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Abstract: Energy efficiency is a critical component in cleaner production, and evaluating the opportu-
nities for saving energy could improve energy efficiency by reducing electricity consumption and
increasing competitiveness. In this context, the aim of this study is to examine different scenarios that
can lead to better energy efficiency in a short-cycle time flowshop, which is performed with the aid
of digital manufacturing software. It has been widely acknowledged in the literature that changing
the energy state of machines in short-cycle time flowshop manufacturing is impossible due to the
high production volume, which requires the machines to operate full time. We used computational
simulation, via digital manufacturing software, to examine the potential for improvements in energy
indicators through various scenarios. The scenarios were built using energy and manufacturing data
from a real system. The main contribution is in showing that, by controlling the buffers’ occupation,
the feeding systems of the machines and planned introduction stop. In addition, it is possible to
consider new energy states for the machines and, consequently, enhance the energy, as well as the
sustainability, indicators in this type of manufacturing process.

Keywords: short-cycle time; flowshop; digital manufacturing; energy saving; cleaner production;
Industry 4.0

1. Introduction

Several studies have shown that the manufacturing industry can significantly enhance
its energy efficiency by implementing methods and strategies for managing electricity
consumption [1–3]. This improvement in energy efficiency would not only reduce electric-
ity consumption, but also increase competitiveness and compliance with environmental
regulations like ISO 50001 [4].

Nevertheless, even with the availability of certain technologies, correlating electricity
use with manufacturing operations remains a challenge due to the complexity of production
systems and the large number of data sources [5].

Initially, researchers used the discrete event simulation method to identify opportuni-
ties for improvement in isolated equipment because of its simplicity [6]. However, it was
later observed that analyzing the performance of isolated equipment does not provide a
comprehensive evaluation of manufacturing systems. Therefore, researchers have begun
analyzing complete manufacturing systems, wherein they consider other variables such as
equipment downtime, energy states, and the calculation of intermediate stocks to avoid
idle equipment [7].

Digitizing manufacturing systems is one of the initial steps toward creating a digital
twin, which makes Industry 4.0 feasible [8]. In addition to digitization, works that utilize
the Internet of Things (IoT) concepts to connect and monitor electricity consumption in old
machines are also noteworthy in relation to energy consumption and Industry 4.0 [9,10].
The works of [11,12] argued that improvements in manufacturing systems need to be
examined, thereby highlighting the need to use new methodologies and tools from an
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Industry 4.0 context. Despite advancements in simulation technology, an applicable solu-
tion for seamlessly incorporating energy analysis into manufacturing system simulations
is still elusive, thus making it an ongoing and pertinent research focus [13]. Simulation
modeling enables the design and validation of diverse rules and strategies for effective
energy management [14,15].

The aim of this study is to examine different scenarios that can lead to better energy
efficiency in a short-cycle-time flowshop with the aid of digital manufacturing software.
The literature suggests various methods for improving energy performance in manufac-
turing systems. Most of these methods involve modifying the energy states of machines
during system operation, which reduces their energy consumption. However, these strate-
gies may not be practical for systems with particularly short cycle times. Therefore, this
work contributes to the subject by presenting strategies for changing the machine energy
states in this type of manufacturing system. The innovation of this study stems from the
acknowledgment that, through strategic approaches or innovative methodologies, new
pathways for energy conservation can be found, thereby unlocking potential improvements
that might not have been apparent before. This recognition of untapped possibilities within
a challenging manufacturing environment is the key novelty highlighted in this research.

2. Literature Review

The industrial sector is one of the largest consumers of electricity worldwide. To em-
phasize the significance of the industry’s relationship with energy demand, the work of [16]
highlights that residential, commercial, and transportation energy consumption accounts
for only 14%, 7%, and 27% of the global total, respectively. Energy consumption can
be reduced by improving the processes involved. Two examples of such improvements
are worth mentioning: In a study by [17], significant energy savings were achieved in
a grinding system by reducing the number of process steps, using finer grinding, and
utilizing better planning operations. Similarly, ref. [5] was able to reduce energy consump-
tion during grinding by selecting the ideal machine tool path. According to the research
conducted by [18], it is crucial to carefully evaluate the energy consumption efficiency and
productivity of manufacturing systems. This study emphasizes the importance of adopting
new methodologies and tools to achieve this goal. According to [19], new approaches are
needed to implement energy efficiency solutions in dynamic manufacturing systems with
varying requirements and demand. In their literature review, May et al. [20] presented
frameworks for the use of electrical energy in manufacturing systems.

The industrial sector alone is responsible for 51% of the global total energy consump-
tion. Additionally, regulations and rising energy costs have compelled researchers to delve
into the realms of energy efficiency and renewable sources. Given that manufacturing
systems significantly contribute to greenhouse gas emissions due to their substantial energy
consumption, recent studies have increasingly concentrated on this critical area. Promoting
energy efficiency is crucial as it has been proven to be an effective avenue through which to
attain sustainability for manufacturing companies [21,22]. In recent years, there has been
a growing interest in energy efficiency standards such as ISO 50001 across academia and
industry [23,24]. As a result, the need for developing key performance indicators (KPIs)
related to energy has increased. These indicators are crucial for formulating policies and
operational controls at all levels of aggregation, from equipment and departments to plants
and countries. They help in collecting and analyzing information related to energy, which,
in turn, allows for the evaluation of potential optimization and improvements [25]. Under-
standing the energy behavior of factories and their subsystems is crucial for identifying
energy management opportunities and assessing energy savings. In this context, it is an
industry in continual evolution, with a significant potential in enhancing environmental
conditions and facilitating more effective utilization of its resources [26]. Measuring and
directing their energy performance is the critical first step toward achieving this goal [27].
According to [28], it became evident that there is a need for exclusive key performance
indicators (KPIs) that are focused on energy efficiency. The authors of [29] argued that
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relying solely on time-based vision is not enough to fully evaluate the energy efficiency of
a piece of equipment. They emphasized the significance of developing key, energy-related
performance indicators (e-KPI) to measure the energy performance. According to them,
most current energy performance indicators are calculated based on aggregate measures of
energy consumption, which do not consider the cause–effect relationships between states
of manufacturing, machine configurations, and energy consumption. Thus, the authors
emphasized the importance of incorporating these factors in the calculation of e-KPIs to
deliver a comprehensive analysis of the energy inefficiencies in the productive resource.

