20

0.03
0.09Integration 0.07 0.16 0.06

In the dimension of urban diversity, Guangzhou leads with the highest contribution
(SHAP value of 0.08), reflecting its emphasis on a diverse range of urban functions and
activities, a trait commonly seen in more mature urban environments. Nanning is close
behind with a SHAP value of 0.07, indicating its ongoing efforts to foster urban diversity,
albeit slightly less than Guangzhou. Haikou, with a SHAP value of 0.03, shows the lowest
diversity contribution, aligning with its stage of early urban development where a narrower
range of functions might be prevalent.

In the dimension of functional nature, the SHAP values for Haikou, Nanning, and
Guangzhou are relatively uniform, hovering around 0.05. This uniformity indicates that
these cities similarly prioritize the distribution of diverse functions without a predominant
focus on any specific type.
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In terms of accessibility, Nanning leads with the highest contribution (SHAP value
of 0.10), which may be attributed to its ongoing efforts in enhancing transportation and
connectivity, reflecting a characteristic of mid-stage urban development. Haikou, still in
its early phase of urban development, ranks second (SHAP value of 0.05) in accessibility
contribution, indicating progressive improvements in this area. Conversely, Guangzhou,
a more mature city, has the lowest accessibility contribution (SHAP value of 0.04), likely
impacted by challenges such as traffic congestion, a common issue in well-developed
urban areas.
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5.2. The Nonlinear Effects of Street Built Environment

As illustrated in Figures 5 and 6, each local dependency plot corresponds to an
indicator of the built environment, showcasing how that particular indicator influences
street vitality. In each plot, every point represents a MSA, with the x-axis indicating the
variable’s value and the y-axis depicting its local effect on vitality. A comprehensive
analysis of these plots reveals the following:
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Figure 5A illustrates the relationship between social function density and street vi-
tality in Haikou. Initially, an increase in social function density correlates positively and
sharply with street vitality’s SHAP value. However, beyond a moderate density level,
this contribution to vitality saturates and slightly declines, suggesting potential negative
impacts of over-densification. In Figure 5B, Nanning’s relationship between social function
density and street vitality is depicted with a flatter positive trend. The peak SHAP values
are noted at lower densities compared to Haikou. After reaching this peak, a significant
decrease in SHAP values is observed as social function density continues to rise, indicating
that excessively high density might adversely affect street vitality. Figure 5C demonstrates
a consistently strong positive correlation between social function density and street vitality
in Guangzhou. Here, the SHAP values stabilize following a rapid ascent without declining,
implying that Guangzhou’s higher developmental stage allows it to maintain or enhance
street vitality even at higher densities.

This suggests that as cities develop from Haikou to Guangzhou, they become more
adept at handling higher densities of social functions without negatively impacting street
vitality. This capability is likely due to the advanced urban planning, infrastructure, and
social services in more developed cities.

Figure 5D (Haikou) shows that the impact of building height density on street vitality
shifts from negative to positive with increasing density. Considering Haikou’s developing
status, the initial increase in building density might not be accompanied by necessary
infrastructure and social service enhancements, leading to vitality impairment. However,
beyond a certain threshold, increased height density could bring more commercial and
social activities, thus enhancing street vitality. Figure 5E (Nanning) displays a more linear
relationship, indicating that throughout the range of building height density, the contri-
bution to street vitality remains positive. This could reflect a scenario where, in Nanning,
increases in building height are typically coupled with improvements in infrastructure and
social services, directly fostering an increase in street vitality. For Figure 5F (Guangzhou),
we observe a sustained and substantial positive influence of building height density on
street vitality, albeit with a slight decrease at very high densities.

In summary, the level of urban development influences the contribution of building
height density to street vitality. Cities in the early stages of development, such as Haikou,
need to ensure that increased building height density is accompanied by enhanced infras-
tructure and social services to avoid negative impacts on vitality. More developed cities
like Guangzhou need to consider diminishing marginal effects while increasing building
density, as well as how to maintain and enhance street vitality through other means, such
as increasing public spaces and improving environmental quality, to achieve sustainable
urban vitality and quality of life.

As depicted in Figure 5G (Haikou), there is initially a positive correlation between
building footprint density and street vitality, but as density reaches a certain level, the
growth in vitality slows and even slightly declines. This may indicate that beyond a certain
point, increased density could negatively impact vitality. Figure 5H (Nanning) shows a
more gradual relationship, indicating higher street vitality at lower densities but a rapid
decline in vitality beyond a certain threshold.

This suggests that moderate building footprint density is crucial for street vitality. In
the case of Figure 5I (Guangzhou), as a more developed city, the chart shows that even at
high densities, street vitality can be maintained or enhanced. This may indicate a stronger
capacity to accommodate high-density development.

