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Abstract: Given the increasingly severe global climate change, the reduction in urban greenhouse
gas emissions has become the common goal of all nations. As a widely concerned sustainable
development strategy, green infrastructure investment (GII) aims to reduce urban carbon emissions,
improve the efficiency of resource utilization, and improve environmental quality. However, the
construction cycle of green infrastructure is long, and the construction process itself may produce
carbon emissions; so, the final effect of GII on urban carbon emissions is unclear, which deserves
our in-depth study. Further, is this effect having a time-lag effect? Is there only a simple linear
relationship between GII and urban carbon emissions? Based on panel data from 235 Chinese cities
from 2006 to 2019, this study conducted an econometric regression analysis using time-lag-effect
and threshold-effect models. The results showed the following: (1) GII had a negative inhibitory
effect on urban CO2 emissions. Adding one unit to the GII could reduce urban CO2 emissions by
0.032 units. (2) GII exhibited a time-lag effect on urban CO2 emissions, and the greatest reduction in
CO2 emissions occurred in the third lag period. (3) GII had a threshold effect on urban CO2 emissions
based on technological progress (TP). This paper used the static and dynamic panel threshold models
to research separately, and obtained the corresponding regression results. In the static panel, the
double threshold values for TP were 3.9120 and 6.8035. At different TP levels, GII had an inhibitory
effect on CO2 emissions, but the coefficients were different. However, in the dynamic panel, the
threshold value was 3.666. The threshold changed over time and the effect of GII on CO2 emissions
shifted from facilitation to inhibition.

Keywords: green infrastructure investment; CO2 emissions; time-lag effect; threshold effect

1. Introduction

With global climate warming and the increasingly deteriorating state of resources and
the environment, the development idea of a low-carbon, sustainable, and green economy
has been implemented. In the process of low-carbon and sustainable development, the
international community has successively signed international agreements to address
climate change. The local governments of various countries have also formulated policies
and measures to reduce emissions, put forward targets for the reduction in greenhouse gas
emissions at all stages, and formulated strategic plans and specific arrangements at the
national, industrial, and enterprise levels. The Proposal of the CPC Central Committee on
formulating the 14th Five-Year Plan for National Economic and Social Development and
the Long-term goals for 2035 clearly indicates that we should hasten the promotion of green
and low-carbon development. The total carbon emissions should peak by 2030 and then
show a downward trend, and the ecological environment should manifest fundamental
improvements. Chinese President Xi Jinping, in his speech at the 75th session of the United
Nations General Assembly, pledged that China would increase its autonomous contribution
and adopt more effective policies and measures, and emphasized that China will strive to
reach its peak carbon dioxide (CO2) emissions before 2030 and achieve carbon neutrality
before 2060.
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China is the largest developing country in the world and has the highest primary
energy consumption [1]. In a global rigid carbon constraint environment, the reduction
in CO2 emissions has become the core focus for China to achieve its set goals in a timely
manner and achieve sustainable economic development. China’s CO2 emission reduction
policy can be traced back to the 11th Five-Year Plan proposed in 2006, which states that
energy consumption per unit of gross domestic product (GDP) and total emissions of major
pollutants will be reduced by approximately 20% and 10%, respectively, during the 11th
Five-Year Plan period. As shown in Figure 1, China’s total CO2 emissions from 2006 to
2019 fluctuated; that is, these initially increased, decreased, and then increased again. From
the source of CO2 production, the proportion of raw coal in the total CO2 emissions has
decreased but still accounts for a large proportion. Therefore, China’s dependence on
traditional high-carbon energy remains very high, and the task of CO2 emission reduction
is still arduous.
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Figure 1. Changes in China’s CO2 emissions from 2006 to 2019.

Urban carbon emissions refer to the emissions of greenhouse gases, such as CO2,
produced by urban activities. As the core of climate change mitigation and the sustainabil-
ity of human development [2], cities represent two-thirds of global energy consumption
and account for more than 70% of greenhouse gas emissions [3]. The green industry is
a key means to achieve green, low-carbon, and sustainable development. In the urban
development process, the green upgrading of infrastructure plays an important role. Green
infrastructure investment (GII) refers to a category of investment in sustainable and envi-
ronmentally friendly infrastructure projects. It aims to address the shortcomings of existing
infrastructure and promote economic growth and social wellbeing while reducing the
negative impact on the environment. From 2006 to 2020, China’s GII total showed an
overall upward trend, with an average annual growth rate of 13.71% (Figure 2).
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Figure 2. The time change in GII in China.

In this section, the total GII in Chinese cities in 2006–2019 was grouped into more than
RMB 50 billion, RMB 10–50 billion, RMB 5–10 billion, and less than RMB 5 billion, and its
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geographical distribution characteristics were observed. The results showed the unbal-
anced distribution of GII in Chinese cities. Cities with the highest investment levels are
mainly concentrated in municipalities such as Beijing, Tianjin, and Chongqing. Cities with
relatively high investment levels are mainly located in eastern coastal regions. Meanwhile,
cities with lower investment levels are primarily distributed in central, western, and north-
eastern regions (Figure 3). Such an imbalance may be influenced by a combination of factors,
including the level of economic development, urban size and population, government
policies, geographical and climatic conditions, and urban sustainable development needs.
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To sum up, GII and urban carbon emissions are complex systems. It is important to
deeply explore the relationship between GII and urban carbon emission for sustainable
urban development and the timely achievement of carbon emission reduction targets
in China. This paper is organized into five sections. The first part of this article is the
introduction. This section presents the background and significance of this study. The
second part explores the research status of the domestic and foreign literature and presents
a brief literature review. The third section begins with a detailed description of how
GII affects urban carbon emissions and presents the research hypotheses of this paper.
In addition, the study model is introduced, including data and variables. The fourth
part conducts a scientific empirical analysis and explains the results. The fifth part first
summarizes the main conclusions, and then puts forward the corresponding suggestions
according to the actual situation.

The main goal of this paper was, first, to explore the complex influence mechanism of
GII on urban carbon emissions, because the role of GII on urban carbon emissions may have
two sides. Green infrastructure was aimed at carbon reduction, but the green infrastructure
construction process may lead to increased energy consumption and increased carbon
emissions. On this basis, another main goal of the study was to verify whether there is a
time-lag effect and a threshold effect for the impact of GII on carbon emissions.

The unique contributions of this paper are as follows: (1) Lots of studies have em-
pirically analyzed the influencing factors of carbon emissions, such as economic level,
population size, and fiscal expenditure. However, these explanatory variables are relatively
macro. This paper refines the research perspective to a certain type of infrastructure invest-
ment and deeply explores the impact of GII on urban carbon emissions to better fill the gap
of previous studies. (2) Most of the existing literature focused on the accounting methods,
influencing factors, industry differences and potentials of carbon emissions, but few studies
have gone deeper into the mechanisms that affect carbon emissions. This paper provides a
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comprehensive analysis of the mechanism of GII on urban carbon emissions. According
to the scale, technological, and structural effect, this paper gives a general analysis of the
relationship between GII and urban carbon emissions, and combines a specific impact
of GII on urban carbon emissions. (3) This paper considers the time-lag effect and the
threshold effect, and sets up the corresponding models for empirical studies. Compared
with the existing linear studies which can only reflect the overall trend and relationship,
the threshold-effect study in this paper can find the neglected turning points, identify
the key thresholds for technological progress affecting carbon emissions, and deepen the
understanding of the relationship between variables.