According to the research conducted by [30], the industrial sector requires compu-
tational tools to predict the energy consumption of equipment and processes in order
to design and manage energy-efficient factories. The studies of [18,31] presented some
approaches in this line of research in their respective works on the manufacturing system.
The following works addressed production scheduling in flowshops by considering energy
consumption: [32–34]. However, they did not consider systems with short-cycle times.
The study conducted by [35] analyzed four units in a flowshop system. That study uti-
lized a bee-colony-based algorithm to minimize the energy consumption of each machine,
thereby making the process more sustainable.

In their research, the authors in [29,36] affirmed that it is essential to analyze individual
machines and equipment in order to improve energy efficiency in manufacturing systems.
However, a holistic perspective can only be achieved by integrating the assessment of lines
and installations. This approach can provide new opportunities for improvement. The en-
ergy consumption behavior of a machine can be categorized into different states, such as
“operational”, “off”, “starting”, “warming up”, “waiting”, “processing”, or “failure”. By as-
signing a power consumption pattern to each of the operating states of a machine, which is
identified by a power profile, it is possible to calculate the general energy consumption of
the machines in different operating conditions [30]. A machine consumes more than 50%
of its maximum power even when it is idle in almost all manufacturing processes, whether
conventional or unconventional [17].

The paper of [1] presented a technique named “Windows of Opportunities”, which
can be used to detect opportunities in an automotive production line that uses serial
machines. The method involves the real-time control of electrical energy. To measure these
opportunities, the authors created an analytical model for the production line. Additionally,
the authors in [37] proposed a similar method of controlling electricity in real time but with
multi-machine manufacturing systems.

There are ongoing studies that aim to analyze the decrease in electricity demand from
manufacturing systems during peak consumption periods. The two studies conducted
by [38,39] present models of control and buffer usage that are designed to reduce demand
only during peak times in multi-machine systems.

A common strategy for reducing energy consumption in manufacturing systems can
be seen in the literature review. This particular strategy involves changing the energy
states of machines based on the physical states of production. Although this has brought
significant advances to the topic, there are no studies in the literature that deal with the
changes in energy states in systems with short cycle times. This work contributes to the
subject in terms of theory by introducing efficient strategies for changing energy states in
this type of system. Furthermore, it also brings practical contributions since the strategies
use and improve the occupation of buffers that already exist in a real physical system.

Table 1 shows the categorization of the literature reviews based on their
respective categories.

Table 1. Category summaries and the existing research.

Category Existing Research

Energy in Manufacturing May et al. [20] presented frameworks for electrical energy use in manufacturing systems.
Ref. [18] emphasized the need to evaluate energy consumption efficiency and
productivity, as well as advocated for new methodologies.
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Table 1. Cont.

Category Existing Research

Energy in Manufacturing Ref. [30] highlighted the importance of computational tools to predict the energy
consumption for designing and managing energy-efficient factories.

Holistic Perspective and Individual
Machine Analysis

Refs. [29,36] stressed the necessity of analyzing individual machines and equipment for
improved energy efficiency.

Categorization of Machine Energy
Consumption/Energy Consumption
Reduction through
Process Improvements

Refs. [17,19] emphasized the need for new approaches to implement energy efficiency
solutions in dynamic manufacturing systems.

Real-time Electricity Control Methods Ref. [37] proposed a real-time electricity control method for multi-machine
manufacturing systems.
Ref. [35] utilized a bee-colony-based algorithm to minimize energy consumption in a
flowshop system, thereby enhancing sustainability.

Importance of Understanding Energy
Behavior/Peak Electricity Demand

Ref. [37] proposed a real-time electricity control method for multi-machine
manufacturing systems.
Ref. [35] utilized a bee-colony-based algorithm to minimize energy consumption in a
flowshop system, thereby enhancing sustainability.
Refs. [38,39] aimed to analyze and reduce electricity demand during peak consumption
periods in multi-machine systems.

Key Performance Indicators (KPIs) for
Energy Efficiency

Ref. [28] emphasized the need for exclusive key performance indicators (KPIs) that are
focused on energy efficiency.

3. Materials and Methods

Siemens Plant Simulation® software, version 14.0, was utilized to analyze the pro-
duction system and its electrical energy features. As stated in [40], the simulators had
advantages in representing decision-making processes by capturing the sets of variables
related to the manufacturing system.

It is important to note that the choice of a simulation tool being integrated into a
digital manufacturing system is the focus of this research. This aim is directed toward
energy efficiency and is achieved by considering the relationship between this efficiency
and productivity.

3.1. Problem Formulation

The analyzed production system was of the flowshop type and represented a real
production line. The traditional flowshop system consists of m different machines that
process a set of n different tasks in the same sequence. In this work, the cycle times of the
machines are short when compared to typical manufacturing processes. This production
line comprised 11 processes (Figure 1), which consisted of a hybrid system where some
processes have only one machine while others operate with two machines in parallel.
To reduce the losses due to downtime, the company used standard intermediate part
buffers with a maximum capacity of 60,000 units. However, the company did not perform
periodic reviews of the capacity of these buffers.

The machines were not connected by conveyors but were automatically fed and had
an input capacity of around 2000 units per supply. To simplify the analysis and remove the
unrelated variables, it was assumed that operators will always be present to supply the
machines when needed and when material is available.