For cities in the early development stage (represented by Haikou in Figure 5J), lower
building perimeter density might not be sufficient to support a vibrant street life, but
as building density increases, there is a significant improvement in street vitality. Too
low building density may imply dispersed commercial, residential, and other functional
areas, which is not conducive to concentrated social and economic activities. In cities with
medium development levels (represented by Nanning in Figure 5K), moderate building
perimeter density might already support more active social and economic interactions.
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However, due to the rapid urbanization process these cities might be undergoing, the
relationship between street vitality and building density could be more complex and
variable. For instance, there might be transitional areas where new constructions could
enhance vitality, but at the same time, some older areas might not see the expected increase
in vitality due to over-density. In highly developed cities (represented by Guangzhou in
Figure 5L), increasing building perimeter density initially may rapidly boost street vitality,
as a greater concentration of population and business brings more interaction and economic
opportunities. However, beyond a certain threshold, excessive building perimeter density
could lead to congestion, environmental degradation, and potentially the displacement
of small, community-oriented businesses due to high land prices, thereby diminishing
street vitality.

Figure 5M (Haikou) shows that an increase in building number density seems to
positively contribute to street vitality, but this positive impact tends to plateau after reaching
a certain density. Figure 5N (Nanning) demonstrates that an initial increase in the number
of buildings positively impacts street vitality, which then quickly diminishes and trends
negatively. Figure 5O (Guangzhou) exhibits a fluctuating trend, where building number
density initially negatively impacts, then positively influences, but soon declines, street
vitality. In highly developed cities, building numbers might have reached saturation, and
street vitality is more influenced by other factors, such as building quality, service facilities,
and public space configuration.

This indicates that in cities like Haikou, which are in the early stages of development,
increasing the number of buildings can effectively enhance street usage and commercial
activities. In cities like Nanning, in the middle stage of development, excessive buildings on
streets may lead to resource over-distribution or traffic congestion, thus reducing vitality;
whereas in more developed cities like Guangzhou, the number of buildings may have
reached saturation, and street vitality is more influenced by other factors, such as building
quality, service facilities, and public space configuration.

Figure 6A, representing Haikou’s local effect plot for diversity, shows a positive
correlation between social function mix and street vitality. The SHAP value increases
with the mix from 0 to approximately 1.5, indicating a beneficial contribution to street
vitality within this range. Around a social function mix of 1.5, the SHAP value peaks and
then slightly decreases, suggesting that beyond this point, additional mixing may have a
diminishing effect on vitality. Figure 6B, representing Nanning, displays a similar increasing
trend in SHAP values with social function mix up to about 1.5, positively contributing
to street vitality. However, the decline in SHAP value beyond 1.5 is more pronounced in
Nanning, indicating that excessive mixing may have a more significant negative impact on
street vitality compared to Haikou. In Guangzhou (Figure 6C), the SHAP value for social
function mix and street vitality shows a continuous rise from 0, increasing steadily until
approximately 2.0. The optimal points for Haikou and Nanning appear around 1.5, while
Guangzhou’s optimal point seems to be around 2.0, suggesting that the ideal level of social
function mix might be influenced by the city’s development stage.

From Haikou to Guangzhou, as cities develop, the positive contribution of social
function mix to street vitality seems to extend to higher levels of mixing, reflecting that
more developed cities’ street vitality may benefit from more complex built environments.

Figure 6D (Haikou) observes that as the density of recreational facilities increases
within a relatively low range, its contribution to street vitality also increases. However,
beyond a certain level, the increase in SHAP value slows down, indicating a diminishing
positive impact of recreational facility density on street vitality. In Figure 6E (Nanning),
an increase in recreational facility density significantly positively impacts street vitality’s
SHAP value, showing a pronounced upward trend. After a certain point, further increases
in recreational facilities seem to saturate in contribution to street vitality, with a slight
decrease in SHAP value. Figure 6F, excluding noise in the data, shows no distinct clustering
trend in Guangzhou, with more dispersed data points. This indicates that the contribution
of recreational facility density to street vitality in Guangzhou is more complex and varied,



Sustainability 2024, 16, 1731 17 of 29

which is logical due to 1⃝ socioeconomic diversity: Guangzhou, being a more economically
advanced and complex large city, has a diverse socioeconomic background. This means the
same recreational facility density might have different impacts in different neighborhoods
due to socioeconomic conditions. 2⃝ Urban planning and layout: the more intricate urban
planning and spatial layout of Guangzhou may result in an uneven impact on street vitality
due to the interwoven layout of recreational facilities with other urban functions like
commercial, residential, and transportation.