The conclusions drawn from this study are useful for all parties in society to make
more reasonable investment decisions. This study can be applied to carbon emission
reduction initiatives, providing lessons for reducing greenhouse gas emissions and helping
global climate governance.

2. Literature Review
2.1. Research on Green Infrastructure

Rosenstein defined infrastructure as social prior capital, and it mainly includes eco-
nomic infrastructure, such as electricity, transportation, communication, and energy [4].
Later, some scholars expanded the definition of infrastructure and assumed that it includes
not only economic but also social infrastructures, such as medical care, education, and
public health [5]. Compared with the traditional infrastructure, which produces more
pollution in the construction process, the construction of green infrastructure has more
ecofriendly attributes in terms of subject, object, and construction concepts that are aimed
at a greener and more ecological development direction [6].

At present, the definitions of the green infrastructure concept lack unity. Huang et al.
defined green infrastructure from the macro-, meso-, and microscales [7]. Sun et al. referred
to green infrastructure as ecological infrastructure, including, but not limited to, renewable
energy, wastewater treatment, and other projects; this definition is notably different from
traditional infrastructure projects [8]. Other scholars believe that the components of green
infrastructure include a green space and park system and an open space system [9,10].
Zhang et al. defined “green infrastructure” as the range of measures that use plant or
soil systems, permeable pavement or other permeable surfaces or substrates, stormwater
harvest and reuse, or landscaping to store, infiltrate, or evapotranspirate stormwater and
reduce flows to sewer systems or surface waters [11]. The pattern of green infrastructure
and its changes are influenced by a variety of factors, among which natural endowment
conditions, regional development level, social and cultural atmospheres, and decision-
making management orientation act as the main driving factors [12]. Song and Feng
explored the internal relationship between green infrastructure and urban renewal [13].
Zhou et al. observed that an urban environment and green infrastructure have multiple
impacts on urban economic development and vary across regions [14].

The GII studied in this paper originated from three parts of fixed asset investment in
urban municipal utility construction. The first part is drainage investment, which includes
investment in sludge disposal, sewage treatment, and recycled water utilization. The
second part is landscaping investment. Finally, the third part is urban environmental
sanitation investment, including garbage disposal investment.

2.2. Research on Urban Carbon Emissions
2.2.1. Accounting Methods of Carbon Emissions

The first type of carbon accounting method supports the carbon-trading market,
and it is mainly based on the methodology and guidance system issued by the IPCC
(Intergovernmental Panel on Climate Change) and other institutions. The emission factor,
mass balance, and field measurement methods are widely recognized carbon accounting
methods. Singh et al. used the basic mass balance method of energy consumption to
calculate in detail the energy and carbon footprint accounting situation of sewage treatment
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plants based on different technology selections and sizes [15]. Tang et al. installed a CO2
continuous-emission monitoring system in gas-fired power plants using the emission factor
and field measurement methods and further compared and analyzed the differences in
carbon emissions from gas-fired power plants and the surplus and shortage of the trial
quota under the two calculation methods [16]. The emission factor method is the most
widely used carbon emission accounting method. Abdul-Wahab et al. used the emission
factor method to study gas- and oil-related activities in the Sultanate of Oman from 1972 to
2013 and observed that local consumption, crude oil, and natural gas production increased
sharply, and CO2 emissions also increased [17]. Huang and Qu used the carbon emission
coefficient method (IPCC) to calculate the carbon emission data of 30 provinces and cities
in China from 1997 to 2019 and analyzed the spatial and temporal changes in carbon
emissions in the textile and garment industry [18]. Alam et al. calculated the relationship
between economic growth, energy consumption, and carbon emissions in various regions
of Bangladesh using the IPCC method [19]. Kurokawa et al. calculated the carbon emissions
generated by China, India, and other Asian countries between 2000 and 2008 using the
IPCC inventory method [20]. Jorgenson computed CO2 emissions in 50 USA states and the
District of Columbia using the IPCC inventory method [21]. Köne and Büke applied the
IPCC inventory method to measure Turkey’s CO2 emissions between 1971 and 2014 [22].

The second type of carbon emission estimation method is based on the input–output
and life cycle evaluation methods, and it is used to measure the greenhouse gas emissions at
each production step of the product and the whole life cycle. For example, a multi-regional
input–output (MRIO) model was constructed to measure and compare the trade-induced
carbon emissions within the forest industry among the BRICS countries: Brazil, Russia,
India, China, and South Africa [23]. The third category is based on the factor decomposition
method and is mainly conducted via modeling to analyze the interaction between relevant
factors and carbon emissions. The most common methods belonging to this category
include index and structural decomposition analyses.

2.2.2. Factors Influencing Carbon Emissions

Regarding the research on factors influencing carbon emissions, to date, most scholars
start from the basis of three factors, namely, population, affluence, and technology, and
extend their research using the STIRPAT (Stochastic Impacts by Regression on Population,
Affluence, and Technology) model. Wei et al. investigated five indicators, namely, popu-
lation size, economic development level, urbanization rate, industrial structure (IS), and
energy intensity [24]. Di et al. selected six indicators, including economic scale, population
scale, IS, public income, public expenditure, and living standard, as the influencing factors
of carbon emissions [25]. From the perspective of supply-side reform, Wang et al. studied
six indicators, such as human, capital, technical, industrial, and institutional factors, and
economic growth [26]. According to Lenzen et al., the main reasons for the increased carbon
emissions are the improvement in the living standards of residents, the increase in exports,
and the expansion of population size; they conducted an empirical analysis using data
sets from various regions in Brazil [27]. Glaeser and Kahn attempted to quantify the CO2
emissions associated with new constructions in different locations across the country and
observed a strong negative association between emissions and land use regulations [28].

2.2.3. Industry Carbon Emissions

An increasing number of studies have focused on the carbon emissions of different
industries. For example, Chen et al. analyzed the influencing factors of industrial carbon
emissions at the provincial scale [29]. Muryani et al. identified the main agents, problems
and strategies for lowering industrial CO2 emissions in the cement industry in East Java, In-
donesia, by applying an analytical network process [30]. Gao et al. established an extended
STIRPAT model, with the rural population, crop sown area, number of large-scale animal
husbandry, per capita agricultural GDP, rural per capita disposable income, agricultural
mechanization level, and urbanization rate as the influencing factors of agricultural carbon



Sustainability 2024, 16, 2668 6 of 23

emission [31]. Lin et al. examined the linear and non-linear relationships between green
finance and carbon emissions using spatial measurement methods [32]. Lee et al. explored
the direct correlation between tourism and carbon emissions in European countries, and
their results showed that tourism development can reduce carbon emissions to a certain
extent [33]. Nadezhda studied pollution abatement and environmental equity in a dynamic
panel model using data from 234 plants in the USA’s pulp and paper industry [34].