All the necessary information and parameters for this production line were gathered
from the company’s management reports and then statistically analyzed. For the purpose
of this study, the median value of each parameter was considered and is presented in
Table 2. The parameters presented include the amount of resources required for each step
of the process (single equipment or parallel), the cycle time, machine availability, mean
time to repair (MTTR), and the buffer capacities between the equipment. As the production
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line is a high-volume operation, the company runs three work shifts (24 h per day) with no
work on Sundays.

Figure 1. The flowshop process.

Table 2. Production parameters.

Station Resources Cycle Time (s) Availability (%) MTTR (min.) Buffer Capacity

M1 1 0.286 93.37% 52.98 -

M2 2 0.500 92.63% 36.45 60,000

M3 1 0.278 93.47% 42.57 -

M4 1 0.231 98.45% 26.94 -

M5 2 0.500 95.14% 39.65 60,000

M6 1 0.200 97.84% 62.07 -

M7 1 0.250 95.72% 56.21 60,000

M8 2 0.500 96.19% 43.52 60,000

M9 2 0.500 95.38% 51.85 -

M10 2 0.500 97.14% 29.71 -

M11 2 0.500 96.85% 46.37 -

To establish a conceptual pattern for the manufacturing equipment, this work refers
to the proposal of [29], who identified the following power states: off, on de-energization,
standby, failure, operational, preparation, on energization, and processing. However,
the manufacturing system under analysis possessed equipment that had been in operation
for an average of 15 years, which means that some of the energy states were not available
for parameterization in the equipment.

The average cycle time per piece was 0.5 seconds. As the energy states available in
the equipment had a negligible transition time, they were not considered in the model.
Table 3 presents all the relevant energy consumption data for this study. All of the energy
parameters were obtained from the measurements carried out on the machines by the
company’s employees.
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Table 3. Energy parameters.

Station
Energy Consumption (kWh)

Processing Operational Failure Standby

M1 21.53 8.61 8.61 2.15

M2 46.57 18.63 18.63 4.66

M3 16.00 6.40 6.40 1.60

M4 8.55 3.42 3.42 0.86

M5 5.98 2.39 2.39 0.60

M6 3.33 3.33 1.33 0.33

M7 18.21 7.29 7.29 1.82

M8 4.42 1.77 1.77 0.44

M9 3.73 1.49 1.49 0.37

M10 2.10 0.84 0.84 0.21

M11 1.83 0.73 0.73 0.18

3.2. Proposed Solution

In order to identify the opportunities for improving energy efficiency in a flowshop
system, a series of scenarios were created. These scenarios were aimed at achieving better
performance, either by reducing energy consumption or by increasing production with the
same level of energy consumption.

The following subsections provide a comprehensive overview of the proposed scenar-
ios; they have been labeled A, B, C, and D. Each scenario takes into account the various
energy states of the machines and includes both planned and unplanned machine stops.
Programming concepts and rules were utilized to evaluate the variables separately and
identify the positive aspects that contribute to energy efficiency, as well as to other op-
portunities for improvements. Scenario A represents the ideal scenario where there are
no machine failures. Scenario B represents the current state of the company without any
energy management strategy. Scenario C is the first major contribution of our work, where
strategies are implemented to change machine energy states by regulating the occupancy
of intermediate buffers and the machine power system. Finally, Scenario D is the proposal
of a planned shutdown of machines in conjunction with the strategies from Scenario C to
improve the energy indicators.

The details of each scenario, along with the adopted strategies, are presented in Table 4.
Additionally, the information regarding the programming rules implemented in the Plant
Simulation software for each scenario can be found in Table 5.

Table 4. Scenario descriptions.

Scenario A B C D

No random
unplanned stops
occurring.

Random unplanned
stops occurring.

Random unplanned
stops and management
of the machine
state as a
function of the number
of parts in
the buffers and
in the feeding
system of each
workstation.

Machine
state management
based on the
number of parts
in the buffers
and feeding system
of each workstation
and daily planned
maintenance
shutdowns.
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Table 4. Cont.

Scenario A B C D

Goal

Identify the maximum
system productivity
under ideal
conditions.

Analyze the
system and identify
current energy
consumption and
productivity.

Analyze the
impact on energy
consumption through
machine state
control by
the level of
intermediate buffers
and feeding
systems for
manufacturing systems
with short-
cycle time
processes.

Analyze the
impact on
energy consumption
through machine
state control
by the level of
intermediate buffers,
feeding systems,
and the planning of
daily maintenance
shutdowns for
manufacturing systems
with short-cycle
time processes.

Machine states Processing, Operational
Processing,
Operational, and
Failed

Processing,
Operational,
Failed, and
Off

Processing,
Operational,
Failed, and
Off

Programming rules None None

Machine state
control depending
on the number
of parts in
the feeding system
and buffers.

Machine state
control depending
on the number
of parts in
the feeding
system and
buffers.
Planning of
maintenance
shutdowns.

KPI Production Volume and Energy Efficiency (Lean Energy Indicator and Energy consumed per piece)
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Table 5. Modeling parameters—programming rules.

Scenarios

Scenario A Scenario B Scenario C Scenario D
Parameters: Cycle time
and consumption
of electricity.
Parts distribution:
Random for
the forward
available station.
Machine States:
Processing (Working),
Operational (Operational).
Programming Rules
(Energy consumption):
There are no
rules for programming,
the evolution of the
system is
simply measured
through the
unbalance of
cycle times
between workstations.

Parameters: Cycle time,
random stops
(Availability, MTTR, and normal
statistics distribution), and
consumption of electricity.
Parts distribution:
Random for the forward
available station.
Machine States:
Processing (Working),
Operational (Operational),
and Maintenance (Failed).
Programming Rules
(Energy consumption):
There are no rules for programming,
the evolution of the system is simply
measured through the unbalance of
the cycle times between workstations
and unplanned stops.