Figure 6G shows that the SHAP value initially increases with residential facility density,
then decreases. The peak positive SHAP value occurs at a residential facility density
of about 20, suggesting this density optimizes the positive impact on street vitality. As
residential facility density continues to increase, the SHAP value diminishes, indicating that
excessively high residential facility density may no longer positively influence street vitality.
Figure 6H (Nanning) displays a clear trend: the increase in residential facility density
correlates proportionally with the increase in street vitality up to about 20. Beyond a density
of 20, the SHAP value stabilizes or slightly decreases, suggesting that the contribution of
residential facility density to street vitality saturates at a certain level. In Guangzhou’s
chart (Figure 6I), the SHAP value is higher at lower residential facility densities, decreasing
initially with increasing density, then stabilizing.

Figure 6J (Haikou) demonstrates a nonlinear decline in SHAP values with office
facility density increasing from 0 to about 50, indicating a gradual decrease in the positive
contribution of office facility density to street vitality in this range. Figure 6K (Nanning)
shows a wider distribution of SHAP values, with office facility density ranging from 0 to
over 100. In Figure 6L (Guangzhou), the range of office facility density expands further,
exhibiting broader variations from 0 to about 350. The SHAP values rapidly decline with
increasing office facility density, reaching approximately −0.1, and stabilize at negative
values after exceeding about 50, suggesting that in Guangzhou, a higher level of office
facility density may adversely affect street vitality.

Cities in the early stages of development, represented by Haikou, may have fewer
high-density office areas. The increase in office facilities might directly boost street vitality,
potentially linked to more job opportunities and business activities. Mid-stage development
cities like Nanning, possibly in a transitional phase, may experience a more complex
relationship between office facility density and street vitality, influenced by various urban
development factors. In more advanced cities like Guangzhou, with multiple business
centers developed, increased office facility density might not directly enhance street vitality
and could even lead to vitality decline in certain areas due to resource over-concentration.

In Haikou’s chart (Figure 6M), the SHAP value trends from negative to positive with
increasing choice, implying that low choice might negatively impact street vitality, while
high choice contributes positively. Nanning’s chart (Figure 6N) shows a similar but more
pronounced trend. As choice increases, the SHAP value first declines and then rises,
indicating a more significant impact of choice on street vitality. In high-choice ranges,
increased diversity seems to correlate with increased street vitality. Guangzhou’s chart
(Figure 6O) is more complex than the previous two cities. Positive contributions of SHAP
values are observed at low and high choice intervals, while negative values appear in the
mid-range. From Haikou to Guangzhou, the impact of choice on street vitality evolves from
a singular trend to a more complex pattern, possibly reflecting a nonlinear relationship
between urban development level and street vitality as cities increase in complexity. In
early-stage development cities like Haikou, simpler linear patterns might be more common.
However, as cities develop and become more complex (as in Guangzhou), multivariate and
nonlinear influencing factors begin to play a role, making the relationship between street
vitality and choice more variable.

Figure 6P (Haikou) shows concentrated negative SHAP values in a certain range of
integration, indicating reduced street vitality. As integration increases, SHAP values shift
from negative to positive, suggesting a positive correlation between higher integration and
street vitality. Figure 6Q (Nanning) displays a trend similar to Haikou’s but with a broader
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area of positive SHAP values, indicating a more apparent positive impact of integration
on street vitality. The upward trend of SHAP values starts earlier, making the impact of
integration more widespread. Figure 6R (Guangzhou) shows a more complex relationship
between SHAP values and integration without a simple linear correlation. An increase in
integration appears to contribute negatively (negative SHAP values) to street vitality in
certain ranges.

It can be observed that from cities in the early stages of development, represented by
Haikou, to more developed cities like Guangzhou, there is a positive correlation between
street integration and vitality, especially in areas of higher integration. Across the three
cities, the positive correlation between building height density and integration strengthens,
possibly signifying a higher degree of urban development and concentrated vitality. Street
integration is a crucial factor influencing urban vitality, but cities at different stages of
development respond differently to this factor. As cities develop, the concentration of
vitality on highly integrated streets may increase, and this concentration trend might be
more pronounced in more developed cities. This phenomenon could be associated with
more concentrated economic activities and higher building densities in highly developed
cities. However, it should also be noted that excessively high integration might lead to
traffic congestion, subsequently reducing street vitality.

5.3. Interaction Effects between the Built Environments of Streets

Figure 7A (Haikou) shows a decrease in interaction values with increasing social
function density. The highest building height density (warm tones) is associated with
lower social function density values. This suggests that in Haikou, areas with higher social
function density may not benefit significantly from high building density, possibly due
to saturation or other limiting factors. Figure 7B (Nanning), also predominantly displays
negative interaction effect values but with less distribution. Data points indicate a possible
moderate negative interaction effect between social density and office facilities. This could
imply that in Nanning, an increase in office facilities does not necessarily have a positive
impact on social function density, or there might be diminishing returns beyond a certain
point. Figure 7C (Guangzhou) shows a wider range of interaction effect values, with a
relative shift towards positive in the medium range of social density compared to Nanning.
Guangzhou’s more developed status may indicate more positive interactions between
office facilities and social functions.