2.2.4. Carbon Emission Potential

On the basis of revealing the evolution mechanism and action law of provincial carbon
emissions, Wu delineated four types of emission reduction zones based on agglomeration
characteristics and discovered that different provinces in China have differentiated emission
reduction characteristics and potentials [35]. Zhang et al. divided 31 provinces into
five categories based on economic development, energy consumption, IS, and emission
characteristics and proposed differentiated peaking action paths based on their respective
peaking action schedules and peaking situations [36]. Considering the importance of
equity and efficiency principles in China’s carbon emission reduction potential, Zhou et al.
re-estimated the carbon emission reduction potential of 29 provinces in Mainland China
from 1997 to 2016; they observed that regional differences in carbon emission reduction
potential and the dynamic evolution of distribution are influenced by many factors, such
as population size, economic development, IS, lifestyle, energy intensity, and research and
experimental development (R&D) funding [37]. Tian and Chen comprehensively evaluated
the carbon emission reduction effectiveness of 30 provinces and regions in Mainland
China from 2005 to 2016, and their results showed that most regions have achieved or
can potentially achieve the set carbon emission reduction targets; however, nine regions,
including Shanxi, Inner Mongolia, and Hainan, lagged in emission reduction [38].

2.3. Research on the Correlation between Infrastructure Investment and Carbon Emissions

Research on the correlation between infrastructure investment and carbon emissions
is often put into the broad framework of economy and environment. Using a global
panel comprising 140 countries from 1980 to 2021, Acheampong and Opoku observed
inverted U-shaped and U-shaped relationships between emissions and economic growth
and between ecological footprint indicators of environmental degradation and economic
growth, respectively [39]. With the 11 categories of major infrastructure in Shanghai as an
example, Guo studied the socioeconomic and natural geographical driving factors behind
the material metabolism of infrastructure and quantified the impact of urban infrastructure
development on the cross-regional ecological environment [40]. Li and Huang observed
that the government’s investment in environmental protection had direct and indirect
impacts on carbon emission reduction [41]. On the one hand, the fiscal environmental
protection expenditure has a considerable inhibitory effect on local carbon emissions,
which can effectively promote local carbon emission reduction. On the other hand, the
increase in the local financial environmental protection expenditure remarkably reduces
the carbon emission of the surrounding areas, which causes the spatial spillover effect of
carbon emission reduction management. Zhang studied the impact of environmental policy,
environmental protection expenditure, and government execution on carbon emissions
and revealed that improvements in the three can inhibit carbon emissions [42]. Zhong
and Sun argued that the impact of infrastructure on carbon emissions shows temporal
differences, and an infrastructure with remarkable sustainability needs to act in the long
term to promote carbon reduction [43].

The limited research on GII and the environment indicates that scholars failed to
arrive at a unified conclusion. Some scholars believe that GII can substantially reduce CO2
emissions. Green infrastructure implementation in urban areas can alleviate the impacts
of urban stormwater on aquatic ecosystems and human health, improve the quality of
surface and ground water [44–48], considerably reduce surface air temperature [49,50], and
therefore reduce energy consumption in air conditioning [51,52]. Jayaraman et al. observed
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that GII benefits Arab countries in reducing CO2 emissions [53]. Mwanzu et al. also found
that urban green spaces are essential for reducing the negative environmental and health
impacts of rapid urbanization in Kenya [54]. According to other scholars, although GII can
improve energy efficiency and bring additional benefits, it does not considerably reduce
carbon emissions and improve air quality [55]. Lin and Yang found that in China as a
whole, an inverted U-shaped relationship exists between GII and carbon emissions [6].

The existing literature has certain reference significance, but there is still room for
expansion. First, although a large number of studies pay close attention to carbon emissions,
most of the research focuses on the accounting and influencing factors of carbon emissions.
Most of these studies were based on the STIRPAT model and gave a comprehensive and
perfect consideration of the influencing factor system of carbon emissions. However,
the research still adopts relatively macro and well-defined indicators such as population,
economy and industry, and few studies focus on the impact of GII on carbon emissions.
Second, in the existing literature on the correlation of GII and carbon emissions, the
research conclusions were not uniform. The impact of GII on urban carbon emissions is
complex, and it cannot be simply assumed that GII can certainly reduce carbon emissions.
However, the previous literature has mostly focused on the low energy consumption of
green infrastructure benefits, ignoring the possible increase in carbon emissions in the
construction process, and did not fully consider the various effects brought by the increase
in GII.

3. Materials and Methods
3.1. Mechanism Analysis of GII on Urban Carbon Emissions

This part mainly analyzes the mechanism of GII on urban carbon emissions and puts
forward research hypotheses accordingly. Why does GII contribute to urban carbon emis-
sions? GII is essentially an economic phenomenon, and the intuitive level of urban carbon
emissions belongs to the environment. The relationship of economy and environment
can be largely explained by the scale, structural, and technological effects proposed by
Grossman and Krueger [56] in 1991. Therefore, this paper extends its research ideas to the
specific research of GII and urban carbon emissions. The above three effects were applied
to the general analysis of the relationship between GII and urban carbon emissions, and
three corresponding hypotheses were proposed combined on the specific effects of GII on
urban carbon emissions.

3.1.1. Scale Effect of GII

The scale effect of GII on urban carbon emissions was divided into economies and
diseconomies of scale. Economies of scale are manifested as follows. As the scale of
GII increases, the cost of related technologies and equipment usually decreases, and the
benefits generated per unit of investment gradually increase, attracting more investment
and adoption, driving market penetration and diffusion, and further promoting green
development. Diseconomies of scale are mainly reflected in the fact that although GIIs aim
to reduce reliance on fossil fuels, they still require energy and material consumption during
construction and operation. Large-scale increases in GII may lead to a higher demand
for energy and materials, which results in a certain level of environmental impact and
increased carbon emissions.

In addition, GII can increase the carbon sink capacity of cities to some extent. GII often
involves urban green space construction and urban forest planning. Green space helps in
reducing CO2 concentrations in the atmosphere by absorbing carbon dioxide and fixing
carbon elements. Urban forests and vegetation can provide shade and evaporation, slow
down the urban heat island effect [57], reduce the demand for air conditioners, and further
reduce carbon emissions. Therefore, the following hypothesis was proposed.

H1: GII plays a negative role in urban carbon emissions.
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3.1.2. Structural Effect of GII

The structural effect of GII mainly includes the transformation of the energy structure
and industrial structure. From the perspective of energy, GII encourages cities to implement
energy transformation and innovation and to adopt cleaner and more renewable forms
of energy, such as solar, wind, and geothermal energy. The use of renewable energy will
gradually replace traditional high-carbon energy sources, such as coal burning and oil, and
reduce the dependence on fossil fuels, thus reducing urban carbon emissions [58].