Parameters: Cycle time , random stops
(Availability, MTTR, and normal statistics
distribution), and consumption of electricity.
Parts distribution: Random for the forward
available station and according to
the programming rules.
Machine States: Processing (Working),
Operational (Operational), Maintenance (Failed),
Standby, and Off.
Programming Rules (Energy Consumption):
Rule 1: When the quantity of pieces of Buffer1 is
equal to zero, Station M3 must enter Standby mode;
Rule 2: When the quantity of pieces of Buffer2 is
equal to zero, Station M5 must enter Standby mode;
Rule 3: When the quantity of pieces of Buffer3 is less
than 10,000 units, Station M8 must enter
Standby mode;
Rule 4: When the quantity of pieces of Buffer4 is less
than 10,000 units, Station M9 must enter
Standby mode;
Rule 5: When the quantity of pieces in the M2
feeding system is smaller than 1000 units, Station M2
must enter Standby mode or, when the number of
parts in the M2 feeding system is equal to
10,000 units, Station M1 must go into Standby mode;
Rule 6: When the quantity of pieces in the M4
feeding system is smaller than 1000 units, Station M4
must enter Standby mode or, when the number of
parts in the M4 feeding system equals 10,000 units,
Station M3 must enter Standby mode;

Parameters: Cycle time, planned stops (time of stop,
period, and frequency), and consumption
of electricity.
Parts distribution: Random for the forward
available station and according to the programming
rules.
Machine States: Processing (Working),
Operational (Operational), Maintenance (Failed),
Standby, and Off.
Programming Rules (Energy Consumption):
Rule 1: When the quantity of pieces of Buffer1 is
equal to zero, Station M3 must enter Standby mode;
Rule 2: When the quantity of pieces of Buffer2 is
equal to zero, Station M5 must enter Standby mode;
Rule 3: When the quantity of pieces of Buffer3 is less
than 10,000 units, Station M8 must enter Standby
mode;
Rule 4: When the quantity of pieces of Buffer4 is less
than 10,000 units, Station M9 must enter
Standby mode;
Rule 5: When the quantity of pieces in the M2
feeding system is smaller than 1000 units, Station M2
station must enter Standby mode or, when the
number of parts in the M2 feeding system equals
10,000 units, Station M1 must go into Standby mode.
Rule 6: When the quantity of pieces in the M4
feeding system is smaller than 1000 units, Station M4
must enter Standby mode or, when the number of
parts in the M4 feeding system equals 10,000 units,
Station M3 must enter Standby mode;
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Table 5. Cont.

Scenarios

Rule 7: When the quantity of pieces in the M6
feeding system is smaller than 1000 units, Station M6
must enter Standby mode or, when the number of
parts in the M6 feeding system equals 10,000 units,
Station M5 must go into Standby mode;
Rule 8: When the quantity of pieces in the M7
feeding system is smaller than 1000 units, Station M7
must enter Standby mode or, when the number of
parts in the M7 feeding system is equal to
10,000 units, Station M6 must go into Standby mode;
Rule 9: When the quantity of pieces in the M10
feeding system is smaller than 1000 units, Station
M10 must enter Standby mode or, when the number
of parts in the M10 feeding system equals
10,000 units, Station M9 must go into Standby mode;
Rule 10: When the quantity of pieces in the M11
feeding system is smaller than 1000 units, Station M11
must enter Standby mode or, when the number of
parts in the M11 feeding system is equal to
10,000 units, Station M10 must go into Standby mode;

Rule 7: When the quantity of pieces in the M6
feeding system is smaller than 1000 units, Station M6
must enter Standby mode or, when the number of
parts in the M6 feeding system equals 10,000 units,
Station M5 must go into Standby mode;
Rule 8: When the quantity of pieces in the M7
feeding system is smaller than 1000 units, Station M7
must enter Standby mode or, when the number of
parts in the M7 feeding system is equal to
10,000 units, Station M6 must go into Standby mode;
Rule 9: When the quantity of pieces in the M10
feeding system is smaller than 1000 units, Station
M10 must enter Standby mode or, when the number
of parts in the M10 feeding system equals
10,000 units, Station M9 must go into Standby mode.
Rule 10: When the quantity of pieces in the M11
feeding system is smaller than 1000 units, Station M11
must enter Standby mode or, when the number of
parts in the M11 feeding system is equal to
10,000 units, Station M10 must go into Standby mode.
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3.2.1. Scenario A

This scenario envisions a manufacturing system with short-cycle processes that aims
to achieve a seamless operation without any unplanned stops. To achieve this, the system
will use buffers after Stations M2, M4, M7, and M8, as well as the machines that operate
only in the “operational” and “processing” energy states. The goal is to analyze the
electrical energy and productivity indicators in a manufacturing system that has cycle time
restrictions between workstations and no random disturbances.

Tables 6 and 7 present the production and energy parameters for this scenario. Param-
eters that are not applicable are denoted with NA.

Table 6. Production parameters—Scenario A.

Station Resources Cycle Time (s) Availability (%) MTTR (min.) Buffer Capacity

M1 1 0.286 100% NA -

M2 2 0.500 100% NA 60,000

M3 1 0.278 100% NA -

M4 1 0.231 100% NA -

M5 2 0.500 100% NA 60,000

M6 1 0.200 100% NA -

M7 1 0.250 100% NA 60,000

M8 2 0.500 100% NA 60,000

M9 2 0.500 100% NA -

M10 2 0.500 100% NA -

M11 2 0.500 100% NA -

Table 7. Energy parameters—Scenario A.