During different stages of urban development, the relationship between social function
density and other indices of the built environment (such as building height density, office
facilities, etc.) may change. Smaller cities like Haikou may show certain synergistic
effects between social function density and building height density in the early stages
of development, whereas larger cities like Guangzhou might exhibit positive synergistic
effects with office facilities over a wider range of social function densities, reflecting a more
mature and diverse urban structure and economic activities.

Figure 7D (Haikou) observes a negative correlation between increased building perime-
ter density and SHAP interaction values at low social function densities, indicating that in
areas with lower social function density, an increase in building perimeter density may not
be conducive to the development of social functions. At high social function densities, data
points are more dispersed, suggesting that in areas with denser social functions, the impact
of building perimeter density on social functions becomes more uncertain. For Figure 7E
(Nanning), the points in the graph show some degree of negative correlation at both levels
of social function density, but in high-density areas, the data points are more compact,
possibly indicating that as the city develops, the relationship between building perimeter
density and social functions becomes more stable. For Figure 7F (Guangzhou), the range
of SHAP values in high-density areas is larger, hinting at a more complex relationship
between building perimeter density and social functions at high social function densities. In
contrast, the data points in low-density areas are more concentrated, and SHAP values are
mostly negative, suggesting that in more developed cities, areas with lower social function
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density are more sensitive to increases in building perimeter density. As a city’s level of
development increases, the impact of social function density on building perimeter density
may become more complex. In rapidly developing cities, the variability in high-density
areas increases, possibly due to the diversity of functions in these areas and the complexity
of the built environment.
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Figure 7G (Haikou) shows that within the range of low to medium building quantity
density, the distribution of blue points indicates a clear positive correlation with social
function density. This may represent that in certain areas or types of buildings in the city, an
increase in density at a low state can significantly enhance social functions. The red points
exhibit a more dispersed relationship, suggesting that these buildings may be located in
different areas or have different purposes, and their impact on social function density is less
apparent than the blue points. This could be indicative of newer or planned areas where an
increase in building quantity density does not directly lead to an enhancement of social
functions. In Figure 7H (Nanning), the blue points show a generally negative correlation
between building height and building quantity density. This could imply that in some
areas, an increase in building height does not bring a relative increase in the number of
buildings or that the increase in building height does not have a positive impact on social
functions. The red points indicate a more complex but overall negative correlation between
building height and building quantity density. This may reflect different planning and
development strategies in different areas of Nanning city, where an increase in building
height does not directly correspond to an increase in building quantity or enhanced social
functions. Figure 7I (Guangzhou) observes more significant negative correlations in the
blue points compared to the Nanning graph, suggesting that in some areas, despite a large
number of buildings, increased height does not correspond with an enhancement in social
functions or that social functions have reached a saturation point. The red points show
a reduced negative correlation with building quantity density, indicating that in these
areas, increasing building height might help improve social function density or that the
relationship between social function and building height is more positive compared to
other areas.

As a relatively less developed city, Haikou’s building quantity might more significantly
impact social functions, as infrastructure and services might not have reached saturation.
In more developed cities like Nanning and Guangzhou, there might already be sufficient
building infrastructure to support their social functions, so additional buildings may not
bring significant improvements in social function. As cities develop economically, the
function of buildings may shift from singular to diversified. In economically developed
cities like Guangzhou, increasing building height might be to meet diversified commercial
and residential needs, rather than just increasing space utilization. In terms of social needs,
a city’s changing social demands are also reflected in the use and construction of buildings.
For example, in densely populated areas, high-rise buildings might be used for residential
and office purposes, which may not directly increase building quantity density but might
improve social function density.

Figure 7J (Haikou) demonstrates that in areas with lower social function density,
as building footprint density increases, SHAP interaction values show a change from
positive to negative. This may indicate that in these areas, an increase in building footprint
density initially has a positive effect on social functions, but beyond a certain point, it may
have a suppressive effect. In areas with high social function density (red regions), SHAP
interaction values are generally low, suggesting that in these areas, increasing building
footprint density has a weaker or even negative impact on social functions. Figure 7K
(Nanning) reveals that in areas with low diversity, SHAP interaction values are negative,
and this negative impact increases with the increase in spatial proportion. In areas with
high diversity, SHAP interaction values fluctuate around zero, indicating that in these
areas, an increase in building footprint density may have both positive and negative effects
on diversity, though this relationship is not as apparent as in areas with low diversity.
Figure 7L (Guangzhou) shows, similar to Nanning, that SHAP interaction values in low-
diversity areas are generally negative and seem more significant as spatial proportion
increases. Unlike Nanning, the distribution of SHAP interaction values in high-diversity
areas is broader, suggesting that in more developed cities, an increase in building footprint
density in high-diversity areas might cause more complex impacts, with both positive and
negative effects becoming more evident.
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Social function density and diversity, these two indicators, may play different roles in
different stages of a city’s development. In the early stages of development, an increase
in social function density might have a more pronounced positive effect, along with an
increase in building density. In more maturely developed cities, diversity might become a
more significant factor, influencing the city’s spatial layout and economic activities in more
complex ways.