From the perspective of industries, on the one hand, GII contributes to the formation
of a comprehensive and efficient green industrial ecosystem, which has a positive impact
on the upgrading of IS and low-carbon transformation. Investing in and supporting
green infrastructure construction will drive the development of the entire industrial chain
and stimulate the demand of related industries, which will promote the expansion and
optimization of the supply chain. For example, increased investment in landscaping
will drive the development of industrial chains, such as garden design and construction,
garden maintenance and management, and tourism and leisure, leading to a more desirable
industrial ecosystem. On the other hand, increasing GII may change market demand and
consumer behavior patterns. Through the promotion of green technologies and products,
consumers’ demand for green products and services may increase, which will lead to a
shift in IS towards green and sustainable development direction.

To sum up, as the transformation of energy structure and industrial structure brought
by GII needs time to realize, the impact of GII as an input on urban carbon emissions may
not be fully observed in the current period. In economics, the response of the dependent
variable to the independent variable often exhibits a temporal delay, which is called a lag.
In addition, the green infrastructure projects are large and complex, and they will still take
a long time to build after the investment. In this process, the transfer and distribution of
human capital and other production factors need time to adjust, and people’s psychology,
lifestyle and consumption habits also need to be gradually changed. These adaptation
and transition processes lead to a lag in carbon reduction effects. Therefore, the following
hypothesis is proposed.

H2: A time-lag effect exists in the impact of GII on urban carbon emissions.

3.1.3. Technological Effect of GII

Uncertainty exists regarding the technological effect of GII. On the one hand, GII
will promote the research and adoption of new environmentally friendly technologies and
solutions, which will drive innovation and progress in related technologies. In addition,
through the introduction and adoption of green technologies and equipment, experience
and best practices can be shared between regions to accelerate the application and diffusion
of green technologies in various regions and further promote the green transformation of
cities. On the other hand, technical innovation caused by GII may raise a country’s carbon
emissions [59]. In the early stage of GII, the spillover effect of technology is low because
the innovators focus on their own economic benefits. Moreover, a certain run-in period
may be observed when innovative technologies are used; that is, the expected effects can
be gradually manifested as scientific and technological innovation matures.

Thus, the impact of GII on urban carbon emissions is extremely complex and may
not be a simple linear relationship. Technological progress (TP) is an important factor
that cannot be ignored in the topic of economic and environmental pollution. A low level
of scientific and technological innovation is inadequate to produce positive externalities;
therefore, it is difficult to attract resources and enterprises to invest in green infrastructure
with a long investment cycle and slow return. However, with the improvement in the
level of scientific and technological innovation, innovation subjects will gradually improve
the ecosystem of scientific and technological innovation and become more mature in
their application. At this point, the positive spillover effect of scientific and technological



Sustainability 2024, 16, 2668 9 of 23

innovation will attract more green investment and show an inhibitory effect on carbon
emissions. Therefore, the following hypothesis is proposed.

H3: The impact of GII on urban carbon emissions has a threshold effect based on TP.

3.2. Benchmark Model Construction and Related Tests
3.2.1. Model Design

This paper refers to the research of Huo and Zhang [60] and considers carbon emission
intensity (CEI) as the explained variable. GII is the core explanatory variable of this paper,
and it is the sum of drainage investment, landscaping investment, and environmental
sanitation investment. As for the control variables, this paper selects the indicators of energy
consumption structure (ECS), openness (O), population density (PD), TP, urbanization
level (UL), and government environmental governance (GEG) with reference to previous
studies [61–65]. The indicators corresponding to the variables covered in this paper are
shown in Table 1 and can be explained as follows.

Table 1. Relevant variables.

Variable Explanation Indicators

Explained variable CEI Carbon emission intensity Ratio of carbon emissions to the gross economic product

Core explanatory
variable GII Green infrastructure investment Sum of drainage investment, landscaping investment, and

environmental sanitation investment

Control variables

ECS Energy consumption structure Ratio of coal consumption to total energy consumption

O Openness Actual amount of international investment used in the
current year

PD Population density Size of population per unit area

TP Technical progress Number of green utility model patent applications

UL Urbanization level Ratio of the urban built-up area to the urban area

GEG Government environmental
governance

Proportion of words related to environmental protection
(such as emission reduction, low carbon, and air) in the

local government work report

The consumption of fossil energy, such as coal, is highly related to urban carbon
emissions. A reasonable and green ECS will effectively improve energy utilization efficiency.
The impact of O on urban carbon emissions requires further investigation. On the one
hand, an improved level of O is conducive to the introduction of advanced production
technology to improve the pollution status. On the other hand, according to the hypothesis
of pollution paradise, an improved level of O will be accompanied by the transfer of highly
polluting industries to relatively backward countries and regions. Cities with high PD
have highly intensive economic activities, which promotes energy consumption leading
to increased carbon emissions. Therefore, PD is predicted to promote urban CEI. The
improvement of technology is conducive to improving energy efficiency and changing
production methods, which reduces the CEI. Therefore, the coefficient of TP is theoretically
negative. Urbanization, to a certain extent, can promote the use of clean energy and
the reduction in carbon intensity. In addition, the relocation of economic activity due to
agglomeration is likely to operate at especially short distances [66], which reduces the
transport demand and carbon emissions. GEG can better reflect the whole image of the
GEG policy, unlike indicators such as the number of environmental protection personnel,
R&D investment in environmental pollution control, and pollution tax rate or pollution
control cost, which only focus on one aspect of the GEG.
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In conclusion, the following model was constructed to verify the impact of GII on
urban carbon emissions.

lnCEIit = α0 + α1lnGIIit + αk∑7
k=2 Xcontrol +εit (1)

where CEI corresponds to the explained variable, GII refers to the core explanatory variable,
Xcontrol represents the above series of control variables, α0 is the intercept term, α1 stands
for the regression coefficient for the core explanatory variable, and αk (k = 2, 3, . . ., 7)
is the regression coefficient of the control variable. i and t indicate the region and time,
respectively. εit is a random error term.

3.2.2. Data Processing

Given the serious lack and unavailability of some data, the sample in this paper
included 235 cities at the prefecture level and above in China from 2006 to 2019. The
original data were mainly obtained from China Carbon Emission Accounting and Database,
the China Statistical Yearbook, China Provincial and Municipal Economic Development
Yearbook, China Energy Statistical Yearbook, China Industrial Statistical Yearbook, China
City Statistical Yearbook, the local statistics bureau, and the municipal statistical bulletin of
national economic and social development. Some of the missing data were complemented
by the linear interpolation method. To solve the problem of excessive disparity in data
magnitudes, the data corresponding to urban CEI, GII, O, PD, TP, and GEG were processed
logarithmically (the base of logarithms is natural logarithms) before the empirical analysis.
Table 2 shows the descriptive statistics for each variable.

Table 2. Descriptive statistics of relevant variables from 2006 to 2019.