Station
Energy Consumption (kWh)

Processing Operational Failure Standby

M1 21.53 8.61 NA NA

M2 46.57 18.63 NA NA

M3 16.00 6.40 NA NA

M4 8.55 3.42 NA NA

M5 5.98 2.39 NA NA

M6 3.33 3.33 NA NA

M7 18.21 7.29 NA NA

M8 4.42 1.77 NA NA

M9 3.73 1.49 NA NA

M10 2.10 0.84 NA NA

M11 1.83 0.73 NA NA

3.2.2. Scenario B

This scenario is about a manufacturing system that experiences random unplanned
stops. The system uses buffers after Stations M2, M4, M7, and M8. The machines in this
system have only three energy states: “operational”, “processing”, and “maintenance”.
The goal is to analyze the electrical energy and productivity indicators in a real manufac-
turing system with short-cycle processes. Due to unforeseen events such as machine stops,
the system’s synchronization was affected.
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Tables 8 and 9 present the production and energy parameters for this scenario. Param-
eters that are not applicable are denoted by NA.

Table 8. Production parameters—Scenario B.

Station Resources Cycle Time (s) Availability (%) MTTR (min.) Buffer Capacity

M1 1 0.286 93.37% 52.98 -

M2 2 0.500 92.63% 36.45 60,000

M3 1 0.278 93.47% 42.57 -

M4 1 0.231 98.45% 26.94 -

M5 2 0.500 95.14% 39.65 60,000

M6 1 0.200 97.84% 62.07 -

M7 1 0.250 95.72% 56.21 60,000

M8 2 0.500 96.19% 43.52 60,000

M9 2 0.500 95.38% 51.85 -

M10 2 0.500 97.14% 29.71 -

M11 2 0.500 96.85% 46.37 -

Table 9. Energy parameters—Scenario B.

Station
Energy Consumption (kWh)

Processing Operational Failure Standby

M1 21.53 8.61 8.61 NA

M2 46.57 18.63 18.63 NA

M3 16.00 6.40 6.40 NA

M4 8.55 3.42 3.42 NA

M5 5.98 2.39 2.39 NA

M6 3.33 3.33 1.33 NA

M7 18.21 7.29 7.29 NA

M8 4.42 1.77 1.77 NA

M9 3.73 1.49 1.49 NA

M10 2.10 0.84 0.84 NA

M11 1.83 0.73 0.73 NA

3.2.3. Scenario C

This scenario involves a manufacturing system that experiences random unplanned
stops. The management of the machine state depends on the number of parts present in the
buffers after Stations M2, M4, M7, and M8, as well as the power system of each workstation.
The objective is to focus on improving energy consumption and evaluating its impact
on productivity. The equipment assumes different energy states, such as “operational”,
“processing”, “maintenance”, and “standby”.

The purpose of this analysis is to evaluate the electrical energy and productivity
indicators in a manufacturing system that has short-cycle processes and experiences un-
foreseen events of individual machine stops (which can affect its synchronicity). However,
this impact can be minimized by scheduling rules that manage the machine states of the
equipment through the control of the units present in buffers and power systems.

Tables 10 and 11 present the production and energy parameters for this scenario.
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Table 10. Production parameters—Scenario C.

Station Resources Cycle Time (s) Availability (%) MTTR (min.) Buffer Capacity

M1 1 0.286 93.37% 52.98 -

M2 2 0.500 92.63% 36.45 60,000

M3 1 0.278 93.47% 42.57 -

M4 1 0.231 98.45% 26.94 -

M5 2 0.500 95.14% 39.65 60,000

M6 1 0.200 97.84% 62.07 -

M7 1 0.250 95.72% 56.21 60,000

M8 2 0.500 96.19% 43.52 60,000

M9 2 0.500 95.38% 51.85 -

M10 2 0.500 97.14% 29.71 -

M11 2 0.500 96.85% 46.37 -

Table 11. Energy parameters—Scenario C.

Station
Energy Consumption (kWh)

Processing Operational Failure Standby

M1 21.53 8.61 8.61 2.15

M2 46.57 18.63 18.63 4.66

M3 16.00 6.40 6.40 1.60

M4 8.55 3.42 3.42 0.86

M5 5.98 2.39 2.39 0.60

M6 3.33 3.33 1.33 0.33

M7 18.21 7.29 7.29 1.82

M8 4.42 1.77 1.77 0.44

M9 3.73 1.49 1.49 0.37

M10 2.10 0.84 0.84 0.21

M11 1.83 0.73 0.73 0.18

3.2.4. Scenario D

The manufacturing system incorporates daily planned maintenance stops and man-
ages the machine status based on the number of parts in the buffers after Stations M2, M4,
M7, and M8. The power system of each machine is also managed so as to improve energy
consumption and assess the impact on productivity. The machines operate in four energy
states, namely, “operational”, “processing”, “maintenance”, and “standby”. Instead of
individual random stops of equipment, the system uses planned daily maintenance stops
and programming rules to control the machine’s state through the control of the units
present in buffers.

Tables 12 and 13 present the production and energy parameters for this scenario.
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Table 12. Production parameters—Scenario D.

Station Resources Cycle Time (s)
Planned Stops

Buffer CapacityStart (H:M:S) Duration (min) Interval (H:M:S)

M1 1 0.286 20:00:00 60 23:00:00 -

M2 2 0.500 20:00:00 60 23:00:00 60,000

M3 1 0.278 19:00:00 60 23:00:00 -

M4 1 0.231 19:00:00 60 23:00:00 -

M5 2 0.500 18:00:00 60 23:00:00 60,000

M6 1 0.200 18:00:00 60 23:00:00 -

M7 1 0.250 18:00:00 60 23:00:00 60,000

M8 2 0.500 17:00:00 60 23:00:00 60,000

M9 2 0.500 16:00:00 60 23:00:00 -

M10 2 0.500 16:00:00 60 23:00:00 -

M11 2 0.500 16:00:00 60 23:00:00 -

Table 13. Energy parameters—Scenario D.