In the early stages of urban development, an increase in building footprint density
might positively impact social function density. However, as the city further develops and
spaces become more compact, this impact might turn negative, especially when reaching a
certain saturation level.

Figure 7M (Haikou) shows that from lower to medium building height density data
points, SHAP values change from positive to near zero. This might indicate that in Haikou,
when building height density is at a lower to medium level, its positive relationship with
social function density is stronger. Figure 7N (Nanning) observes that red data points
are mainly concentrated in areas with high building height density, with mostly negative
SHAP values. This group of data points covers from low to high building height density,
with a more dispersed distribution of SHAP values. This suggests that in Nanning, the
impact of building height density on social function density might not be as apparent as
in Haikou but is more complex and diversified. The fewer red data points in Nanning,
mainly occurring in areas with high building height density, show negative SHAP values.
Although not numerous, this still indicates that very high building density might have
a negative impact on social function density to some extent. Figure 7O (Guangzhou)
shows SHAP values ranging from positive to negative over a wide coverage, displaying a
more chaotic trend than the previous two cities. This might reflect that in more maturely
developed cities, the impact of building height density on social function density could be
obscured by other factors or is nonlinear. Although there are more red data points with
generally negative SHAP values in areas of high building height density, this might suggest
that in developed cities, very high building density has a more apparent negative impact
on social functionality, possibly due to overcrowding, reduced green spaces, and public
areas caused by excessive building density.

Regardless of the stage of urban development, there appears to be a common char-
acteristic that excessively high building height density might have a negative impact on
social functions. This is clearly manifested in the red data points across various graphs. The
above trends prompt urban planners to consider different strategies at different stages of
development. In the early stage, moderate increases in building height and density could
enhance social functions. At the intermediate and advanced stages, more attention should
be paid to the quality and multi-functionality of urban space, ensuring that an increase in
building density does not negatively impact living quality and social interactions.

Figure 8A (Haikou) illustrates that as social function density increases (color shifting
from light to dark red), the positive synergy with diversity seems more pronounced. The
blue points are more dispersed, but a relative majority are below the zero line, indicating
that in areas with lower social function density, an increase in diversity may relate to
negative synergies. Figure 8B, representing Nanning’s diversity interaction effect analysis,
shows red points relatively concentrated above the zero line, similar to Haikou, suggesting
that diversity usually has a positive synergistic effect in areas with high social function
density. The blue points are scattered, roughly evenly distributed above and below the
zero line, indicating inconsistent impacts of diversity in areas with low social function
density, both positive and negative. Figure 8C for Guangzhou demonstrates that the red
points, primarily above the zero line, also exhibit a positive synergistic effect of diversity
in areas with high social function density. As diversity increases, the red points show an
upward trend, indicating that the positive synergistic effect strengthens with increased
diversity. The blue points, although dispersed, show more apparent negative synergistic
effects compared to Nanning and Haikou, suggesting that in areas with low social function
density, an increase in diversity might bring more negative impacts.
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This could mean that cities in their early development stages, like Haikou, should
first enhance social function density before gradually increasing diversity. Mid-stage
development cities like Nanning need a more balanced approach to developing diversity,
simultaneously enhancing the positive impacts of social function and diversity. For cities
with higher social function density, like Guangzhou, further increasing diversity could
bring greater economic and social benefits.

Figure 8D (Haikou) shows the synergistic effect of leisure facilities and social function
density. When leisure facility density is low, the blue points’ interaction effect is near
zero or slightly negative. As leisure facility density increases, the blue points exhibit a
slight positive growth in interaction effect. This suggests that in areas with lower building
density, increasing leisure facilities might help improve the environment’s attractiveness.
For the red points, the interaction effect seems to decrease with increased leisure facility
density. This could indicate that in areas already having high building density, additional
leisure facilities no longer significantly enhance environmental quality, or a saturation point
has been reached. Figure 8E (Nanning) demonstrates that an increase in leisure facility
density appears to have a significant positive impact in areas with low social density,
with interaction effects increasing with leisure facility density. This could suggest that in
sparsely populated areas, new leisure facilities help attract residents and social activities,
strengthening social ties. However, in areas with high social density, the positive impact
of additional leisure facilities seems to decrease. This might indicate that in areas already
bustling with social activities, new leisure facilities do not significantly enhance social
density. Figure 8F (Guangzhou) shows a positive interaction effect in low social density
areas with increased leisure facility density, although this effect is less apparent than in
Nanning. This might imply that in a more developed city, increasing leisure facilities
in low-density areas still positively affect social activities. In high social density areas,
the interaction effect seems little changed, or there is a slight decrease, indicating that
in already dense social activity areas, new leisure facilities do not significantly increase
social interaction.