Variable Observations Mean Standard Deviation Minimum Maximum

lnCEI 3290 5.219 0.821 0.814 8.354
lnGII 3290 10.420 1.420 0.000 16.070
ECS 3290 0.805 0.152 0.040 1.000
lnO 3290 10.080 1.767 0.000 14.700

lnPD 3290 7.945 0.742 5.513 9.908
lnTP 3290 4.173 1.813 0.000 9.433
UL 3290 0.410 0.274 0.021 1.000

lnGEG 3290 −5.357 0.477 −9.210 −4.012

3.2.3. Related Tests

(1) Multicollinearity test

Variance inflation factor (VIF) is an indicator of multicollinearity. It measures how
much the variance of an estimated regression coefficient is inflated due to collinearity
with other independent variables in the model. A VIF value greater than 10 indicates
high correlation between the independent variable and other variables, suggesting serious
multicollinearity. A VIF between 5 and 10 indicates moderate correlation. A VIF between 1
and 5 is acceptable. A VIF of 1 means the independent variable is completely uncorrelated
with others.

As shown in Table 3, the VIF of each variable was less than 10, which indicates that no
multicollinearity existed among the explanatory variables considered in this paper.
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Table 3. VIF of each variable.

Variable VIF 1/VIF

lnGII 1.80 0.56
ECS 1.04 0.96
lnO 2.01 0.50

lnPD 5.15 0.19
lnTP 2.49 0.40
UL 5.03 0.20

lnGEG 1.19 0.84
Mean VIF 2.67

(2) Unit root and stationarity test

Regression analysis requires the variables to be stationary. If there is a unit root in the
variables, it means the variables are non-stationary. If regression is directly conducted on
non-stationary variables, it will lead to spurious regression and thus unreliable regression
results. Therefore, a unit root test needs to be conducted to examine whether the variables
are stationary or not. Each variable series is investigated with panel unit root tests, including
that of Levin, Lee and Chu (LLC), Im, Pesaran and Shin (IPS), Fisher’s ADF test, and the
Hadri test. If the null hypothesis of the existence of the unit root is rejected in the test, then
this sequence is stationary, and vice versa. The results are given in Table 4. The results
suggest that all variables are stationary and the next regression analysis can be performed
using the original series.

Table 4. Unit root results.

Variable LLC IPS Fisher (ADF) Hadri

lnCEI −15.0201 [0.0000] −4.2707 [0.0000] 4.3075 [0.0000] 92.7700 [0.0000]
lnGII −22.7601 [0.0000] −13.7239 [0.0000] 8.5672 [0.0000] 44.1441 [0.0000]
ECS −29.8575 [0.0000] −10.4491 [0.0000] 1.6631 [0.0481] 48.8136 [0.0000]
lnO −19.7984 [0.0000] −7.5213 [0.0000] 7.1764 [0.0000] 46.0506 [0.0000]

lnPD −49.1060 [0.0000] −11.0072 [0.0000] 16.3269 [0.0000] 63.6515 [0.0000]
lnTP −29.9960 [0.0000] −18.1917 [0.0000] 12.0455 [0.0000] 105.1208 [0.0000]
UL −73.2781 [0.0000] −9.5385 [0.0000] 14.9808 [0.0000] 59.3164 [0.0000]

lnGEG −41.9037 [0.0000] −21.1444 [0.0000] 15.2618 [0.0000] 46.8086 [0.0000]
Note: LLC, IPS, Fisher and Hadri represent Levin, Lee and Chu t; lm, Pesaran and Shin Z; Fisher ADF Ki-square;
Hadri Z, respectively. Probabilities are given in parentheses.

(3) Model selection

For the selection of the regression models, the individual effect was first examined
with a p-value of 0.0000, which indicates that the fixed-effects model is superior to the
mixed ordinary least squares (ols) model. The time effect was then examined with a p-value
of 0.0000, which indicates that the random-effects model outperformed the mixed ols model.
The Hausman test is often used to choose between fixed-effects model and random-effects
model in panel data analysis. The null hypothesis is that the preferred model is random-
effects, while the alternative hypothesis is that the preferred model is fixed-effects. If the
p-value is small (typically less than 0.05), then we reject the null hypothesis and conclude
that the fixed effects model is appropriate. For the panel data presented in this paper,
the Hausman test was performed at a p-value of 0.0000, and the results showed that a
fixed-effects model should be used for this study.

4. Results and Discussion
4.1. Benchmark Regression Results Based on the Fixed-Effects Model

Table 5 presents the regression results based on the fixed-effects model. The influence
coefficient of the core explanatory variable GII on the urban CEI was −0.032, and it passed
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the significance test of 1% level. This finding suggests that GII can inhibit the CEI in
local cities.

Next, this paper divided the samples into four groups for regression (the same group-
ing method in Section 1). As shown in Table 6, heterogeneity was observed in the effects
of cities with different GII levels on their CEI. In the group with the highest level of GII,
that is, the cities with a total investment of more than RMB 50 billion from 2006 to 2019, the
impact of the core explanatory variable on the explained variable changed into a significant
positive effect. This change may be due to the diseconomies of scale of GII, which led
to a short-term increase in carbon emissions. For example, in municipalities like Beijing,
Tianjin and Chongqing, land use was relatively saturated. However, green infrastructure
projects require large areas of land for construction, which may lead to the destruction of or
reduction in existing vegetation, thus reducing the carbon absorption capacity. And in the
process, activities such as excavation or landfill will also produce certain carbon emissions.

Table 5. Regression results of the whole sample based on the fixed-effects model.

Explanatory Variable Explained Variable lnCEI
Coefficient t-Value

lnGII −0.032 *** −4.69
ECS 0.287 *** 4.08
lnO −0.070 *** −10.10

lnPD 0.074 ** 2.39
lnTP −0.204 *** −31.65
UL −0.105 −1.18

lnGEG −0.094 *** −6.21
Constant 5.827 *** 22.73

Note: **, and *** represent the 5%, and 1% significance levels, respectively.

Table 6. Sample grouping regression results.

Explanatory
Variable

Explained Variable
Benchmark
Situation

GII More than
RMB 50 Billion

GII between
RMB 10 and 50 Billion

GII between RMB
5 and 10 Billion

GII Less than
RMB 5 Billion

lnGII −0.032 *** 0.050 *** −0.021 ** −0.070 *** −0.021 *
(0.007) (0.018) (0.010) (0.013) (0.012)

ECS 0.287 *** 0.546 *** 0.386 *** 0.195 0.250 **
(0.070) (0.123) (0.126) (0.133) (0.119)

lnO −0.070 *** −0.157 *** −0.039 *** −0.065 *** −0.077 ***
(0.007) (0.032) (0.015) (0.014) (0.010)

lnPD 0.074 ** 0.299 *** 0.261 *** 0.118 * −0.022
(0.031) (0.093) (0.052) (0.062) (0.050)

lnTP −0.204 *** −0.374 *** −0.225 *** −0.162 *** −0.212 ***
(0.006) (0.021) (0.010) (0.012) (0.011)

UL −0.105 −0.503 * −0.271 * −0.226 0.035
(0.089) (0.301) (0.143) (0.168) (0.148)

lnGEG −0.094 *** −0.105 ** −0.001 −0.111 *** −0.133 ***
(0.015) (0.044) (0.023) (0.026) (0.027)

_cons 5.827 *** 5.665 *** 4.622 *** 5.752 *** 6.140 ***
(0.256) (0.802) (0.441) (0.504) (0.416)

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively. Standard deviations are given
in parentheses.