Station
Energy Consumption (kWh)

Processing Operational Failure Standby

M1 21.53 8.61 8.61 2.15

M2 46.57 18.63 18.63 4.66

M3 16.00 6.40 6.40 1.60

M4 8.55 3.42 3.42 0.86

M5 5.98 2.39 2.39 0.60

M6 3.33 3.33 1.33 0.33

M7 18.21 7.29 7.29 1.82

M8 4.42 1.77 1.77 0.44

M9 3.73 1.49 1.49 0.37

M10 2.10 0.84 0.84 0.21

M11 1.83 0.73 0.73 0.18

4. Results

The proposed scenarios are different options for operational situations. These scenarios
were compared and evaluated using the e-KPI lean energy indicator (LEI). LEI measures
the energy consumed by the machines during part processing (energy that generates value),
and this is relative to the total energy consumed by the same machine, as expressed in
Equation (1). The ideal expected value for LEI is one. The simulations were standardized
for a period of 2880 min (2 days of operation). Table 14 presents a summary of the results
obtained for the scenarios. In this table, EU refers to the electrical energy consumed to
produce one unit.

Lean Energy Indicator =
Energy consumed in the “Processing State”

Total energy consumed
(1)

The analyzed scenarios indicated significant variations in productivity and energy
consumption, thereby creating opportunities for better results in the manufacturing system.
Figure 2 illustrates the simulation model developed. The Plant Simulation software that
was utilized in this study uses an object-oriented approach. The Station object was used
to simulate machines, the Buffer object for buffers, and the Source object for feeders.
The production and energy parameters mentioned in Tables 1 and 2 were added directly
into the Station objects. The production control programming rules given in Table 4 were
written via scripts in objects called Methods.
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Table 14. Consolidated results by scenario.

Energy Consumption x Energy States
EU LEI

Scenario Throughput Total Consumption Processing Operational Failed Standby
(Unities) (kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%) (kWh) kWh Factor

A 624,182 6156.25 97.92 6028.35 2.08 127.09 0.0 0.0 0.0 0.0 0.0099 0.9792
B 527,926 5571.29 90.77 5056.90 6.23 346.89 3.01 167.54 0.0 0.0 0.0106 0.9077
C 524,570 5257.15 94.85 4986.57 0.32 16.61 3.19 167.50 1.64 86.47 0.0100 0.9485
D 573,006 5559.51 96.91 5387.57 0.01 0.72 1.87 104.06 1.21 67.26 0.0097 0.9691

Figure 2. The flowshop process—the digital manufacturing simulation model.
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Initially, for the purpose of comparison, we implemented the model of Scenario A,
which did not have any occurrences of unplanned stops. This model was considered the
“ideal scenario”. Its efficiency factor in energy consumption was 0.9722, which is extremely
close to the ideal unit factor. The slight difference was due to variations in the equipment
cycle time, which resulted in waiting time in some of the machines. One can refer to
Figure 3 to see the energy states per machine for this scenario, and Figure 4 shows the
buffer occupancy.

Figure 3. Energy states—Scenario A.

Figure 4. Buffer occupancy — Scenario A.

In Scenario B, which involved unplanned stops, the energy consumption efficiency fac-
tor was 0.9077. This value was not ideal and demonstrated the negative impact of machine
failure on energy efficiency. This was the current scenario of the company. Additionally,
the energy consumed per unit (EU) increased significantly by 68.3% when compared to
Scenario A. Figure 5 shows the energy states per machine for this scenario, and Figure 6
shows the buffer occupancy.

Scenario C, which involved unplanned stops, buffers between processes, and control
over the power states of the machines based on buffer occupation, showed an energy
consumption efficiency factor of 0.9279, which is close to the ideal unit factor. However,
the energy consumption per unit increased by 31.1% compared to Scenario A but decreased
by 22.1% compared to Scenario B. These results highlighted the significant impact that
buffers and machine energy state control have on energy efficiency. Figures 7 and 8 illustrate
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the energy states per machine and the buffer occupations, respectively, for this scenario.
Figure 9 presents the behavior of the feeding system.

Figure 5. Energy states—Scenario B.

Figure 6. Buffer occupancy—Scenario B.

Figure 7. Energy states—Scenario C.
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Figure 8. Buffer occupancy—Scenario C.

Figure 9. Feeding system—Scenario C.

Scenario D involves unplanned stops; moreover, the buffers are controlled between
processes and the replacement of the “operational” state with “off”. This scenario had an
efficiency factor in energy consumption of 0.9539, which is close to the ideal unit factor and
the result obtained in Scenario A. The unit energy consumption in this scenario reduced by
2.8% compared to Scenario C. The aim of this scenario was to verify whether the multiple
machine states proposed by [29] were representative for short-cycle-time manufacturing
systems. The results showed that, for this type of manufacturing, the insertion and control
of buffers resulted in better energy efficiency than keeping a single energy state. This type
of manufacturing system (short-cycle time flowshop) offers significant opportunities in
terms of reducing energy consumption and improving the efficiency indicators. Moreover,
the control of buffer occupancy benefits from a possible reduction in occupancy, as well as
a subsequent reduction in the material in the process. Figures 10 and 11 present the energy
states per machine and the buffer occupancy, respectively. Figure 12 presents the behavior
of the feeding system.
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Figure 10. Energy states—Scenario D.

Figure 11. Buffer occupancy—Scenario D.

Figure 12. Feeding system—Scenario D.
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The results of the analysis between the scenarios are presented in Figure 13. These
results demonstrate that it is possible to identify new opportunities and improve energy
efficiency, even in a manufacturing system with machines that have a short-cycle time.

Figure 13. Comparison of the results.

5. Discussion

In this section, we will discuss the results obtained in the scenarios in terms of produc-
tivity and energy consumption.