The data from the three cities suggest that the addition of leisure facilities generally
has a positive synergistic effect in low-density areas (both in terms of building and social
density). In high-density areas, this synergistic effect either diminishes or becomes less
significant. This could indicate that leisure facilities, as a form of social infrastructure, are
more effective in enhancing the attractiveness of low-density areas, while their marginal
benefits may decrease in high-density areas. For planners, this implies that the planning
and investment of leisure facilities should focus more on lower-density areas, especially
where the population or buildings are not very dense. In these areas, new or improved
leisure facilities could bring greater social and economic returns. For areas that are already
maturely developed with high social and building density, the direct benefits of adding
leisure facilities might be smaller. Innovative or targeted solutions might be needed in
these areas to further improve living quality and social interaction. This also reveals a
potential trend that as cities develop and densities increase, the impact of different types of
urban infrastructure (such as leisure facilities) on the urban environment changes. In the
early stages of development, the positive effects of increasing infrastructure might be more
noticeable. In the later stages of urban development, these effects might reach saturation or
even require more adjustments and optimization to cope with the complexity of the urban
environment and the needs of the residents.

Figure 8G (Haikou) shows residential facility density primarily concentrated in the
0–20 range at lower levels, with SHAP interaction values between −0.10 and 0.15, dis-
playing a distinct peak area. Positive SHAP values indicate that an increase in residential
facility density correlates positively with social function density to some extent. Figure 8H
(Nanning) displays a slightly broader range of residential facility density, still mainly con-
centrated at lower levels, around 0–30. SHAP interaction values are mainly concentrated
between −0.06 and 0.06, with a more dispersed peak area compared to Haikou. The dis-
tribution of interaction values is more even than Haikou, with less distinct boundaries
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between positive and negative effects. Figure 8I (Guangzhou) shows the broadest range
of residential facility density, covering from low to high, reflecting a wider distribution
of residential facilities. The dense area of data points is in the SHAP value range of 0.025
to 0.100, showing a clear upward-right trend. The persistence of positive SHAP values at
higher residential facility densities, compared to the other two cities, might indicate that
in Guangzhou, the increase in residential facility density has a more significant positive
impact on social function density.

For early-stage development cities like Haikou, the transition from low-density res-
idential areas to high-density communities might occur, with social function facilities
developing alongside population density growth. In mid-stage development areas like
Nanning, as the city further develops, a more complex interdependency might emerge
between residential and social function facilities. Cities at a moderate development level
might experience certain spatial separation, leading to diversified distributions of social
function facilities. In more maturely developed cities like Guangzhou, the relationship
between residential and social functions might be more stable, with positive correlations
between the two maintained over a broader range of facility densities, reflecting more
integrated and balanced spatial planning.

Figure 8J (Haikou) presents the synergistic relationship between office facility density
and social function density. The data points indicate that in areas with low office facility
density (near the origin), an increase in social function density shows a strong positive
correlation with an increase in office facilities. However, as office facility density increases,
this positive correlation weakens, as reflected by a decrease in SHAP interaction values.
Figure 8K (Nanning) explores the relationship between office facilities and diversity. At
lower levels of office facility density, there is a certain degree of positive correlation with
diversity, although not as pronounced as in Haikou. With the increase in the number of
office facilities, the impact on diversity seems to diminish, approaching zero or slightly
negative SHAP values. Figure 8L (Guangzhou) examines the relationship between office
facilities and diversity. At lower quantities of office facilities, the response of diversity to
the increase in office facilities is not apparent. However, with more office facilities, diversity
significantly increases, and the growth in SHAP values indicates a strengthening of the
positive correlation. This suggests that in Guangzhou, a more mature business area might
be present where the increase in office facilities is accompanied by a rise in other types of
facilities, such as retail stores, restaurants, or other services, enhancing the area’s diversity.

In early-stage development cities like Haikou, office facilities might not be sufficient
to attract a wide range of commercial activities. However, in more mature cities like
Guangzhou, economic diversification has led to the emergence of more types of office
spaces and service facilities, allowing areas with high office facility density to maintain
high diversity.