In the second, third, and fourth group cities with lower levels of GII, the influence of
the core explanatory variable on the explained variable remained negative. Among these
groups, in the cities with a total GII between RMB 5 billion and 10 billion, GII had the largest
and most significant inhibitory effect on CEI, and its inhibitory effect was higher than that
of the whole sample. Such cities include Qinhuangdao, Chifeng, Guilin and Haikou. They
are often known for their rich natural landscapes and ecological environment, and are at a
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critical stage of urban scale and development. In order to achieve sustainable development,
they need to increase GII, improve environmental quality, and improve the quality of life of
residents while reducing carbon emissions. Moreover, these cities may have suitable climate
conditions, such as being sunny, warm and humid, which provides better conditions for
the use of renewable energy (such as solar and wind energy). In addition, these cities may
have received the attention and support of the government and society.

4.2. Robustness Discussion

The results of the panel metrology model may be influenced by the data-processing
and estimation methods. For example, the choice of a fixed-effects model or a random-
effects model may change the outcome. As shown in Table 7, the choice of fixed-effects and
random-effects models did not significantly differ on the regression results, and it can be
tentatively considered that the selected models are robust. This means that individual or
group effects have less influence on the results, and choosing either of the model yields
reliable estimates of the results.

Table 7. Comparison of fixed-effects model and random-effects model.

Explanatory Variable Explained Variable
Fixed-Effects Model Random-Effects Model

lnGII −0.032 *** −0.030 ***
(0.007) (0.007)

ECS 0.287 *** 0.260 ***
(0.070) (0.069)

lnO −0.070 *** −0.067 ***
(0.007) (0.007)

lnPD 0.074 ** 0.084 ***
(0.031) (0.030)

lnTP −0.204 *** −0.201 ***
(0.006) (0.006)

UL −0.105 −0.147 *
(0.089) (0.086)

lnGEG −0.094 *** −0.099 ***
(0.015) (0.015)

Constant 5.827 *** 5.692 ***
(0.256) (0.254)

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively. Standard errors in parentheses.

The explained variable was replaced with carbon emissions per unit of industrial
production to further verify the robustness of the model. Table 8 shows the whole-sample
regression results, which showed good robustness. The role of GII in urban carbon emis-
sions remained significantly negative, but the impact coefficient changed. Among the other
control variables, only the individual effects changed.

Table 8. Full-sample robustness regression results.

Explanatory Variable Explained Variable
Coefficient t-Value

lnGII −0.052 *** −7.37
ECS 0.426 *** 5.74
lnO −0.100 *** −13.76

lnPD 0.066 ** 2.01
lnTP −0.151 *** −22.17
UL −0.086 −0.92

lnGEG −0.095 *** −5.94
Constant 6.823 *** 25.22

Note: **, and *** represent the 5%, and 1% significance levels, respectively.
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Thus far, it has been demonstrated that the model estimates are reliably robust and
that H1 holds true.

4.3. Analysis of the Empirical Results Based on the Time-Lag Effect

Referring to the study by Zhong and Sun [43], temporal differences exist in the impact
of infrastructure investment on carbon emissions. Considering the long construction cycle
of green infrastructure, this paper set the sample data to a lag of five periods to further
verify the lag in the impact of GII on urban CEI. Each period step mentioned in this article
is one year. According to the construction of Equation (1), the time-lag model of GII lagging
by 1, 2, 3, 4 and 5 years can be expressed as follows:

lnCEIit = α0 + α1lnGIIit−τ + αk∑7
k=2 Xcontrol +εit (τ = 1, 2, 3, 4, 5) (2)

where α1 is the coefficient of the independent variable lagging behind τ period, reflecting
the effect of the independent variable value of the past period on the value of the dependent
variable in the current period. εit is the error term, representing the random error term,
the total influence term of the explanatory variable not included in the model and some
other random factors on the explained variable. The rest of the letters mean the same as in
Equation (1).

By regression, the coefficients of the core explanatory variable at one lags, two lags,
three lags, four lags and five lags were −0.046, −0.054, −0.058, −0.053 and −0.049, respec-
tively, and all were significant at the 1% level (Table 9). It can be seen that the inhibitory
effect of GII on CEI is significantly present in all the five lag periods, among which the
inhibition of three lags is the strongest, and then shows a decreasing trend. Thus, the impact
of GII on urban carbon emissions has a time-lag effect, which proves that H2 holds true.

Table 9. Results of the time-lag effect regression.

Variable No Lag Lag One
Year

Lag Two
Years

Lag Three
Years

Lag Four
Years

Lag Five
Years

lnGII −0.032 *** −0.046 *** −0.054 *** −0.058 *** −0.053 *** −0.049 ***
(0.007) (0.007) (0.007) (0.007) (0.008) (0.008)

ECS 0.287 *** 0.276 *** 0.205 *** 0.143 * 0.029 −0.010
(0.070) (0.072) (0.074) (0.078) (0.082) (0.089)

lnO −0.070 *** −0.066 *** −0.065 *** −0.064 *** −0.060 *** −0.054 ***
(0.007) (0.007) (0.007) (0.007) (0.008) (0.008)

lnPD 0.074 ** 0.069 ** 0.074 ** 0.060 0.041 0.033
(0.031) (0.033) (0.035) (0.038) (0.041) (0.047)

lnTP −0.204 *** −0.198 *** −0.189 *** −0.178 *** −0.165 *** −0.154 ***
(0.006) (0.007) (0.007) (0.008) (0.009) (0.011)

UL −0.105 −0.034 −0.058 −0.014 0.052 0.090
(0.089) (0.094) (0.100) (0.107) (0.115) (0.128)

lnGEG −0.094 *** −0.082 *** −0.080 *** −0.082 *** −0.065 *** −0.046 **
(0.015) (0.016) (0.017) (0.018) (0.019) (0.020)

_cons 5.827 *** 5.986 *** 6.039 *** 6.149 *** 6.273 *** 6.286 ***
(0.256) (0.271) (0.286) (0.305) (0.332) (0.368)

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively. Standard deviations are given
in parentheses.

The time lag in GII on urban CEI was mainly caused by three factors. The first factor is
the building cycle. The construction of green infrastructure usually requires a long time and
includes multiple stages, such as planning, design, bidding, construction, and checking.
These stages require some time to complete, especially for large infrastructure projects.
During the construction period, some carbon emissions may occur. Thus, the emission
reduction benefits of green infrastructure cannot be reflected immediately before it has
been fully built and put into use. The second factor is the accumulation of technology
and experience. In the field of green infrastructure, the related TP and accumulation
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of experience are improved and optimized gradually to enhance the effect of emission
reduction. The third reason is the change in civic behavior patterns. The successful
application of green infrastructure requires the active participation and adaptation of
citizens. For example, if a city invests in intelligent recycling bins for garbage classification,
but citizens refuse to cooperate with the active classification, then the effect of emission
reduction may not be immediately evident.

However, the inhibitory effect of GII on CEI being strongest at three lags and then
starting to weaken could also be explained. The marginal inhibition of carbon emissions in
green infrastructure projects will decline over time. Without a new round of GII, the use of
completed projects and the aging of the equipment will reduce the suppression effect.