5.1. Productivity

According to the company, the efficiency of their short-cycle manufacturing system
is crucial for staying competitive in their industry. Therefore, it is highly important to
evaluate whether the programming rules applied in different scenarios are effective in
increasing productivity.

Scenario A provides an analytical basis for the ideal scenario, where no random stops
and only being impacted by the unbalanced cycle times of each station in the manufacturing
system is assumed. As observed in the buffer graph, there was no relevant impact from the
use of buffers in this scenario. Therefore, Scenario B will be used as an effective reference
for comparison as it is the base scenario.

When analyzing the data from the units produced by the system, it was found that
there were significant changes in production between Scenarios C and D. Another relevant
aspect was the importance of buffers in this scenario as they are used when failures occur.
This can be observed by the peaks (which represent failures in the processes after the
buffers) and the valleys (which represent failures in the processes before the buffers).

In Scenario B, there were peaks above 40,000 units. In addition, all of the buffers at
some point during the simulation operated in a continuous flow, and these passed the parts
directly to the workstations. However, at certain times, they were idle, thus impacting
subsequent workstations.

In Scenario C, a reduction of 3356 units (0.64%) was observed compared to Scenario B.
This was due to the activation of programming rules that changed the machine state of the
stations in certain periods of the simulation (with the aim of reducing energy consumption).
As a result, the number of parts produced in the system was also reduced. However,
an evaluation of the buffer graphs showed an improvement in stability in terms of the
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number of units. It is worth noting that Bu f f er2 operated in a continuous flow or idle state
for most of the time, and it also had an impact on subsequent workstations.

Another important observation was related to the feeding system. The programming
rules for managing the machine states helped to reduce the oscillations of the materials
flowing in the system. This contribution was highly valuable to the company’s managers as
any stops in the production line can result in productivity losses. Therefore, the reduction
in the number of units produced at the last station in this scenario was not found to be
significant since the system was supplied between workstations.

In contrast to Scenario C, Scenario D demonstrated a noteworthy rise in the number of
units manufactured by the system, which amounted to 45,080 units (8.55%). This indicated
that the conjunction of programming regulations that managed the machine states by
controlling units in the buffers and feeding system, along with the rules for scheduling
maintenance stops, had a positive impact on the manufacturing system.

It is clear that the programming rules played a significant role in stabilizing the
manufacturing system. The system also showed a reduction in peaks and valleys, and the
buffers were continuously flowing due to the daily planning of production stops and
maintenance. As a result, the number of units produced by the system increased. A similar
situation occurred with the feeding systems, except for S5, which showed a positive
fluctuation in the number of units due to the planned shutdown of Station M10.

5.2. Energy Consumption

Initially, Scenario A was considered the “ideal scenario” with an energy consumption
efficiency factor (LEI) of 0.9792, which was extremely close to the ideal factor of 1. The dif-
ference was due to variations in the cycle time of the equipment, which resulted in waiting
times for some of the machines. The unit energy consumption (CEU) for this scenario was
0.0099 kWh per unit.

In comparison to Scenario A, Scenario B—which is currently being used by the com-
pany—had much lower efficiency factors. The LEI factor decreased to 0.9077, which was
0.0933 lower than the ideal factor of 1 and 0.0716 lower than the factor obtained in Scenario
A. This indicated that there was room for improvement in the energy efficiency of the
manufacturing system. Consequently, due to the decrease in energy efficiency, the CEU
increased to 0.0106 kWh/unit, which is a 7% rise compared to Scenario A.

The programming rules used in Scenario C had a positive impact on energy efficiency.
The LEI factor increased to 0.9485, which was 0.0307 lower than the “ideal” Scenario A and
0.0408 higher than Scenario B (which was 0.0515 lower than the ideal factor). Additionally,
the CEU improved by 5.02% compared to Scenario B due to the increase in energy efficiency.
These results showed that managing machine states through the control of units in buffers
and power systems had a significant impact on energy efficiency.

In Scenario D, a combination of programming rules once again led to positive results
in both the rhw productivity and energy efficiency of the manufacturing system. The LEI
factor increased to 0.9691, which was only 0.0101 lower than the ideal Scenario A but 0.0206
higher than Scenario C. This meant that Scenario D was only 0.0309 lower than the ideal
factor of 1. However, the CEU improved by 3.19% compared to Scenario C and 1.62%
compared to Scenario A thanks to the gains in energy efficiency and productivity.

It is worth highlighting that managing machine states through the control of units in
buffers and feeding systems, combined with the planning of maintenance stops, enhances
energy efficiency results. This helps to improve energy consumption at workstations while
increasing the productivity of the manufacturing system.

The results indicated that incorporating programming rules for managing machine
states and stoppage planning in a manufacturing system with short-cycle processes can
lead to positive outcomes. This was especially evident in Scenario D, where both concepts
were integrated into the system. This analysis helped validate the significance of these
concepts, which were previously underexplored in such systems.
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The interplay between cleaner production and energy efficiency is a dynamic relation-
ship that focuses on sustainable and environmentally responsible industrial practices. Both
cleaner production and energy efficiency contribute to the overarching goal of reducing
environmental impact, conserving resources, and promoting sustainable development.

6. Conclusions

The importance of energy efficiency has increased for both companies and society
as a whole as we move toward more sustainable processes. One of the most significant
contributions of energy efficiency is the reduction in greenhouse gas emissions. The burning
of fossil fuels for energy is a major source of carbon dioxide (CO2) emissions. Energy-
efficient technologies and practices decrease the reliance on high-emission energy sources,
whereby they help to combat climate change and improve air quality. Energy efficiency
plays a crucial role in contributing to sustainability and cleaner production across various
industries. Through simulations conducted in this study, energy efficiency indicators were
established and calculated, thereby allowing for a comparison of the effectiveness between
different suggested actions. Simulation serves as a powerful tool to drive innovation,
improve energy efficiency, and contribute to sustainable practices across various sectors.
The results of the analysis showed that simulating different scenarios not only provided an
effective diagnosis of the current manufacturing system, but also identified opportunities
for energy efficiency and productivity improvements, which could be utilized to make
better use of the available resources or to support investment projects.