Figure 8M (Haikou) shows that at high social function density (red), with increasing
choice, the synergy values mostly cluster around zero. This implies that in early-stage
development cities like Haikou, even with high social function density, its synergy with
choice does not significantly enhance street vitality. At low social function density (blue),
in areas with low choice, the blue points show negative synergy values, suggesting that in
environments with low social function density, a reduction in choice negatively impacts
street vitality. Figure 8N (Nanning) reveals that at high diversity (red), with increasing
choice, there is a slight upward trend in synergy values, indicating that in mid-stage
development cities like Nanning, high street diversity coupled with increased choice may
promote street vitality. At low diversity (blue), the level of choice seems to have little impact
on synergy values, suggesting that in cities at this development stage, when diversity is low,
the impact of choice on street vitality is minimal. Figure 8O (Guangzhou) observes that at
high diversity (red), the synergy values are highest at a medium level of choice, indicating
that for a maturely developed city like Guangzhou, there might be an optimal range of
choice under high diversity conditions that maximizes street vitality. At low diversity (blue),
low choice corresponds to lower synergy values, indicating that in a well-developed city
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like Guangzhou, even if choice increases, street vitality struggles to significantly improve
in the presence of low diversity.

For early-stage development cities like Haikou, the focus should be on enhancing
social function density, as even with increased choice, street vitality may be limited without
sufficient functional support. For mid-stage development cities like Nanning, attention
should be given to the synergistic enhancement of diversity and choice, as at this stage,
the increased choice can effectively promote street vitality with the support of diversity.
For more maturely developed cities like Guangzhou, the strategy should involve finding
the optimal balance between choice and diversity to maintain and enhance street vitality.
In these cities, excessive increases in choice may not necessarily lead to enhanced street
vitality, making the role of diversity particularly important.

Figure 8P (Haikou) observes that at high building density, synergy values seem to
be lower in areas with low integration, suggesting that even with high building density,
positive street vitality may not be produced in areas lacking integration. As integration
increases, synergy values show a rising trend, but the magnitude of the increase is limited,
indicating a certain limitation to the positive impact of integration on street vitality. At low
building density, increasing integration does not show a clear trend of increase or decrease
in synergy values. This might indicate that for a less developed city like Haikou, low
building density is insufficient to significantly impact street vitality. Figure 8Q (Nanning)
observes that at high building density, synergy values in areas with medium integration
are higher than at the extremes, forming an arch-shaped distribution. This suggests the
existence of an optimal range of integration where the synergistic effect of social density
and street vitality is maximized. At low building density, synergy values seem to be
lower in areas with high integration. This could mean that under conditions of low social
density, high integration may not be conducive to enhancing street vitality. Figure 8R
(Guangzhou) notes that at high building density, synergy values significantly increase with
higher integration, indicating that under high social density conditions, the increase in
integration has a very apparent positive effect on street vitality. At low building density,
very low or high integration corresponds to lower synergy values. This indicates that in
a highly developed city like Guangzhou, street vitality in low social-density areas relies
more on a moderate level of integration.

For early-stage development cities like Haikou, enhancing urban integration and in-
frastructure investment may be key to boosting street vitality. Mid-stage development cities
like Nanning should find a balance between increasing social density and integration, avoid-
ing excess in either aspect. For more mature international metropolises like Guangzhou,
the strategy may involve maintaining vitality on the foundation of high integration and
high social density, preventing negative congestion effects.

5.4. Discussion

In this study, GBDT and SHAP are used to investigate the nonlinear and synergistic
effects of various indicators on street vitality in the built environment of tropical hot and
humid cities with different development processes, represented by Haikou, Nanning,
and Guangzhou. We quantify the street-built environment in terms of 11 indicators in
four dimensions and use multi-source big data to measure street vitality. We developed a
GBDT model and used SHAP for local interpretation. The local interpretation can reflect
the contribution of each indicator of the built environment at different scales. Based on the
local interpretation, we reveal the relative contribution of built environment indicators to
street vitality, their nonlinear effects on street vitality, and the synergistic effects among
built environment indicators. Finally, we propose targeted development strategies for cities
at different stages of development to promote street vitality.

We find that the development level of a city significantly influences the extent to which
various factors contribute to street vitality. For example, in cities at the early stages of
development, as represented by Haikou, the density of social functions, building perime-
ters, number of buildings, and building heights have significant positive effects on street
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vitality, but these effects tend to be saturated or declining after reaching a certain level.
In mid-development cities, as represented by Nanning, the relationship between these
factors and street vitality is more complex, showing more changes and uncertainties. In
highly developed cities (e.g., Guangzhou), on the other hand, the positive effects of these
factors (especially building height density) on street vitality are persistent and widespread,
although diminishing marginal effects may occur at very high levels. This has similarities
with the conclusions of Shi and others’ research, which states that “high density does not
always ensure a high-vitality city” [49].