4.4. Analysis of the Empirical Results Based on the Threshold Effect
4.4.1. Static Panel Threshold Model

Based on the analysis of the impact mechanism in Section 3.1, this paper assumed
that a nonlinear relationship possibly exists between GII and urban carbon emissions, and
TP has a threshold effect. To test this hypothesis, we first employed the non-dynamic
panel regression model proposed by Hansen [67]. The threshold regression model can be
expressed as follows:

yi = xi′β1 + µi, qi ≤ γ
yi = xi′β2 + µi, qi > γ

(3)

where yi is the explanatory variable; xi′ is the explanatory variable vector of order P× 1; qi is
the threshold variable, which may or may not be part of the xi′; and γ is the threshold value.

Using Hansen’s ideas, this paper constructs the following static panel threshold model
with TP as the threshold variable:

lnCEIit = β0 + β1lnGIIit·I(lnTPit ≤ ω1) + β2lnGIIit·I(ω1 < lnTPit ≤ ω2) + . . .+
βn+1lnGIIit·I(lnTPit > ωn) + γ1ECSit + γ2lnOit + γ3lnPDit + γ4ULit + γ5lnGEGit+εit

(4)

Here, β0 is a constant term, and β1 to βn+1 are the elasticity coefficients of the core
explanatory variable lnGII at different threshold values. TP was selected for the threshold
variables. I(·) is an indicator function with a value of 0 or 1. ω1 to ωn are the threshold
values to be estimated.

The threshold existence test was conducted using Stata16, and the test results under
different thresholds are shown in Table 10. The single- and double-threshold models had
p-values of less than 0.05 and passed the significance test, but the triple-threshold model
failed. Therefore, this paper can consider that GII had a double-threshold effect on urban
carbon emission based on TP, which verifies H3.

Table 10. Test results of the threshold number.

Model Bootstrap Times F-Value p-Value Critical Value
Crit10 Crit5 Crit1

single 300 287.05 0.0000 131.5298 140.8715 158.4264
Double 300 264.16 0.0000 70.4831 86.2701 127.7891
Triple 300 114.05 0.9467 227.4568 252.8525 288.2599

In the double-threshold model regression, the first threshold value for TP was 3.9120
with a 95% confidence interval of [3.8286, 3.9703]. The second threshold value for TP was
6.8035, with a 95% confidence interval of [6.5624, 6.9791]. Figure 4 shows the corresponding
threshold map. The red dashed line indicates the critical value at the 5% significance level.
The part of the LR image below the dashed line is the confidence interval of the threshold
value. At different levels of TP, GII had a significant negative impact on urban carbon
emissions, but the degrees of impact varied (Table 11). The inhibitory effect of GII on urban
CEI was strengthened with the level of TP. Specifically, when the level of TP did not exceed
the first threshold value, the effect coefficient of GII on urban CEI was −0.057. When the



Sustainability 2024, 16, 2668 16 of 23

level of TP was between the first and second threshold values, the effect coefficient of GII
on urban CEI was −0.088. In addition, when the level of TP was greater than the second
threshold, the effect coefficient of GII on urban CEI was −0.126. This result indicates that
when lnTP exceeds the second threshold value 6.8035 (number of green utility model patent
applications greater than 901), the inhibitory effect of TP on CEI increases by 121.0526%
relative to lnTP, which is less than the first threshold. At this time, the technical content
of green infrastructure has greatly increased, which improves investment efficiency and
significantly reduces urban carbon emissions.
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Table 11. Regression results of the threshold model.

Variable Coefficient

ECS 0.140
lnO −0.083 ***

lnPD 0.081
UL −0.240

lnGEG −0.208 ***
lnGII (lnTP ≤ 3.9120) −0.057 ***

lnGII (3.9120 < lnTP ≤ 6.4754) −0.088 ***
lnGII (lnTP > 6.4754) −0.126 ***

Constant 5.104 ***
Note: *** represent the 1% significance level.

4.4.2. Re-Examination of the Dynamic Panel Threshold Model

Considering that the current urban carbon emissions may have an impact on the next
phase through greenhouse gas accumulation, carbon cycle and climate feedback, and the
continuity of infrastructure investment, we introduced the lag phase of the dependent
variable CEI to build a dynamic panel model in this section. Caner and Hansen [68]
proposed two-stage least squares (2SLS) estimation and Generalized Method of Moments
(GMM) estimation for threshold parameters for cross-section data containing endogenous
explanatory variables and exogenous threshold variables. Kremer et al. [69] further applied
the above methods to dynamic panel data to solve the inherent endogenous problems of
dynamic panel data. In this paper, using the method of Kremer et al., lnCEIit−1 was added
to Equation (4) to obtain the following dynamic panel threshold model:

lnCEIit = β0 + β1lnGIIit·I(lnTPit ≤ ω1) + β2lnGIIit·I(ω1 < lnTPit ≤ ω2) + . . .+
βn+1lnGIIit·I(lnTPit > ωn) + φlnCEIit−1 + γ1ECSit + γ2lnOit+

γ3lnPDit + γ4ULit + γ5lnGEGit+εit

(5)
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where φ is the influence coefficient of the current CEI on the next CEI. The rest of the letters
mean the same as in Equation (4).

For the dynamic panel data model, to exclude the model setting error, the autocorrela-
tion of the residual terms and the validity of the instrumental variables must be statistically
tested after the GMM estimation. The results of systematic GMM regression are shown in
Table 12.

Table 12. Dynamic panel systematic GMM regression results.

lnCEI

L.lnCEI 1.029 ***
lnGII −0.038 ***
ECS −0.156 ***
lnO −0.005 *

lnPD −0.111 ***
lnTP 0.010 **
UL 0.333 ***

lnGEG 0.076 ***
_cons 0.000
Year Yes

AR(1) 0.000
AR(2) 0.258

Hansen 0.387
Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively. AR (1) and AR (2) report the
p-values of the first- and second-order sequence correlation tests, respectively; Hansen reports the p-value of the
over-identification test.

The p-value corresponding to AR (1) was of less than 0.1 and that corresponding to AR
(2) was greater than 0.1, indicating that the residual terms had first-order but not second-
order autocorrelation, which meets the requirements of the autocorrelation test. The p-value
of the Hansen test was 0.387, greater than 0.1, indicating that the instrumental variable was
jointly valid and there was no over-identification. The above tests showed that the model
setting in this paper was appropriate. In addition, the current CEI was indeed positively
affected by the previous period and the coefficient was 1.029. The regression coefficient
for the core explanatory variable GII was −0.038, which was significantly negative at the
1% level.

Referring to the research of Wang and Peng [70], the effect of GII on CEI was further
analyzed by the dynamic panel threshold regression model using TP as the threshold
variable. According to the dynamic panel threshold regression model test, GII and CEI had
a nonlinear relationship under the TP threshold (Table 13). The threshold was 3.666 and
was significant at the 95% confidence interval [3.575, 3.756]. Next, the samples were divided
into two groups for dynamic panel regression based on the threshold value 3.666 (Table 14).
It can be seen that when lnTP is below 3.666, GII cannot yet inhibit CEI. However, when
lnTP is greater than 3.666, GII can significantly inhibit CEI.