Moreover, the combination of scheduling rules for managing machine states, which is
achieved by controlling the units in buffers and feeding systems, with the scheduling rules
for daily maintenance stops significantly contributed to energy efficiency. These results
provide a significant contribution to the field and address a research gap by exploring the
possibility of changing the energy states of machines in short-cycle time manufacturing.

This study also identified the high relevance of unplanned stops in the system. Com-
bining machine state management rules with daily maintenance planning presented better
energy efficiency according to the evaluated models. This contributed to the operational
and sustainability improvement of this type of process.

This study we have presented did not consider the activities of operators or the energy
consumption during peak hours. In other words, the data on power consumption and demand
were treated equally regardless of the time of day—peak or off peak. Therefore, we propose
that future work should evaluate not only opportunities for managing machine states, but also
opportunities for operations, thereby taking into account the necessary activities of operators
in the process. This will help to identify opportunities through which to increase productivity,
which is a crucial factor for this type of manufacturing system with short-cycle processes.
Additionally, it would be beneficial to expand the scope of the study from a manufacturing
system to an industrial plant, which would increase the complexity of production variables,
bottlenecks, and the internal logistics of distribution and movement. Lastly, we could also
connect the virtual system with the physical system to apply digital twins.

Author Contributions: Conceptualization, M.M.L.J. and F.L.; methodology, M.M.L.J.; software, M.M.L.J.;
validation, M.M.L.J., F.L. and C.A.d.M.; formal analysis, M.M.L.J.; investigation, M.M.L.J.; resources,
M.M.L.J.; data curation, M.M.L.J.; writing—original draft preparation, M.M.L.J.; writing—review and
editing, F.L. and C.A.d.M.; visualization, F.L.; supervision, F.L.; project administration, F.L.; funding
acquisition, F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo
(São Paulo Research Foundation—FAPESP) under grant number 2017/25987-3. This study was
financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sustainability 2024, 16, 2455 22 of 23

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to express their gratitude to FAPESP (São Paulo Research
Foundation) for providing financial support to the research, CAPES for paying the APC and Centro
Universitário FEI for infrastructure support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chang, Q.; Xiao, G.; Biller, S.; Li, L. Energy Saving Opportunity Analysis of Automotive Serial Production Systems (March 2012).

IEEE Trans. Autom. Sci. Eng. 2013, 10, 334–342. [CrossRef]
2. Li, X.; Lan, Y.; Jiang, P.; Cao, H.; Zhou, J. An Efficient Computation for Energy Optimization of Robot Trajectory. IEEE Trans. Ind.

Electron. 2022, 69, 11436–11446. [CrossRef]
3. Jiang, P.; Wang, Z.; Li, X.; Wang, X.V.; Yang, B.; Zheng, J. Energy consumption prediction and optimization of industrial robots

based on LSTM. J. Manuf. Syst. 2023, 70, 137–148. [CrossRef]
4. ISO 50001:2018; Energy Management Systems. International Organization for Standardization: Geneva, Switzerland, 2018; ISBN

978-92-67-10828-5.
5. Diaz, N.; Redelsheimer, E.; Dornfeld, D. Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool

Use. In Glocalized Solutions for Sustainability in Manufacturing; Hesselbach, J., Herrmann, C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 263–267.

6. Mouzon, G.; Yildirim, M.B. A framework to minimise total energy consumption and total tardiness on a single machine. Int. J.
Sustain. Eng. 2008, 1, 105–116. [CrossRef]

7. Johansson, B.; Stahre, J.; Berlin, J.; Östergren, K.; Sundström, B.; Tillman, A.M. Discrete Event Simulation with Lifecycle Assess-
ment Data at a Juice Manufacturing System. 2008. Available online: https://www.researchgate.net/profile/Bjoern-Johansson-
9/publication/235719537_Discrete_Event_Simulation_with_Lifecycle_Assessment_Data_at_a_Juice_Manufacturing_System/
links/5699391f08aeeea985946480/Discrete-Event-Simulation-with-Lifecycle-Assessment-Data-at-a-Juice-Manufacturing-
System.pdf (accessed on 10 March 2024).

8. Rolle, R.P.; Martucci, V.; Godoy, E.P. Architecture for Digital Twin implementation focusing on Industry 4.0. IEEE Lat. Am. Trans.
2020, 18, 889–898. [CrossRef]

9. Choi, H.; Yeom, K. Study on an Energy-IoT Service Platform for Energy Saving in Legacy Manufacturing Site. In Proceedings
of the Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018;
pp. 811–813. [CrossRef]

10. Lima, F.; Massote, A.A.; Maia, R.F. IoT Energy Retrofit and the Connection of Legacy Machines Inside the Industry 4.0 Concept.
In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17
October 2019; Volume 1, pp. 5499–5504.

11. Matt, D.T.; Rauch, E. Biological Transformation in Manufacturing: Overview and Fields of Application. IEEE Eng. Manag. Rev.
2021, 49, 115–122. [CrossRef]

12. Vo, B.; Kongar, E.; Suárez-Barraza, M.F. Root-Cause Problem Solving in an Industry 4.0 Context. IEEE Eng. Manag. Rev. 2020,
48, 48–56. [CrossRef]

13. Köberlein, J.; Bank, L.; Roth, S.; Köse, E.; Kuhlmann, T.; Prell, B.; Stange, M.; Münnich, M.; Flum, D.; Moog, D.; et al. Simulation
Modeling for Energy-Flexible Manufacturing: Pitfalls and How to Avoid Them. Energies 2022, 15, 3593. [CrossRef]
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