In addition, factors such as the mix of social functions, the density, diversity, and
choice of leisure and residential facilities were found to have different effects on street
vitality in cities at different stages of development. For example, the mix of social functions
and the density of leisure facilities had a positive impact on street vitality in all three cities,
but the extent of their impact varied with the level of urban development. In more maturely
developed cities (e.g., Guangzhou), the positive contribution of these factors to street
vitality can be sustained to higher levels.

Overall, this study reveals the important influence of the level of urban development
on street vitality and the different factors that need to be considered in urban planning
and management for cities at different stages of development. Cities in the early stages of
development, need to focus on the enhancement of social function density and architectural
features while maintaining a moderate development density to avoid negative impacts
on street vitality. For more maturely developed cities, there is a need to focus more on
the enhancement of diversity, choice, and integration and how to maintain and enhance
street vitality in the midst of high-density development. These findings provide valuable
guidance to urban planners in formulating appropriate strategies at different stages of
development to promote the continued growth and sustainability of urban street vitality.

The local dependency plot shows that there is a general nonlinear effect of the indica-
tors of the built environment on street vitality, aligning with the research and hypotheses
of Tao, Liu, Hatami, and others [50–52], with one or more inflection points (thresholds)
in the values of all the variables, and their local effects shift from negative to positive or
from positive to negative. The rate of increase or decrease in the local effect often changes
before and after the inflection point. For example, the rise in local effects is accelerated
when the diversity of Canton exceeds 1.5, when the value of the contribution of diversity
to street vitality increases. There are also two types of inflection points: upper and lower
limits. The former, such as POI density, has a saturation value; the latter, such as POI
density in Guangzhou, starts to turn positive around 30. These nonlinear and threshold
effects can provide city managers with subtle knowledge to improve street vitality within
an effective range.

The effect of one indicator of the built environment can be amplified or diminished as
another indicator changes. For example, when the built intensity exceeds about 100, the
synergistic effect of the two is then enhanced, and the localized effect of the two is amplified
as the diversity of streets increases. Therefore, if the planning objective is to promote street
vitality, then it is recommended to prioritize the development of street building intensity
and then pursue street diversity on this basis.

The research by Huang, Fu, and Guo, along with Jacobs’ classic theory, particularly
emphasizes the crucial role of diversity in enhancing street vitality. However, they did
not consider whether diversity still holds absolute importance in cities at an early stage of
development with lower construction intensity [13,18,46]. Our study finds that although
diversity is integral throughout various stages of urban development, construction intensity
is more prominent than diversity in the initial stages of urban growth. Haikou, Nanning,
and Guangzhou, while sharing similar geographical and climatic conditions, still exhibit
differences in their levels of economic development. The majority of built environment
indicators influence street vitality in a similar trend, yet they have distinct thresholds and
turning points. Policies should be tailored to the development stage of the city, catering to
cities at different levels of economic progress. For example, for cities in early development
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stages like Haikou, the focus should be on enhancing social functional density dimensions,
such as building perimeter density, building number density, and building height density.
Key indicators like building height and number density should be monitored to ensure they
do not exceed levels that negatively impact street vitality. For cities in mid-development
stages like Nanning, the impact of diversity on vitality, particularly in complex and dynamic
urban contexts, should be considered. The mix of social functions should be assessed to
ensure an appropriate density and diversity of leisure and residential facilities. For highly
developed cities like Guangzhou, local effect maps should be used to identify and monitor
key turning points or thresholds, such as diversity, POI density, etc., to formulate more
detailed strategies around these thresholds.

6. Summary and Future Work

This study also raises several issues that warrant exploration in the future. Firstly,
due to the absence of a precise definition of street vitality, further efforts should be made
in this regard. For instance, this research utilized Baidu Heat Map data and LBSs data as
external representations of street vitality while overlooking the involvement of specific
social groups, such as non-smartphone users (including individuals without Baidu-related
apps installed on their phones), in the computation of street vitality. Secondly, urban streets
vary in width, and during the study, a uniform buffer was applied for statistical purposes
across different street grades, thereby neglecting the distinct boundary characteristics of
various streets. Furthermore, as elucidated in Agnieszka Starzyk’s research, the vibrancy
of streets or theaters is not solely determined by how individuals interact with spaces
but also by the frequency and depth of these interactions. In essence, this vitality arises
from the mutual influence and interaction between people and the built environment [53].
However, this study treats humid subtropical regions as homogeneous entities, aiming to
investigate the general impact of the built environment on street vitality, thus overlooking
the spatio-temporal diversity and heterogeneity within different urban street spaces in the
region. Additionally, while this study empirically demonstrated the nonlinear relationship
between the built environment of humid subtropical regions and the formation of street
vitality, it remains unknown whether similar patterns exist in cities located in other climatic
zones. This aspect represents a gap in the research. Nonetheless, developing countries
urgently require measures to promote street vitality, and in-depth exploration of the theo-
retical and practical relationships between the built environment and street vitality holds
significant importance.
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