We log-converted the threshold value (3.666) mentioned above and found that the
corresponding TP was 39.095. Two examples of real cities were considered for further
verification, as shown in Figures 5 and 6. The TP, represented by the number of green utility
model patent applications, in Qinhuangdao City gradually exceeded the threshold value
after 2008. During the period when Qinhuangdao City’s TP had not reached the threshold
value, its CEI exhibited significant fluctuations, indicating that the carbon reduction effect
had not yet been realized. However, from 2009 onwards, its CEI started to decline. In
addition, in the case of Haikou City, its TP exceeded the threshold value after 2010, and
the turning point of CEI was also in 2010: the CEI of Haikou remained relatively stable
between 2006 and 2010, and began to decline significantly from 2010. Such a reality is
consistent with the conclusion drawn by the above threshold regression, indicating that TP
has a threshold effect on the process of carbon emission reduction.



Sustainability 2024, 16, 2668 18 of 23

Table 13. The threshold regression model test of the dynamic panel.

lnCEI Coefficient Standard Error Z Statistics p Value The 95% Confidence Interval
Superior Limit Lower Limit

Lag_lnCEI_b 0.916 0.002 484.22 0.000 0.912 0.920
lnGII_b −0.003 0.001 −5.61 0.000 −0.004 −0.002
lnTP_b 0.025 0.001 29.84 0.000 0.023 0.026

kink_slope −0.053 0.001 −53.57 0.000 −0.055 −0.051
r 3.666 0.046 79.05 0.000 3.575 3.756

Table 14. Results of the dynamic panel group regression.

lnCEI
Lower Regime Upper Regime

L.lnCEI 1.003 *** 0.912 ***
(203.855) (73.340)

lnGII 0.006 *** −0.024 ***
(2.812) (−4.473)

ECS 0.022 0.104 ***
(0.776) (2.767)

lnO −0.007 *** 0.003
(−6.138) (0.702)

lnPD −0.050 *** 0.090 ***
(−6.593) (6.497)

lnTP −0.006 *** −0.009 **
(−3.000) (−2.017)

UL 0.155 *** −0.335 ***
(7.616) (−8.282)

lnGEG −0.060 *** 0.076 ***
(−14.548) (8.190)

_cons 0.000 0.402 ***
(0.000) (3.367)

Year Yes Yes
AR(1) 0.000 0.000
AR(2) 0.261 0.140

Hansen 0.987 0.182
Note: **, and *** represent the 5%, and 1% significance levels, respectively.
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In conclusion, the static panel exhibited double thresholds. At different TP levels, GII
had an inhibitory effect on CEI, but the coefficients were different. The higher the level of
TP, the more significant the inhibitory effect of GII on CEI. In the dynamic panel, however,
the threshold changed over time and the effect of GII on CEI shifted from facilitation
to inhibition. This means that GII suppressed CEI only after the TP reached a specific
threshold. The change in the threshold number of the static and dynamic panels may be
due to the different treatment of the time dimension between the two panel data models. In
the static panel data model, the cross-sectional data at a specific time point were considered.
In this case, multiple thresholds may be present as different thresholds may have effects on
the relationship between the explanatory variable and the explained variable at different
time points. However, the dynamic panel data model considered the changing time series.
In this case, the evolution of TP, the market uptake process, or other external factors may
lead to threshold changes over time.

4.5. Conclusions and Policy Suggestions

Using the panel data from 235 cities in China from 2006 to 2019, this paper studied the
impact of GII on urban carbon emissions from the perspective of time lag and threshold
effects. The main conclusions are as follows: (1) GII has a negative inhibitory effect on
urban carbon emission; that is, increasing GII can reduce urban carbon emissions. (2) A
time-lag effect exists on the impact of GII on urban carbon emissions, and the greatest
reduction in carbon emissions occurs in the third lag period. (3) The impact of GII on urban
carbon emissions has a non-linear relationship based on the threshold variable TP.

However, when we try to reduce CEI by increasing GII, the trade-offs, limitations, or
potential negative impacts of increasing GII should be critically considered. First, green
infrastructure projects usually require a high capital investment. This could lead to a higher
cost of capital, which reduces the return on investment. Second, some green infrastructure
projects may have adverse effects on local communities in the early stage of construction,
such as land acquisition, relocation, and social conflicts. Therefore, a comprehensive
assessment of the economic benefits and social impact of the GII is needed to ensure its
feasibility and sustainability.

Based on the above conclusions and considerations, we can draw the following policy
suggestions: (1) The increase in GII plays an important role in promoting sustainable
development and reducing carbon emissions. Governments should formulate relevant
incentive policies and regulations, including incentive tax policies, preferential financing,
and loan conditions, to attract various forces and funds as well as to encourage and sup-
port GII. (2) From the perspective of energy structure, we should reduce the dependence
on high-carbon energy and develop and promote renewable energy. In the process, the
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environmental preferences of urban residents are more important than the content of their
climate plans [71]. Individual and family awareness and actions play an important role in
carbon reduction in cities. We should advocate for a low-carbon lifestyle and encourage
environmental behaviors such as green traffic and garbage sorting to aid in the low-carbon
transformation of urban energy consumption. For example, measures to incentivize include
using electric cars, electric buses or shared bikes instead of traditional cars to reduce carbon
emissions and traffic congestion. (3) TP is an important internal driving force for the
reduction in urban carbon emissions. We should encourage cooperation between scientific
research institutions, universities, and enterprises to realize the sharing of research results
and technical resources for the continuous improvement of the overall green technology
innovation capability. Meanwhile, we should strengthen international exchanges and
actively participate in international green technology innovation projects. (4) Based on the
resource endowments and geographical conditions of different regions, we must formulate
appropriate carbon emission reduction targets and paths. In addition, we should fortify
exchanges and cooperation between cities and rationally allocate capital, labor force, in-
formation, and other resources. For example, we can establish an intercity information
disclosure platform to provide comprehensive and accurate data on GII opportunities and
project information to help investors further gain insights into investment opportunities,
reduce the risk of information asymmetry, and promote the market to achieve a healthy
flow of factors.

4.6. Study Limitations and Recommendations for Future

There are still some shortcomings in this study. First, this paper uses panel data from
235 cities at the prefecture level and above in China from 2006 to 2019 to study the impact
of GII on urban carbon emissions. However, due to the limitation of data access channels,
this paper fails to include all prefecture-level cities in China. Secondly, due to the different
calculation caliber of CO2 emissions, this paper chooses to use China Carbon Emission
Accounting and Database for research and analysis, but it was only updated up to 2019
during the writing period, which limits the time span of this study and does not rule out
the possibility that different conclusions will be drawn after extending the length of the
study period. Third, one of the control variables in this study failed to show the expected
results in the model regression. Specifically, the variable of UL was not significant, which
may be because of the error or incompleteness of the measurement and representative
indicator for UL. Future studies could focus on these issues. We will also use the updated
database as much as possible to improve data collection and measurement to make the
results more reliable and valid.
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